Subject for this video:

Introduction to Concavity

Reading:

- General: Section 4.2 Second Derivatives and Graphs
- More Specifically: The concepts in this video are scattered throughout Section 4.2 of the book. There are no book examples similar to the examples in this video.

Homework:

H57: Introduction to Concavity (4.2\#9,13,14,15,16)

Useful Section 4.1 concept discussed in previous videos

Correspondence between

sign behavior of $f^{\prime}(x)$ on an interval (a, b) and behavior of graph of $f(x)$ on the interval (a, b)

- If $f^{\prime}(x)$ is positive on an interval (a, b) then $f(x)$ is increasing on the interval (a, b).
- If $f^{\prime}(x)$ is negative on an interval (a, b) then $f(x)$ is decreasing on the interval (a, b).
- If $f^{\prime}(x)$ is zero on an interval (a, b) then $f(x)$ is constant on the interval (a, b).

Introduction to Concavity, and Examples Involving Graphs

Definition of Concavity and Inflection Point

Words: f is concave up on the interval (a, b).
Graphical Definition: For every $x=c$, with $a<c<b$, the graph of f has a tangent line at $x=c$ and the graph of f stays above that tangent line for x-values in the interval (a, b). Abstract Definition: $f^{\prime}(x)$ is increasing on the interval (a, b)
Words: f is concave down on the interval (a, b).
Graphical Definition: For every $x=c$, with $a<c<b$, the graph of f has a tangent line at $x=c$ and the graph of f stays below that tangent line for x-values in the interval (a, b). Abstract Definition: $f^{\prime}(x)$ is increasing on the interval (a, b)

Related terminology: An inflection point is point on the graph of a function where the function is continuous and the concavity changes (from up to down or from down to up.)

Resume [Example 1] from
Video 20 and Video 53
(similar to 4.1\#11 and
4.2\#9,13,14,15,16)

(l) On which intervals is $f(x)$ concave up?

$$
(-\infty,-4) \text { and }(2,6)
$$

(m) On which intervals is $f(x)$ concave down? $(-4,2)$ and $(6,9)$ and $(9, \infty)$
(n) Find the x coordinates of all inflection points on the graph of $f(x)$.

$$
x=-4,2,6
$$

(o) Find all inflection points on the graph of $f(x)$.

$$
(-4,3) \text { and }(2,5) \text { and }(6,3)
$$

In Section 4.1, we sometimes examined a given graph of a function $f(x)$, scrutinizing its increasing \& decreasing behavior, to determine the sign behavior of $f^{\prime}(x)$.

Now we realize that, given a graph of a function $f(x)$, we can scrutinize its concavity behavior to determine the increasing $\&$ decreasing behavior of $f^{\prime}(x)$.

(p) On which intervals is $f^{\prime}(x)$ increasing? f^{\prime} is increasing on $(-\infty,-4)$ and $(2,6)$ because $f(x)$ is concave up there.
(q) On which intervals is $f^{\prime}(x)$ decreasing? f^{\prime} is decreasing on $(-4,2)$ and $(6,9)$ and $(9, \infty)$ because $f(x)$ is concave down there.

What if a function $f(x)$ is given by a formula, and not by a graph. Is there some way to scrutinize the formula for $f(x)$ and determine the concavity?

It turns out that there is a way.

The key is to note two things:
(1) The abstract definition of the concavity of $f(x)$ is in terms of the increasing \& decreasing behavior of $f^{\prime}(x)$,
(2) The increasing \& decreasing behavior of $f^{\prime}(x)$ will be related to the sign behavior of the derivative of $f^{\prime}(x)$.

Thus, we are led to study the derivative of $f^{\prime}(x)$.

Definition of the Second Derivcative

Words: the second derivative of $f(x)$.
Symbols: $f^{\prime \prime}(x), \quad \frac{d^{2}}{d x^{2}} f(x)$
Meaning: $f^{\prime \prime}(x)=\frac{d}{d x} f^{\prime}(x)=\frac{d}{d x} \frac{d}{d x} f(x)$

We immediately get the following correspondence

Correspondence between sign behavior of $\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$ and concavity behavior of $\boldsymbol{f}(\boldsymbol{x})$

- If $f^{\prime \prime}(x)$ is positive on an interval (a, b), then $f^{\prime}(x)$ is increasing on the interval (a, b), which in turn means that $f(x)$ is concave up on the interval (a, b).
- If $f^{\prime \prime}(x)$ is negative on an interval (a, b), then $f^{\prime}(x)$ is decreasing on the interval (a, b), which in turn means that $f(x)$ is concave down on the interval (a, b).

Subtlety in the correspondence between sign of $f^{\prime \prime}(x)$ and concavity of $f(x)$

The correspondence just presented seems simple enough, but there is some subtlet. Namely,

- If $f^{\prime \prime}(x)$ is positive on a whole interval (a, b), then it is guaranteed that $f(x)$ will be concave up on the whole interval (a, b).
- But if $f(x)$ is concave up on the whole interval (a, b), it is not guaranteed that $f^{\prime \prime}(x)$ will be positive on the whole interval (a, b).

We have run into this kind of subtlety before, back in Section 4.1

- If $f^{\prime}(x)$ is positive on a whole interval (a, b), then it is guaranteed that $f(x)$ will be increasing on the whole interval (a, b).
- But if $f(x)$ is increasing on the whole interval (a, b), it is not guaranteed that $f^{\prime}(x)$ will be positive on the whole interval (a, b).

It is worthwhile to consider two examples that illustrate this subtlety.

Let $f(x)=x^{2}$
Then observe that $f^{\prime}(x)=\frac{d}{d y} x^{2}=2 x$
and $f^{\prime \prime}(x)=\frac{d}{d x} f^{\prime}(x)=\frac{d}{d x} 2 x=2$

Let $g(x)=x^{4}$
Then observe that $g^{\prime}(x)=\frac{d}{d x} x^{4}=4 x^{3}$
and $g^{\prime \prime}(x)=\frac{d}{d x} g^{\prime}(x)=\frac{d}{d x} 4 x^{3}=12 x^{2}$
Now consider the graphs of $f, f^{\prime}, f^{\prime \prime}$ and $g, g^{\prime}, g^{\prime \prime}$ on the next page

Observe that
$f(x)$ is concave up on the whole interval $(-\infty, \infty)$
$f^{\prime}(x)$ is increasing on the whole interval $(-\infty, \infty)$
$f^{\prime \prime}(x)$ is positive on the whole interval $(-\infty, \infty)$
$g(x)$ is concave up on the whole interval $(-\infty, \infty)$
$g^{\prime}(x)$ is increasing on the whole interval $(-\infty, \infty)$
$g^{\prime \prime}(x)$ is positive on the intervals $(-\infty, 0)$ and $(0, \infty)$, but not on the whole interval $(-\infty, \infty)$

The conclusion from this is that appearances can be deceiving.

For that reason, one has to be a little cautious trying to draw conclusions about the sign behavior of $f^{\prime \prime}(x)$ from a given graph of $f(x)$. That caution shows up in the rather peculiar wording of some of the questions in your homework problem 4.2\#9. The following example has the same kind of wording.

Resume [Example 1] from
Video 20 and Video 53
(similar to 4.1\#11 and 4.2\#9,13,14,15,16)

(r) On which intervals is $f^{\prime \prime}(x)>0$? (assume that $f^{\prime \prime}(-7)>0$.)

$$
f^{\prime \prime}(x)>0 \text { on }(-\infty,-4) \text { and }(2,6) \text {, because } f \text { is con cave up there. }
$$

(s) On which intervals is $f^{\prime \prime}(x)<0$? (Assume that $f^{\prime \prime}(-1)<0$.)

$$
f^{\prime \prime}(x)<0 \text { on }(-4,2) \text { and }(6,9) \text { and }(9, \infty) \text { because }
$$

f is cuncere down there.
[Example 2] (Similar to 4.2\#13-16) Given graph of $\boldsymbol{f}(\boldsymbol{x})$, tell the sign of $\boldsymbol{f}, \boldsymbol{f}^{\prime}, \boldsymbol{f}^{\prime \prime}$.
For the given graphs, circle the correct word positive or negative in each of the three sentences.
Cross out the incorrect word positive or negative in each sentence.

$\xrightarrow{\substack{f(x) \text { above the } x \text { axis } \\ \text { decoreasing } \\ \text { Concave down } \\ x=a}}$	$f(x)$ is positive nequive on the interval (a, b). $f^{\prime}(x)$ is postrue negative on the interval (a, b). $f^{\prime \prime}(x)$ is posive negative on the interval (a, b).
	$g(x)$ is posive negative on the interval (a, b). $g^{\prime}(x)$ is posive negative on the interval (a, b). $g^{\prime \prime}(x)$ is positive negrive on the interval (a, b)

[Example 3] (Similar to 4.2\#13-16) Given sign of $f, f^{\prime}, f^{\prime \prime}$, sketch possible graph of $f(x)$.

