Subject for this video:

Single Variable Optimization Problems about Maximizing Revenue and Profit

Reading:

- General: Section Absolute Maxima and Minima-
- More Specifically: pages 307 311 Examples 3,4,6,7

Homework: H64: Single Variable Optimization Problems about Maximizing Revenue and Profit (4.6#19,25,27)

Recall the definition of Critical Numbers from Section 4.1 (introduced in the Video for H55)

Recall the definition Absolute Extrema from Section 4.5 (introduced in the Video for H61)

DEFINITION Absolute Maxima and Minima

If $f(c) \ge f(x)$ for all x in the domain of f, then f(c) is called the **absolute** maximum of f. If $f(c) \le f(x)$ for all x in the domain of f, then f(c) is called the **absolute minimum** of f. An absolute maximum or absolute minimum is called an **absolute extremum**.

And these Theorems about absolute extrema from Section 4.5 (introduced the Video for H62)

There is one important situation where both absolute max and absolute min are guaranteed.

THEOREM 1 Extreme Value Theorem

A function f that is continuous on a closed interval [a, b] has both an absolute maximum and an absolute minimum on that interval.

And there is a theorem that tells us where Absolute Extrema have to occur.

THEOREM 2 Locating Absolute Extrema

Absolute extrema (if they exist) must occur at critical numbers or at endpoints.

Theorems 1 and 2 are the basis for the following *procedure* (the *Closed Interval Method*) for finding the *absolute extrema* on a *closed interval* for a function that is *continuous* on that interval. This procedure was discussed in the Video for Homework H62.

PROCEDURE Finding Absolute Extrema on a Closed Interval

Step 1 Check to make certain that f is continuous over [a, b].

- Step 2 Find the critical numbers in the interval (a, b).
- Step 3 Evaluate f at the endpoints a and b and at the critical numbers found in step 2.
- Step 4 The absolute maximum of f on [a, b] is the largest value found in step 3.
- Step 5 The absolute minimum of f on [a, b] is the smallest value found in step 3.

But what about the situation where the domain of the function is *not* a closed interval? How does one determine the absolute extrema that *do* occur? As we will saw in the video for Homework H63, that question is answered in different ways for different functions.

For some familiar function types, the approach can be to

- First, consider the end behavior to determine which kinds of absolute extrema will occur.
- Then, find the locations of those extrema in the following way:
 - \circ Find the critical numbers of the function in the domain
 - Compute values of f(x) at those critical numbers and at endpoints (if there are any)
 - $\circ\,$ Identify the absolute max or min values that you know will occur.

For functions that are not familiar function types, the approach is to

- Find the critical numbers of the function in the domain.
- Determine if any of those critical numbers is the location of an absolute extremum by either
 - studying the sign behavior of f'(x) to determine increasing/decreasing behavior of f(x)
 - \circ or using the Second Derivative Test for Absolute Extrema on an Interval

THEOREM 3 Second-Derivative Test for Absolute Extrema on an Interval

Let f be continuous on an interval I from a to b with only one critical number c in (a, b).

If f'(c) = 0 and f''(c) > 0, then f(c) is the absolute minimum of f on I.

If f'(c) = 0 and f''(c) < 0, then f(c) is the absolute maximum of f on I.

Optimization

In Section 4.6, we will study problems involving Optimization.

Optimization problems are simply Absolute Max/Min problems, but they may have complications

- They may be presented as word problems, about applications to real world situations.
- You may have to figure out a mathematical model.
- The initial mathematical model may involve more than one variable. If it does, then you will have to figure out a function of one variable.
- The domain might not be a closed interval

Homework 64 consists of

Single Variable Optimization Problems about Maximizing Revenue and Profit

This video is about those kinds of problems.

[Example 1] (similar to 4.6#19) A company manufactures and sells x cameras per week.

The weekly price-demand equation is x + 30p = 9000

The weekly cost equation is C(x) = 90,000 + 30x

(A) Find the price function, graph it, and determine its domain.

x is the Demand P (small p) is the Price, (selling price per iten) Solve the equation X+30P=9000 for P 30p = 9000 - X $P = \frac{9000 - \times}{30} = \frac{9000}{30} - \frac{\chi}{2}$ $P = 300 - \frac{x}{30}$ $P(x) = 300 - \frac{x}{30}$

(B) If the goal is to maximize the *weekly revenue*, what price should the company charge for the cameras, and how many cameras should be produced per week?

Maximize $R(x) = 300 \times -(\frac{1}{30}) \times x^2$ on the domain [0,900]Observe: Continuous function on a closed interval. Use the closed interval method. Find Critical numbers for RCX) $R'(X) = \frac{d}{dX} \left(\frac{300 \times -(\frac{1}{30}) X^2}{300 \times -(\frac{1}{30}) X^2} \right) = 300(1) - (\frac{1}{30})(2X)$ $= 300 - \frac{X}{15} = 300 - (\frac{1}{15})^{X}$ R'is polynomial, so three are no x values that cause R'(x) to not exist. Set R'(X)=0 and solve for x, $\mathcal{O} = 300 - \left(\frac{1}{15}\right) \times$ $\begin{pmatrix} 1\\15 \end{pmatrix} X = 300 \\ X = (300)(15) = 4500$

list of important Value of
$$R(x) = \chi(300 - \frac{\chi}{30})$$

X = 0 undpoint $R(0) = O(300 - \frac{O}{30}) = 0.300 = 0$
 $\chi = 4500 \text{ critical}$ $R(4500) = 4500(300 - \frac{4500}{30}) = \dots = 675,000$
 $\chi = 9000 \text{ end point}$ $R(900) = 9000(300 - \frac{9000}{30})$
 $= 9000(300 - 200)$
 $= 9000(300 - 200)$
 $= 0$
To Maximize the weekly revenue, the company
should sell $\chi = 4500$ cameras per week.
The corresponding price is $P(\chi) = 300 - \frac{\chi}{30}$
 $P(4500) = 300 - \frac{4500}{30} = 300 - \frac{\chi}{30}$

(C) What is the maximum possible *weekly revenue*?

R(4500)=#675,000 per week.

(**D**) If the goal is to maximize the *weekly profit*, what price should the company charge for the cameras, and how many cameras should be produced per week? Use calculus methods.

 $P'(X) = \frac{d}{dx} \left(\left(-\frac{1}{30} \right) X^2 + 270 \times -90,000 \right)$ = -(1)(2x) + 270 - 0 $= -(1) \times + 270$ $O = P'(x) = -\frac{1}{15} + 270$ $\left(\frac{1}{15}\right) \times 270$ X = 270.15= 4050 critical number Profit functions P(x) is a parabola facing down So X=4050 will be the location of the mar, The company should Scil 4050 Cameras per week X=4050

the corresponding selling power is

$$P(X) = 300 - \frac{X}{30}$$

 $p(4050) = 300 - \frac{(4050)}{30} = 165$
So to maximize profit, the company
(hould charge \$165 per camera.
They will Sell 4050 cameras per week

(E) What is the maximum *possible weekly profit*?

Profit P(x) = -(1) x +270 x - 90,000 $= \frac{1}{(30)} (4050)^2 + 270 (4050) - 90,000$ P14050 - 000 -\$456,750

(F) Illustrate your results from (B),(C),(D),(E) on this given graph of R(x) and P(x)

[Example 2] (similar to 4.6#25)

(A) A Coffee shop sells 1600 cups of coffee per day when price is \$2.40 per cup.

What is the *daily revenue*?

Revenue = Demand * Price $R = X \cdot P$ $= 1600 \cdot (240)$ = \$3840 per day **(B)** A market survey predicts that for every \$0.05 price reduction, 50 more cups of coffee will be sold.

How much should the coffee shop charge per cup in order to maximize *daily revenue*? How many cups will be sold? What will be the resulting *daily revenue*?

Solution Let n be the number of \$0.05 price reductions.
Then the selling price will be
$$p = 2.40 - .05 n$$

The number of cups sold will be
demand $X = 1600 + 50n$
The Revenue will be
Revenue = demand · Price
 $R = X \cdot P$
 $R(n) = (1600 + 50n) \cdot (2.40 - .05n)$
 $= -2.5n^2 + 40n + 3840$

Find value of n thus maximizes

$$R(n) = -2.5 n^{2} + 40n + 3840$$

Strategy · Find R'(n)
· Set R'(n)=0
· Solve for n
 $R'(n) = \frac{d}{dn} (-2.5 n^{2} + 40n + 3840)$
 $= -2.5(2n) + 40(1) + 0$
 $= -5n + 40$
 $O = R'(n) = -5n + 40$
 $5n = 40$
 $n = 8$

So the Solling price P= 2,40-.05(n) Should be p= 2.40 - .05(8) = 2,40 - .40= 12 per cap (find the shop will sell X = (1600 + 50n) $\chi = 1600 \pm 50(8)$ = 1600 + 400 = 2000 cups of coffee perday The resulting Revenue R=X.P will be R= 2000.2=#4000 dollars per day.

The textbook uses a different approach, to this kind of problem. Here is what they would do.

They use variable x = number of \$0.05 price reductions.

Then price = 2.40 - 0.05x and demand = 1600 + 50x.

Revenue = *demand* · *price* = $(1600 + 50x) \cdot (2.40 - 0.05x) = -2.5x^{2} + 40x + 3840$

It may be nice to have x as the variable,

but it is confusing, because we no longer have $R = x \cdot p$