Subject for this video:

Identifying Local and Absolute Extrema on a Graph

Reading:

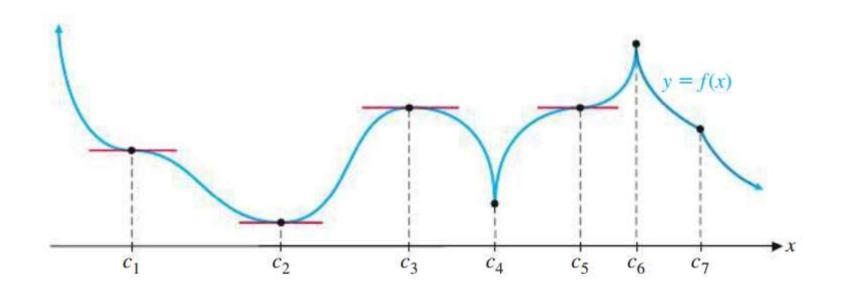
- General: Section 4.5 Absolute Maxima and Minima
- More Specifically: Pages 296 297, and middle of page 299 but no matching examples

Homework:

H61: Identifying Absolute Extrema on a Graph (4.5#9,11,15,17,18)

Useful Section 4.1 concepts discussed in previous videos

When a graph of a function is available, it is easy to notice high and low points on it.



Definition of Local Maximum

Words: a local maximum for f(x).

Meaning: a *y* value y = f(c) such that

- f(x) is continuous on an interval (m, n) containing x = c
- The y value f(c) is the greatest y value on the interval (a, b).
 That is, f(c) ≥ f(x) for all x in the interval (m, n).

Definition of Local Minimum

Words: The y value f(c) is a local minimum for f(x).

Meaning: a *y* value y = f(c) such that

- f(x) is continuous on an interval (m, n) containing x = c
- The y value f(c) is the *least* y value on the interval (a, b). That is, $f(c) \le f(x)$ for all x in the interval (m, n).

Definition of Local Extremum

Words: *a local extremum* for f(x).

Meaning: a y value y = f(c) that is a *local maximum* or a *local minimum*

DEFINITION Absolute Maxima and Minima

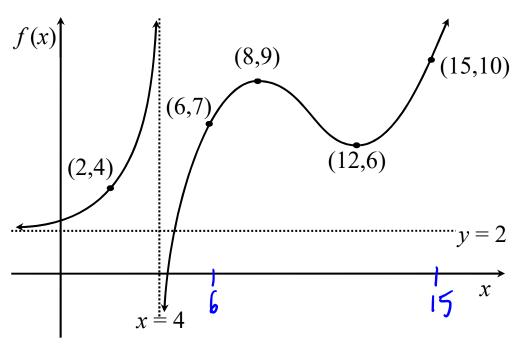
If $f(c) \ge f(x)$ for all x in the domain of f, then f(c) is called the **absolute** maximum of f. If $f(c) \le f(x)$ for all x in the domain of f, then f(c) is called the **absolute minimum** of f. An absolute maximum or absolute minimum is called an **absolute extremum.**

[Example 1] (similar to 4.5#9,11,15,17,18)

The graph of a function f(x) is shown.

Fill in the table below.

٠



Interval	Local Maxes in that interval	Local Mins in that interval	Absolute Max in that interval	Absolute Min in that interval
[6,15]	FB)=9	f(12)=6	5(15)=10	f(12) = 6
(6,15)	5(8)=9	f(12)=6	none	f(12) = 6
(8,15)	none	f(12) = 6	none	f(12) = 6
[12,15]	none	nine	f(15)=10	f(12) = 6
(-∞,4)	MIAL	none	NONC	none
(4,∞)	f(8)=9	f(12)=6	None	none

Notice that for some of the intervals, f(x) some of the types of extrema do not occur.

But there is one important situation where some extrema are guaranteed to occur.

THEOREM 1 Extreme Value Theorem

A function f that is continuous on a closed interval [a, b] has both an absolute maximum and an absolute minimum on that interval.