Subject for this video:

The Closed Interval Method

Reading:

- General: Section 4.5 Absolute Maxima and Minima
- More Specifically: pages 298 - 299, Example 1

Homework:
H62: The Closed Interval Method $(4.5 \# 26,67)$

Recall the definition of Critical Numbers from Section 4.1 (introduced in the Video for H55)

Definition of Critical Number for $\boldsymbol{f}(\boldsymbol{x})$

Words: critical number for $f(x)$
Meaning: a number $x=c$ that satisfies these two requirements:

- The number $x=c$ is a partition number for $f^{\prime}(x)$.
- The number $x=c$ is in the domain of $f(x)$.

That is,

- $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist
- $f(c)$ exists

Recall the definition Absolute Extrema from Section 4.5 (introduced in the Video for H61)

DEFINITION Absolute Maxima and Minima

If $f(c) \geq f(x)$ for all x in the domain of f, then $f(c)$ is called the absolute maximum of f. If $f(c) \leq f(x)$ for all x in the domain of f, then $f(c)$ is called the absolute minimum of f. An absolute maximum or absolute minimum is called an absolute extremum.

And recall this example from

 the Video for H61
[Example 1]

 (similar to $\mathbf{4 . 5 \# 9 , 1 1 , 1 5 , 1 7 , 1 8)}$The graph of a function $f(x)$ is shown.
Fill in the table below.

Interval	Local Maxes in that interval	Local Mins in that interval	Absolute Max in that interval	Absolute Min in that interval
$[6,15]$	$f(8)=9$	$f(12)=6$	$f(15)=10$	$f(12)=6$
$(6,15)$	$f(8)=9$	$f(12)=6$	none	$f(12)=6$
$(8,15)$	none	$f(12)=6$	none	$f(12)=6$
$[12,15]$	none	none	$f(15)=10$	$f(12)=6$
$(-\infty, 4)$	none	none	none	none
$(4, \infty)$	$f(8)=9$	$f(12)=6$	none	none

Notice that for some of the intervals, $f(x)$ some of the types of extrema do not occur.

But there is one important situation where some extrema are guaranteed to occur.

THEOREM 1 Extreme Value Theorem

A function f that is continuous on a closed interval $[a, b]$ has both an absolute maximum and an absolute minimum on that interval.

Remember that local extrema can only occur at critical numbers of $f(x)$. (not at endpoints.)

But notice that absolute extrema can occur at endpoints.

THEOREM 2 Locating Absolute Extrema

Absolute extrema (if they exist) must occur at critical numbers or at endpoints.

Theorems 1 and 2 are the basis for the following procedure for finding the absolute extrema on a closed interval for a function that is continuous on that interval.

The Closed Interval Method
PROCEDURE Finding Absolute Extrema on a Closed Interval
Step 1 Check to make certain that f is continuous over $[a, b]$.
Step 2 Find the critical numbers in the interval (a, b).
Step 3 Evaluate f at the endpoints a and b and at the critical numbers found in step 2.
Step 4 The absolute maximum of f on $[a, b]$ is the largest value found in step 3.
Step 5 The absolute minimum of f on $[a, b]$ is the smallest value found in step 3.

$$
\text { Evaluate } f \text { at } c \text { means } f \text { ind } f(c)
$$

[Example 1](similar to 4.5\#26,67)
(a) Find the absolute extrema of $f(x)=x^{3}-3 x^{2}-9 x+13$ on the interval $[-2,5]$.

Stepil Domain $[-2,5]$ is a closed interval
$f(x)$ is continuous on the domain. (Polynomial)
Step 2 Find Critical Numbers of $f(x)$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x^{3}-3 x^{2}-9 x+13\right)=3 x^{2}-6 x-9= \\
& =3\left(x^{2}-2 x-3\right)=3(x+1)(x-3)
\end{aligned}
$$

$f^{\prime}(x)=0$ when $x=-1$ and when $x=-3$
There are no x values that cause f^{\prime} to not exist because $f^{\prime}(x)$ is a polynomial.
So the partition numbers for $f^{\prime}(x)$ a $x=-1, x=3$.
These are also the critical numbers for $f(x)$ because $f(x)$ always exists. (polynomial.

Critical numbers for $f(x): x=-1, x=3$

Step 3

$$
\begin{array}{l|l}
\frac{3}{\text { important } x \text { Values }} & \text { Corresponding y value } f(x)=x^{3}-3 x^{2}-9 x+13 \\
\hline x=-2 \text { (endpoint) } & f(-2)=(-2)^{3}-3(-2)^{2}-9(-2)+13=\cdots=11 \\
x=-1 \text { (critical)) } & f(-1)=(-1)^{3}-3(-1)^{2}-9(-1)+13=\cdots=(18 \\
x=3(\text { critical) } & f(3)=(3)^{3}-3(3)^{2}-9(3)+13=\cdots=-14 \\
x=5 \text { (endpoint) } & f(5)=(5)^{3}-3(5)^{2}-9(5)+13=\cdots=18
\end{array}
$$

Step $y+5$
The absolute max is $y=18$. It occurs at $x=-1$ and $x=5$
The absolute min is $y=-14$. It occurs at $x=3$.

Observations:

- Use the formula for $f(x)$ to compute the y values. (Don't use the formula for $f^{\prime}(x)$!)
- Absolute extrema can occur at more than one x value.
- Absolute extrema can occur at critical numbers and at endpoints.
- The Closed Interval Method does not use a sign chart for $f^{\prime}(x)$ to locate the extrema. The absolute extrema must occur at the important x values on the list. A sign chart for $f^{\prime}(x)$ is not needed, so don't waste time making one
(b) Find the absolute extrema of $f(x)=x^{3}-3 x^{2}-9 x+13$ on the interval $[-2,2]$.

Solution
We already know that the critical numbers for $f(x)$ are

$$
x=-1, x=\frac{5}{n o t i n ~ o u r ~ i n t e r v a l ~}
$$

List of important X values	Corresponding y value our interval$(x)=x^{3}-3 x^{2}-9 x+13$
$X=-2$ endpoint)	$f(-2)=11 \quad(f$ rom part (a))
$X=-1$ (critical)	$f(-1)=18 \quad(f$ rom part (a))
$X=2$ (endpoint)	$f(2)=(2)^{3}-3(2)^{2}-9(2)+13=0.0=-9$

The absolute max is $y=18$. It occurs at $x=-1$
The absolute min is $y=-9$. It occurs at $x=2$

Observations:

- Absolute extrema depend on the choice of interval.
- The list of important x values does not include critical numbers outside the interval.
[Example 2] (similar to 4.5\#26,67)(Function from Video for H60) $f(x)=-x^{4}+6 x^{2}+27$.
Find the absolute extrema of $f(x)=-x^{4}+6 x^{2}+27$ on the interval $[-2,3]$.
Step 1 f is continuous (it is a polynomial) and the domain is a closed
step 2 Critical numbers for $f(x)$ will be the x values interval
cause $f^{\prime}(x)=0$,

$$
\begin{aligned}
& \text { cause } f^{\prime}(x)=0 \\
& f^{\prime}(x)= \frac{d}{d x}\left(-x^{4}+6 x^{2}+27\right) \\
&=-4 x^{3}+12 x= \\
&=-4 x\left(x^{2}-3\right)=-4 x(x+\sqrt{3})(x-\sqrt{3})
\end{aligned}
$$

$f^{\prime}(x)=0$ when $x=0, x=-\sqrt{3}, x=\sqrt{3}$
These are the partition numbers for $f^{\prime}(x)$ and the critical numbers for $f(x)$

Step 3

Important	Corresponding y values $f(x)=-x^{4}+6 x^{2}+27$
x values	
$x=-2$ (endpoint)	$f(-2)=-(-2)^{4}+6(-2)^{2}+27=000=35$
$x=-\sqrt{3}($ critical)	$f(-\sqrt{3})=-(-\sqrt{3})^{4}+6(-\sqrt{3})^{2}+27=\cdots 0=36$
$x=0$ (critical)	$f(0)=-(0)^{4}+6(0)^{2}+27=27$
$x=\sqrt{3}($ critical)	$f(\sqrt{3})=-(\sqrt{3})^{4}+6(\sqrt{3})^{2}+27=\cdots=(36$
$x=3$ (endpoint)	$f(3)=-(3)^{4}+6(3)^{2}+27=0.0=0$
$4+5$	

Step $4+5$
The absolute max is $y=36$, It occurs at $x=-\sqrt{3}$ and $x=\sqrt{3}$
The absolute min $1 s y=0 . I+$ occurs at $x=3$

Observations:

- Absolute extrema can occur at x values that are not integers

Consider Ann's solution to the question posed in [Example 2].

Find the absolute extrema of $f(x)=-x^{4}+6 x^{2}+27$ on the interval $[-2,3]$.

$$
\begin{aligned}
& \text { Ann made a list afyvalues. } \\
& \qquad \begin{array}{cl}
x & f(x)=-x^{4}+6 x^{2}+27 \\
-2 & f(-2)=-(-2)^{4}+6(-2)^{2}+27=-(16)+6(4)+27=-16+24+27=3 \\
-1 & f(-1)=-(-1)^{4}+6(-1)^{2}+27=-(1)+6(1)+27=-1+6+27=32 \\
0 & f(0)=-(0)^{4}+6(0)^{2}+27=27 \\
1 & f(1)=-(1)^{4}+6(1)^{2}+27=-(1)+6(1)+27=-1+6+27=32 \\
2 & f(2)=-(2)^{4}+6(2)^{2}+27=-(16)+6(4)+27=-16+24+27=35 \\
3 & f(3)=-(3)^{4}+6(3)^{2}+27=-(81)+6(9)+27=-81+54+27=0
\end{array}
\end{aligned}
$$

Based on this list, Ann makes the following conclusion

- The absolute max io y=35 and it occurs $\mathrm{a} x=-2$ and $x=2$.
- The absolute min is $y=0$ and it occurs at $x=3$.

Ann's Method is Invalid

Observations:

- Ann got the wrong absolute max, because she only considered integer x values.
- Ann happened to get the right value for the absolute min, but her method does not actually prove that $y=0$ is the absolute min , because she did not investigate the critical numbers.
- In other words, Ann's answer about the absolute min (an answer that happens to be correct) is no more valid than her answer about the absolute max (an answer that happens to be incorrect). The method that Ann used is an invalid method, even if it may happen to give the correct answer in some situations. Even though it involved a lot of work, it is not a valid method for finding absolute extrema.

Consider Bob's solution to the question posed in [Example 2].
Find the absolute extrema of $f(x)=-x^{4}+6 x^{2}+27$ on the interval $[-2,3]$.

Bob found the partition numbers for $f^{\prime}(x)$

$$
f^{\prime}(x)=\frac{d}{d x}\left(-x^{4}+6 x^{2}+27\right)=-4 x^{3}+12 x=-4 x\left(x^{2}-3\right)-4 x(x+\sqrt{3})(x-\sqrt{3})
$$

Since $f^{\prime}(x)$ is a polynomial, there are no x values that cause $f^{\prime}(x)$ to not exist.
Observe that $f^{\prime}(x)=0$ at $x=-\sqrt{3}$ and $x=0$ and $x=\sqrt{3}$.
So the partition numbers for $f^{\prime}(x)$ are $x=-\sqrt{3}$ and $x=0$ and $x=\sqrt{3}$.

Then Bob made a sign chart for $f^{\prime}(x)$

Based on this sign chart, Bob said that there is a max at $x=-\sqrt{3}$ and $x=\sqrt{3}$ and a min at $x=0$.
Bob computed the y values at those x values.

Observations:

- Bob got the wrong absolute min, because he did not investigate the endpoints.
- Bob happened to get the right value for the absolute max, but his method does not actually prove that $y=36$ is the absolute max, because he did not investigate the endpoints.
- In other words, Bob's answer about the absolute max (an answer that happens to be correct) is no more valid than his answer about the absolute min (an answer that happens to be incorrect). The method that Bob used is an invalid method, even if it may happen to give the correct answer in some situations. Even though it involved a lot of work, it is not a valid method for finding absolute extrema.
- All of the work that Bob did in making the sign chart for $f^{\prime}(x)$ is unnecessary. All that is needed is to find the important x values
- The endpoints of the interval
- the critical numbers for $f(x)$ that are in the interval. and then compute the y values at those important x values.

