Subject for this video:

Given formula for $\boldsymbol{f}(\boldsymbol{x})$, determine concavity and find inflection points

Reading:

- General: Section 4.2 Second Derivatives and Graphs
- More Specifically: Examples 1,2,3.

Homework:
H59: Given formula for $f(x)$, determine concavity and find inflection points $(4.2 \# 33,35,37)$
[Example 1] (similar to 4.1\#49,51,53,55 and 4.2\#33,35)
Revisit the function that was used for [Example 2] in the Video for H54 and the Video for H56.

$$
f(x)=-x^{4}+4 x^{3}
$$

(A) Find the local extrema of $f(x)$.

Strategy: find $f^{\prime}(x)$

- make sign chart for $f^{\prime}(x)$
- Use sign chart fur $f^{\prime}(x)$ to find x coordinates of extrema in $f(x)$
- Use formula for $f(x)$ to find y coordinates of extrema in $f(x)$.

$$
f^{\prime}(x)=\frac{d}{d x}\left(-x^{4}+4 x^{3}\right)=-4 x^{3}+12 x^{2}=-4 x^{2}(x-3)
$$

partition number for $f^{\prime}(x)$ are $x=0, x=3$

Sign chart for $f^{\prime}(x)=-4 x^{2}(x-3)$

$$
\begin{aligned}
& \text { test } x=-1 \\
& f^{\prime}(-1)=-4(-1)^{2}((-1)-3)=-4(1)(-4)=\text { pos } \\
& f^{\prime}(1)=-4(1)^{2}((1)-3)=-4(1)(-2)=\text { pos } \\
& f^{\prime}(4)=-4(4)^{2}((4)-3)=-4(16)(1)=\text { neg }
\end{aligned}
$$

$f(x)$ will have a local max at $x=3$ because $f^{\prime}(x)$ changes form pos to zero to neg

Use $f(x)$ formula to get, y coordinates

$$
\begin{aligned}
f(x) & =-x^{4}+4 x^{3} \\
f() & =-()+4()^{3} \text { empty version } \\
f(3) & =-(3)^{4}+4(3)^{3} \\
& =-81+4(27) \\
& =-81+108 \\
& =27
\end{aligned}
$$

So the local max is at $(x, y)=(3,27)$
That is the local max is $f(3)=27$.
(B) Find the intervals on which the graph of $f(x)$ is concave upward.
(C) Find the intervals on which the graph of $f(x)$ is concave downward.
(D) Find the x coordinates of all inflection points in the graph of $f(x)$.

Strategy \circ find $f^{\prime \prime}(x)$

- make sign chart for $f^{\prime \prime}(x)$
\checkmark. use that sign chart so answer B, C, D

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{d}{d x} f^{\prime}(x)=\frac{d}{d x}\left(-4 x^{3}+12 x^{2}\right)=-12 x^{2}+24 x \\
& =-12 x(x-2)
\end{aligned}
$$

Partition numbers for $f^{\prime \prime}(x)$: Set $f^{\prime \prime}(x)=0$ and solve for x,

$$
0=-12 x(x-2)
$$

Solutions: $x=0, x=2$

Sign chart for $f^{\prime \prime}(x)=-12 x^{2}+24 x=-12 x(x-2)$

$$
\begin{aligned}
& f^{\prime \prime}(-1)=-12(-1)((-1)-2)=(-12)(-1)(-3)=\text { neg } \\
& \left.f^{\prime \prime}(1)=-12(1)(0)-2\right)=(-12)(1)(-1)=\text { pos } \\
& f^{\prime \prime}(3)=-12(3)((3)-2)=-12(3)(1)=\text { neg }
\end{aligned}
$$

$f(x)$ is concave up on interval $(0,2)$ because $f^{\prime \prime}$ is positive
$f(x)$ is concave down on intervals $(-\infty, 0)$ and $(0, \infty)$ because $f^{\prime \prime}(x)$ is negative there.
$f(x)$ has inflection points at $x=0, x=2$ because $f^{\prime \prime}(x)$ changes sign there and $f(x)$ exists.
(E) Find all inflection points in the graph of $f(x)$. (the (x, y) coordinay v.)

$$
\begin{aligned}
f(x) & =-x^{4}+4 x^{3} \\
f() & =-()^{4}+4()^{3} \text { empty version } \\
f(0) & =-(0)^{4}+4(0)^{3}=0 \\
f(2) & =-(2)^{4}+4(2)^{3}=-16+4(8)= \\
& =-16+32
\end{aligned}
$$

$$
=16
$$

So the inflection points are at

$$
(x, y)=(0,0) \text { and }(x, y)=(2,16)
$$

(F) Illustrate all your results on the given graph of $f(x)$.

[Example 2] (similar 4.2\#37) Let $f(x)=\ln \left(x^{2}+6 x+13\right)$
(A) Find the local extrema of $f(x)$.

Strategy: f find $f^{\prime}(x)$

- make sign chart for $f^{\prime}(x)$
- Use sign chart for $f^{\prime}(x)$ to find x coordinates of extrema in $f(x)$
- Use formula for $f(x)$ to find y coordinates of extrema in $f(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x} \ln \left(x^{2}+6 x+13\right) \\
& =\frac{d}{d x} \operatorname{arater}(\text { inner }(x))
\end{aligned}
$$

chainnule $=$ Outer $^{\prime}(\operatorname{Inner}(x)) \cdot$ inner (x)

Chain Rule details

$$
=\frac{1}{\left(x^{2}+6 x+13\right)} \cdot(2 x+6)
$$ imper ()$=x^{2}+6 x+13$

inner' $(x)=2 x+6$
outer $C)=\ln C \quad$ empty
outer' ()$=\frac{1}{C)} \quad$ version

$$
=\frac{2 x+6}{x^{2}+6 x+13}
$$

Noed to find partition numbers for $f^{\prime}(x)=\frac{2 x+6}{x^{2}+6 x+13}$
Are there any x coordinates that cause $f^{\prime}(x)$ to not exist?
Observe that there are no X values that cause the denominator to be zeco.

The equation $x^{2}+6 x+13=0$ has no solutions. (why? Can try to factor it, or use quadratic)
formula
So there are no x values that cause $f^{\prime}(x)$ to not exist. The only partition numbers for $f^{\prime}(x)$ will be the numbers that cause the numerator to he zero

$$
\begin{aligned}
2 x+6 & =0 \\
x+3 & =0 \\
x & =-3
\end{aligned}
$$

So the only partition number for $f^{\prime}(x)$ is $x=-3$

Sign chart fur $f^{\prime}(x)=\frac{2 x+6}{x^{2}+6 x+13}$

$$
\begin{aligned}
& f^{\prime}(-4)=\frac{2(-4)+6}{(-y)^{2}+6(-4)+13}=\frac{-8+6}{16-24+13}=\frac{-2}{5}=\text { neg } \\
& f^{\prime}(-2)=\frac{2(-2)+6}{(-2)^{2}+6(-2)+13}=\frac{-4+6}{4-12+13}=\frac{2}{5}=\text { pos }
\end{aligned}
$$

Ohserve: At $x=-3$
f^{\prime} changes from neg to zero to nos
$f(-3)$ exists because $f^{\prime}(-3)=0$

So there is a local min at $x=-3$
Find the y coordinate of the local min using the formula $f(x)=\ln \left(x^{2}+6 x+13\right)$

$$
\begin{aligned}
f(-3) & =\ln \left((-3)^{2}+6(-3)+13\right) \\
& =\ln (9-18+13) \\
& =\ln (4)
\end{aligned}
$$

So the local min is at $(x, y)=(-3, \ln (4))$
The local min is $f(-3)=\ln (4)$
(B) Find the intervals on which the graph of $f(x)$ is concave upward.
(C) Find the intervals on which the graph of $f(x)$ is concave downward.
(D) Find the x coordinates of all inflection points in the graph of $f(x)$.

Strategy S ? $\mathrm{find} \mathrm{f}^{\prime \prime}(x)$
make sign chart for $f^{\prime \prime}(x)$
use sign chart to answer $(B),(C),(D)$.

$$
\left.\begin{array}{rl}
f^{\prime \prime}(x) & =\frac{d}{d x} f^{\prime}(x)=\frac{d}{d x} \frac{2 x+6}{x^{2}+6 x+13}= \\
\stackrel{\text { quaint }}{=}\left(\frac{d}{d x} 2 x+6\right)\left(x^{2}+6 x+13\right)-(2 x+6)\left(\frac{d}{d x} x^{2}+6 x+13\right) \\
\left(x^{2}+6 x+13\right)^{2}
\end{array}\right)=\frac{(2)\left(x^{2}+6 x+13\right)-(2 x+6)(2 x+6)}{\left(x^{2}+6 x+13\right)^{2}}=\frac{2 x^{2}+12 x+26-\left(4 x^{2}+12 x+12 x+36\right)}{\left(x^{2}+6 x+13\right)^{2}}=
$$

$$
\begin{aligned}
& =\frac{-2 x^{2}-12 x-10}{\left(x^{2}+6 x+13\right)^{2}} \\
& =\frac{-2\left(x^{2}+6 x+5\right)}{\left(x^{2}+6 x+13\right)^{2}} \\
f^{\prime \prime}(x) & =\frac{-2(x+1)(x+5)}{\left(x^{2}+6 x+13\right)^{2}}
\end{aligned}
$$

Partition numbers for $f^{\prime \prime}(x)$:

- Notvalues cause $f^{\prime \prime}(x)$ to not exist because denominator is never zero
- We see that $f^{\prime \prime}(-1)=0$ and $f^{\prime \prime}(-5)=0$ because those x values cause the numerator to be 0 .
So partition numbers for $f^{\prime \prime}(x)$ are $x=-1, x=-5$.

Sign chart for $f^{\prime \prime}(x)=\frac{-2(x+1)(x+5)}{\left(x^{2}+6 x+13\right)^{2}}$

$$
\begin{aligned}
& f^{\prime \prime}(-6)=\frac{-2((-6)+1)((-6)+5)}{\left((-6)^{2}+6(-6)+13\right)^{2}}=\frac{-2(-5)(-1)}{\operatorname{pos}}=n e g \\
& f^{\prime \prime}(-2)=\frac{-2((-2)+1)((-2)+5)}{\left((-2)^{2}+6(-2)+13\right)^{2}}=\frac{-2(-1)(3)}{\operatorname{pos}}=\text { pos } \\
& f^{\prime \prime}(0)=\frac{-2((0)+1)((0)+5)}{\left((0)^{2}+6(0)+13\right)^{2}}=\frac{-2(1)(5)}{\text { pus }}=\text { neg }
\end{aligned}
$$

Conclude that
$f(x)$ is concave down on $(-\infty,-5)$ and $(-1, \infty)$ because $f^{\prime \prime}$ isney
$f(x)$ is concave up in $(-5,-1)$ because $f^{\prime \prime}$ is pos
f has inflection points at $x=-5$ and $x=-1$
because $f_{(x)}^{\prime \prime}$ changes sign and $f(x)$ exists (because $f^{\prime \prime}(x)$ exits)
(E) Find all inflection points in the graph of $f(x)$

Need to use $f(x)=\ln \left(x^{2}+6 x+13\right)$ to get y coordinates

$$
\begin{aligned}
f(-5) & =\ln \left((-5)^{2}+6(-5)+13\right) \\
& =\ln (25-30+13)=\ln (8) \\
f(-1) & =\ln \left((-1)^{2}+6(-1)+13\right) \\
& =\ln (1-6+13) \\
& =\ln (8)
\end{aligned}
$$

So the inflection pints arc at

$$
(x, y)=(-5, \ln (8)) \text { and }(x, y)=(-1, \ln (8))
$$

(F) Illustrate all your results on the given graph of $f(x)$.

