Subject for this video:

Finding Second Derivatives

Reading:

- General: Section 4.2 Second Derivatives and Graphs
- More Specifically: The concepts in this video are scattered throughout Section 4.2 of the book. There are no book examples similar to the examples in this video.

Homework:

H58: Finding Second Derivatives $(4.2 \# 17,19)$

From the Previous Video

Definition of the Second Derivative
Words: the second derivative of $f(x)$.
Symbols: $f^{\prime \prime}(x), \quad \frac{d^{2}}{d x^{2}} f(x)$
Meaning: $f^{\prime \prime}(x)=\frac{d}{d x} f^{\prime}(x)=\frac{d}{d x} \frac{d}{d x} f(x)$
[Example 1] Find the second derivative of $f(x)=-x^{3}+2 x^{2}-3 x+9$.

$$
\begin{aligned}
& \text { Solution } f^{\prime}(x)=\frac{d}{d x}\left(-x^{3}+2 x^{2}-3 x+9\right)=-3 x^{2}+4 x-3 \\
& f^{\prime \prime}(x)=\frac{d}{d x} f^{\prime}(x)=\frac{d}{d x}\left(-3 x^{2}+4 x-3\right)=-6 x+4
\end{aligned}
$$

[Example 2] Find $g^{\prime \prime}(x)$ for $g(x)=-6 x^{-2}+12 x^{-3}$. Power function form
Solution

$$
\begin{aligned}
\frac{\text { Solution }}{g^{\prime}(x)} & =\frac{d}{d x}-6 x^{-2}+12 x^{-3}=-6(-2) x^{-2-1}+12(-3) x^{-3-1} \\
& =12 x^{-3}-36 x^{-4} \\
g^{\prime \prime}(x) & =\frac{d}{d x} g^{\prime}(x)=\frac{d}{d x} 12 x^{-3}-36 x^{-4}= \\
& =12(-3) x^{-3-1}-36(-4) x^{-4-1} \\
& =-36 x^{-4}+144 x^{-5} \text { power function form } \\
& =-\frac{36}{x^{4}}+\frac{144}{x^{5}} \text { positive exponent form. }
\end{aligned}
$$

[Example 3] find $\frac{d^{2} y}{d x^{2}}$ for $y=-\frac{7}{x^{5}}+\frac{12}{\sqrt{x}}$ positive exponent form and radicalfirm
Start by converting to power function form

$$
\begin{aligned}
& \text { Now find the derivative } \\
& \frac{d y}{d x}=\frac{d}{d x}\left(-7 x^{-5}+12 x^{-1 / 2}\right)=-7(-5) x^{-5-1}+12\left(\frac{-1}{2}\right) x^{-1 / 2-1} \\
&=35 x^{-6}-6 x^{-3 / 2} \quad \text { power function form }
\end{aligned}
$$

$$
=35 x^{-6}-6 x^{-3 / 2} \quad \text { power function form }
$$

$$
\begin{aligned}
\left(\frac{d^{2} y}{d x^{2}}\right. & =\frac{d}{d x}\left(35 x^{-6}-6 x^{-3 / 2}\right)=35(-6) x^{-6-1}-6\left(\frac{-3}{2}\right) x^{-\frac{3}{2}-1} \\
& =-210 x^{-7}+9 x^{-\frac{5}{2}} \text { power function form }
\end{aligned}
$$

$=\frac{-210}{x^{7}}+\frac{9}{x^{5 / 2}}$ positive exponent form

$$
\begin{aligned}
& \text { Now find the derivative }
\end{aligned}
$$

