Subject for this video:

Single Variable Optimization Problems about Maximizing Revenue and Profit

Reading: $\quad 4,6$ Optimization

- General: Section A.S. Absolute Maximan Minima
- More Specifically: pages 307 - 311 Examples 3,4,6,7

Homework: H64: Single Variable Optimization Problems about Maximizing Revenue and Profit (4.6\#19,25,27)

Recall the definition of Critical Numbers from Section 4.1 (introduced in the Video for H55)

Definition of Critical Number for $\boldsymbol{f}(\boldsymbol{x})$
Words: critical number for $f(x)$
Meaning: a number $x=c$ that satisfies these two requirements:

- The number $x=c$ is a partition number for $f^{\prime}(x)$.
- The number $x=c$ is in the domain of $f(x)$.

That is,

- $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist
- $f(c)$ exists

Recall the definition Absolute Extrema from Section 4.5 (introduced in the Video for H61)

DEFINITION Absolute Maxima and Minima

If $f(c) \geq f(x)$ for all x in the domain of f, then $f(c)$ is called the absolute maximum of f. If $f(c) \leq f(x)$ for all x in the domain of f, then $f(c)$ is called the absolute minimum of f. An absolute maximum or absolute minimum is called an absolute extremum.

And these Theorems about absolute extrema from Section 4.5 (introduced the Video for H62)

There is one important situation where both absolute max and absolute min are guaranteed.

THEOREM 1 Extreme Value Theorem

A function f that is continuous on a closed interval $[a, b]$ has both an absolute maximum and an absolute minimum on that interval.

And there is a theorem that tells us where Absolute Extrema have to occur.

THEOREM 2 Locating Absolute Extrema

Absolute extrema (if they exist) must occur at critical numbers or at endpoints.

Theorems 1 and 2 are the basis for the following procedure (the Closed Interval Method) for finding the absolute extrema on a closed interval for a function that is continuous on that interval. This procedure was discussed in the Video for Homework H62.

```
PROCEDURE Finding Absolute Extrema on a Closed Interval
Step 1 Check to make certain that f is continuous over [a,b].
Step 2 Find the critical numbers in the interval (a,b).
Step 3 Evaluate fat the endpoints a and b and at the critical numbers found in step 2.
Step 4 The absolute maximum of f on [a,b] is the largest value found in step 3.
Step 5}\mathrm{ The absolute minimum of fon [a,b] is the smallest value found in step 3.
```

But what about the situation where the domain of the function is not a closed interval? How does one determine the absolute extrema that $d o$ occur? As we will saw in the video for Homework H63, that question is answered in different ways for different functions.

For some familiar function types, the approach can be to

- First, consider the end behavior to determine which kinds of absolute extrema will occur.
- Then, find the locations of those extrema in the following way:
- Find the critical numbers of the function in the domain
- Compute values of $f(x)$ at those critical numbers and at endpoints (if there are any)
- Identify the absolute max or min values that you know will occur.

For functions that are not familiar function types, the approach is to

- Find the critical numbers of the function in the domain.
- Determine if any of those critical numbers is the location of an absolute extremum by either
- studying the sign behavior of $f^{\prime}(x)$ to determine increasing/decreasing behavior of $f(x)$
- or using the Second Derivative Test for Absolute Extrema on an Interval

THEOREM 3 Second-Derivative Test for Absolute Extrema on an Interval

Let f be continuous on an interval I from a to b with only one critical number c in (a, b). If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then $f(c)$ is the absolute minimum of f on I.

If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then $f(c)$ is the absolute maximum of f on I.

Optimization

In Section 4.6, we will study problems involving Optimization.

Optimization problems are simply Absolute Max/Min problems, but they may have complications

- They may be presented as word problems, about applications to real world situations.
- You may have to figure out a mathematical model.
- The initial mathematical model may involve more than one variable. If it does, then you will have to figure out a function of one variable.
- The domain might not be a closed interval

Homework 64 consists of

Single Variable Optimization Problems about Maximizing Revenue and Profit

This video is about those kinds of problems.
[Example 1] (similar to 4.6\#19) A company manufactures and sells x cameras per week.
The weekly price-demand equation is $x+30 p=9000$
The weekly cost equation is $C(x)=90,000+30 x$
(A) Find the price function, graph it, and determine its domain.
x is the Demand
p (small p) is the price. (selling price per item)
Solve the equation $x+30 p=9000$ for p

$$
\begin{aligned}
30 p & =9000-x \\
p & =\frac{9000-x}{30}=\frac{9000}{30}-\frac{x}{30} \\
p & =300-\frac{x}{30} \\
p(x) & =300-\frac{x}{30}
\end{aligned}
$$

Graph $P(x)=300-\frac{x}{30}$

must have $x \geq 0$ and $P \geq 0$ The domain of the price function is $0 \leq X \leq 9000$
(B) If the goal is to maximize the weekly revenue, what price should the company charge for the cameras, and how many cameras should be produced per week?
Find the Revenue function
Revenue $=$ number of items sold. . Selling price per item
$=$ Demand. price

$$
R=X \cdot P_{k_{\text {small }} p}
$$

$$
\begin{aligned}
R(x) & =x \cdot P(x)=x\left(300-\frac{x}{30}\right) \\
& =300 x-\frac{x^{2}}{30} \\
& =300 x-\left(\frac{1}{30}\right) x^{2} \quad \text { domain } 0 \leq 9000
\end{aligned}
$$

Strategy

- Find value of x that maximizes $R(x)$
- Find the corresponding value of P

Maximize $R(x)=300 x-\left(\frac{1}{30}\right) x^{2}$ on the domain $[0,9000]$
ObServe: Continuous function on a closed interval.
use the closed interval method.

$$
\begin{aligned}
& \text { Find Critical numbers for } R(x) \\
& \begin{aligned}
R^{\prime}(X) & =\frac{d}{d x}\left(300 x-\left(\frac{1}{30}\right) X^{2}\right)=300(1)-\left(\frac{1}{30}\right)(2 X) \\
& =300-\frac{x}{15}=300-\left(\frac{1}{15}\right) x
\end{aligned}
\end{aligned}
$$

R^{\prime} is polynomial, so there are no x values that cause
$R^{\prime}(x)$ to not exist.
Set $R^{\prime}(x)=0$ and solve for x,

$$
\begin{aligned}
0 & =300-\left(\frac{1}{15}\right) x \\
\left(\frac{1}{15}\right) x & =300 \\
x & =(300)(15)=4500
\end{aligned}
$$

To maximize the weekly revenue, the company should sell $x=4500$ cameras per week.
The corresponding price is $p(x)=300-\frac{x}{30}$ $P(4500)=300-\frac{4500}{30}=300-150=150$. Sell cameras for $\$ 150$ each
(C) What is the maximum possible weekly revenue?

$$
R(4500)=\$ 675,000 \text { per week. }
$$

(D) If the goal is to maximize the weekly profit, what price should the company charge for the cameras, and how many cameras should be produced per week? Use calculus methods.

$$
\begin{aligned}
\text { Profit } & =\text { Revenue }- \text { Cost } \\
P(x) & =R(x)-c(x) \\
& =\left(300 x-\left(\frac{1}{30}\right) x^{2}\right)-(90,000+30 x) \\
& =\left(-\frac{1}{30}\right) x^{2}+270 x-90,000
\end{aligned}
$$

domain is $[0,9000]$
Find Value of x that maximizes $P(x)$.
Find Critical numbers for $P(x)$
Find $P^{\prime}(x)$
Set $P^{\prime}(x)=0$
Solve for x

$$
\begin{aligned}
P^{\prime}(x) & =\frac{d}{d x}\left(\left(\frac{-1}{30}\right) x^{2}+270 x-90,000\right) \\
& =-\left(\frac{1}{30}\right)(2 x)+270-0 \\
& =-\left(\frac{1}{15}\right) x+270 \\
0 & \left.=P^{\prime}(x)\right)=-\left(\frac{1}{15}\right) x+270 \\
\left(\frac{1}{15}\right) x & =2>0
\end{aligned}
$$

$x=270 \cdot 15=4050$ critical number
Profit function $P(x)$ is a parabola facing down

$$
\begin{gathered}
m=0 \\
\vdots=4050
\end{gathered}
$$

So $x=4050$ will be the location of the max. The company should sell 4050 cameras per week

The corresponding soling prize is

$$
\begin{aligned}
& p(x)=300-\frac{x}{30} \\
& p(4050)=300-\frac{(4050)}{30}=165
\end{aligned}
$$

So to maximize profit, the company Should charge \$165 per camera.
They will sell 4050 cameras per week
(E) What is the maximum possible weekly profit?

$$
\begin{aligned}
\text { Profit } P(x) & =-\left(\frac{1}{(30}\right)^{2} x^{2}+270 x-90,000 \\
P(4050) & =-\left(\frac{1}{30}\right)(4050)^{2}+270(4000)-90,000 \\
& =000=\$ 456,750
\end{aligned}
$$

(F) Illustrate your results from (B),(C),(D),(E) on this given graph of $R(x)$ and $P(x)$

[Example 2] (similar to 4.6\#25)
(A) A Coffee shop sells 1600 cups of coffee per day when price is $\$ 2.40$ per cup. What is the daily revenue?

$$
\begin{aligned}
\text { Revenue } & =\text { Demand } x \text { Price } \\
& =\text { Pa } \\
& =1600 \cdot(240) \\
& =\$ 3840 \text { per day }
\end{aligned}
$$

(B) A market survey predicts that for every $\$ 0.05$ price reduction, 50 more cups of coffee will be sold.

How much should the coffee shop charge per cup in order to maximize daily revenue?
How many cups will be sold? What will be the resulting daily revenue?
Solution
Let n be the number of $\$ 0.05$ price reductions.
Then the selling price will be $p=2.40-.05 n$
The number of cups sold will be
demand $\quad x=1600+50 n$
The Revenue will bc

$$
\begin{aligned}
\text { Revenue } & =\text { demand } \cdot \text { price } \\
R & =x \cdot p \\
R(n) & =(1600+50 n) \cdot(2,40-.05 n) \\
& =-2,5 n^{2}+40 n+3840
\end{aligned}
$$

Find value of n that maximizes

$$
R(n)=-2.5 n^{2}+40 n+3840
$$

Strategy - Find $R^{\prime}(n)$

- Set $R^{\prime}(n)=0$
- Solve for n

$$
\begin{aligned}
R^{\prime}(n) & =\frac{d}{d n}\left(-2.5 n^{2}+40 n+3840\right) \\
& =-2.5(2 n)+40(1)+0 \\
& =-5 n+40 \\
0 & =R^{\prime}(n)=-5 n+40 \\
5 n & =40 \\
n & =8
\end{aligned}
$$

So the selling price $p=2,40-.05(n)$
Should be

$$
\begin{aligned}
p & =2.40-.05(8) \\
& =2.40-.40 \\
& =\$ 2 \text { per cup }
\end{aligned}
$$

And the shop will sell $x=(1600+50 n)$

$$
\begin{aligned}
X= & 1600+50(8) \\
= & 1600+400 \\
= & 2000 \text { cups of coffee per day }
\end{aligned}
$$

The resulting Revenue $R=X \cdot P$ will be

$$
R=2000 \cdot 2=\$ 4000 \text { dollars per day. }
$$

The textbook uses a different approach, to this kind of problem. Here is what they would do.

They use variable $x=$ number of $\$ 0.05$ price reductions.

Then price $=2.40-0.05 x$ and demand $=1600+50 x$.

Revenue $=$ demand \cdot price $=(1600+50 x) \cdot(2.40-0.05 x)=-2.5 x^{2}+40 x+3840$

It may be nice to have x as the variable,
but it is confusing, because we no longer have $R=x \cdot p$

