Subject for this video:

Two Variable Abstract Max Min Problems

Reading: 4,6 Optimization

- General: Section A.f Absolute Maximand Minima-
- More Specifically: there is no discussion of this kind of problem in the reading

Homework: H65: Two Variable Abstract Max Min Problems (4.6\#9,13,15,17)

Recall the definition of Critical Numbers from Section 4.1 (introduced in the Video for H55)

Definition of Critical Number for $\boldsymbol{f}(\boldsymbol{x})$
Words: critical number for $f(x)$
Meaning: a number $x=c$ that satisfies these two requirements:

- The number $x=c$ is a partition number for $f^{\prime}(x)$.
- The number $x=c$ is in the domain of $f(x)$.

That is,

- $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist
- $f(c)$ exists

Recall the definition Absolute Extrema from Section 4.5 (introduced in the Video for H61)

DEFINITION Absolute Maxima and Minima

If $f(c) \geq f(x)$ for all x in the domain of f, then $f(c)$ is called the absolute maximum of f. If $f(c) \leq f(x)$ for all x in the domain of f, then $f(c)$ is called the absolute minimum of f. An absolute maximum or absolute minimum is called an absolute extremum.

And these Theorems about absolute extrema from Section 4.5 (introduced the Video for H62)

There is one important situation where both absolute max and absolute min are guaranteed.

THEOREM 1 Extreme Value Theorem

A function f that is continuous on a closed interval $[a, b]$ has both an absolute maximum and an absolute minimum on that interval.

And there is a theorem that tells us where Absolute Extrema have to occur.

THEOREM 2 Locating Absolute Extrema

Absolute extrema (if they exist) must occur at critical numbers or at endpoints.

Theorems 1 and 2 are the basis for the following procedure (the Closed Interval Method) for finding the absolute extrema on a closed interval for a function that is continuous on that interval. This procedure was discussed in the Video for Homework H62.

```
PROCEDURE Finding Absolute Extrema on a Closed Interval
Step 1 Check to make certain that f is continuous over [a,b].
Step 2 Find the critical numbers in the interval (a,b).
Step 3 Evaluate fat the endpoints a and b and at the critical numbers found in step 2.
Step 4 The absolute maximum of fon [a,b] is the largest value found in step 3.
Step 5 The absolute minimum of fon [a,b] is the smallest value found in step 3.
```

But what about the situation where the domain of the function is not a closed interval? How does one determine the absolute extrema that $d o$ occur? As we will saw in the video for Homework H63, that question is answered in different ways for different functions.

For some familiar function types, the approach can be to

- First, consider the end behavior to determine which kinds of absolute extrema will occur.
- Then, find the locations of those extrema in the following way:
- Find the critical numbers of the function in the domain
- Compute values of $f(x)$ at those critical numbers and at endpoints (if there are any)
- Identify the absolute max or min values that you know will occur.

For functions that are not familiar function types, the approach is to

- Find the critical numbers of the function in the domain.
- Determine if any of those critical numbers is the location of an absolute extremum by either
- studying the sign behavior of $f^{\prime}(x)$ to determine increasing/decreasing behavior of $f(x)$
- or using the Second Derivative Test for Absolute Extrema on an Interval

THEOREM 3 Second-Derivative Test for Absolute Extrema on an Interval

Let f be continuous on an interval I from a to b with only one critical number c in (a, b). If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then $f(c)$ is the absolute minimum of f on I.

If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then $f(c)$ is the absolute maximum of f on I.

In Section 4.6, we are studying problems involving Optimization.

Optimization problems are simply Max/Min problems, but they may have complications

- They may be presented as word problems, about applications to real world situations.
- You will probably have to figure out the function and its domain
- They may have domains that are not closed intervals
- They may involve more than one variable

Homework H65 consists of

Two Variable Abstract Optimization Problems
[Example 1] (Similar to 4.6\#9) Find positive numbers x, y such that

- The sum $2 x+y=900$.
- The product maximized. the product is maximized.

Solution:
(Step 1) Identify Equation I:

$$
2 x+y=900
$$

(Step 2) Write Equation II involving x and y and the letter P for the product.

$$
\begin{gathered}
P=X y \text { maximize } P \\
\text { must have } x>0 \text { and } y>0
\end{gathered}
$$

(Step 3) Solve Equation I for y in terms of x.
Equation I

$$
\begin{aligned}
& 2 x+y=900 \\
& y=900-2 x \\
& \text { new equation I }
\end{aligned}
$$

(Step 4) Substitute New Equation I into Equation II and simplify to get a new equation that gives the product ${ }^{P}$ as unction of just one variable x. Call this function $P(x)$. Determine the domain of this function.
Now Equation I: $y=900-2 x$
Equation II: $P=x \cdot y$
Substitute I into II

$$
\begin{aligned}
P & =x \cdot(900-2 x)=900 x-2 x^{2} \\
P(x) & =90 x-200 x^{2}
\end{aligned}
$$

Domain we know $x>0$
We also know $y>0$. So $900-2 x>0$ $900>2 x$

$$
450>x
$$

Conclude that the domain is $0<x<450$, or $(0,450)$
(Step 5) Using Calculus, find the value of x that maximizes $P(x)$.
Goal: Find the value of X that maximizes
$P(x)=900 x-2 x^{2}$ on the domain $(0,450)$
Observe graph of $P(x)$ will be a parabola facing down
It will have a max at the one point
where $P^{\prime}(x)=0$

Strategy: - Find $P^{\prime}(x)$

- $\operatorname{Set} p^{\prime}(x)=0$

$$
\begin{aligned}
P^{\prime}(x) & =\frac{d}{d x}\left(900 x-2 x^{2}\right)=900-2(2 x) \\
& =900-4 x \\
0 & =P^{\prime}(x)=900-4 x \\
4 x & =900 \quad x=225
\end{aligned}
$$

(Step 6) Find corresponding values of y and the product.

$$
\begin{aligned}
& y=900-2 x=900-2(225)=900-450 \\
& y=450
\end{aligned}
$$

Product $P=x \cdot y=225(450)=\cdots=101,250$
[Example 2] (similar to 4.6\#13) Find positive numbers x, y such that

- The product is 9000 .

$$
\text { - The sum } 10 x+25 y \text { is minimized. }
$$

$$
\begin{aligned}
& x>0 \\
& y>0
\end{aligned}
$$

Solution:
(step 1) Write an Equation I involving x and y expressing the fact that the product is 9000 :
Equation:

$$
x \cdot y=9000
$$

(step 2) Write an equation II involving x and y and the letter S for sum:

$$
\text { Equation II: } \begin{aligned}
& S=10 x+25 y \\
& \operatorname{minimize} S .
\end{aligned}
$$

(step 3) Solve Equation I for y in terms of x. New Equation I.
Equation I $\quad x \cdot y=9000$
New Equation. I $y=\frac{9000}{x}$
(step 4) Substitute Equation I into Equation II and simplify to get a new equation that gives the sum S as a function of just one variable x. Call this function $S(x)$. Find its domain.

Now Equation I: $y=\frac{9000}{x}$
Equation II: $\quad S=10 x+25 y$
Substitute Dino II:

$$
\begin{aligned}
& I=S=10 x+25\left(\frac{9000}{x}\right) \\
& S(x)=10 x+\frac{25(9000)}{x}
\end{aligned}
$$

Domain we know $x>0$
But $y>0$ is also required.
But $y=\frac{9000}{x}$ so if $x>0$ then y will automatically be >0
So the domain is $x>0$. That is, $(0, \infty)$
(step 5) Using calculus, find the value of x that minimizes $S(x)$.
Minimize $S(x)=10 x+\frac{25(9000)}{x}$ on the interval $(0, \infty)$
Strategy: Find critical numbers for $S(x)$ First convert $S(x)$ to power function form

$$
S(x)=\underbrace{10 x+\frac{25(9000)}{x}}_{\text {positive enpurent form }}=10 x+25(9000) x^{-1}
$$

$$
\text { So } \begin{aligned}
S^{\prime}(x) & =\frac{d}{d x}\left(10 x+25(9000) x^{-1}\right)=10(1)+25(900)\left(-1 x^{-1-1}\right) \\
& =\frac{10-25(9000) x^{-2}}{\text { Power function }} \text { form }
\end{aligned}=\underbrace{10-\frac{25(9000)}{x^{2}}}_{\text {Positive exponent }}
$$

Partition numbers for $S^{\prime}(x)=10-\frac{25(9000)}{x^{2}}$ Observe $S^{\prime}(0)=10-\frac{25(9000)}{0^{2}}$ Does not exist.

So $x=0$ is a partition number for $S^{\prime}(x)$
Look for X values that cause $S^{\prime}(x)=0$

$$
\begin{aligned}
O & =10-\frac{25(9000)}{x^{2}} \\
\frac{25(9000)}{x^{2}} & =10 \\
x^{2} & =\frac{25(9000)}{10}=25(900) \\
x & = \pm \sqrt{25(900)}= \pm \sqrt{25} \sqrt{900}= \pm 5(30) \\
& = \pm 150 \\
x & =-150, \quad x=150
\end{aligned}
$$

So the partition numbers for $S^{\prime}(x)$ are
$x=0$ because $S^{\prime}(0)$ DNE
$x=-150$ because $S^{\prime}(-150)=0$
$x=150$ because $S^{\prime}(150)=0$
See if they are critical numbers for $S(x)=10 x+\frac{25(900)}{x}$

$$
\begin{aligned}
& S(0)=10(0)+\frac{25(9000)}{0} \text { DUE } \\
& S(150)=10(150)+\frac{25(9000)}{150}=000=3000 \\
& S(-150)=10(-150)+\frac{25(9000)}{-150}=.00=-3000
\end{aligned}
$$

The only critical numbers for $S(x)$ are $X=-150, X=150$
There is only one critical number in the interval

$$
(0, \infty), \frac{x+}{x} \text { is } x=150 \text {. }
$$

Find $S^{\prime \prime}(150)$ in order to use $2^{\text {nd }}$ Derivative tent we found $S^{\prime}(x)=10-25(9000) x^{-2}$

$$
\begin{aligned}
S_{0} S^{\prime \prime}(x) & =\frac{d}{d x}\left(10-25(9000) x^{-2}\right) \\
& =0-25(9000)\left(-2 x^{-2-1}\right) \\
& =-25(9000)(-2) x^{-3} \\
& =\frac{25(9000)(2)}{x^{3}} \\
S^{\prime \prime}(150) & =\frac{25(9900)(2)}{(150)^{3}}>0
\end{aligned}
$$

So $S^{\prime}(150)=0$ and $S^{\prime \prime}(150)>0$ and $x=150$ is the only critical number on the interval $(0, \infty)$
$2^{\text {ned }}$ Derivative Test tells us that $x=150$ is the location of the absolute
(step 6) Find the corresponding values of y and sum, S.

$$
\begin{aligned}
y & =\frac{9000}{x} \\
y & =\frac{9000}{150}=60 \\
\operatorname{Sum} S & =10 x+25\left(\frac{9000}{x}\right) \\
S & =10(150)+25\left(\frac{9000}{150}\right) \\
& =10(150)+25(60) \\
& =1500+1500 \\
& =3000
\end{aligned}
$$

Conclusion $x=150, y=60, s=3000$
[Example 3] (Similar to 4.6\#17) Find the dimensions of a rectangle with a perimeter of 150 feet that has the maximum area.

Solution

$$
\gamma^{\gamma} \text { (Perimeter }=150=x+x+y+y=2 x+2 y
$$

认 $\left\{\begin{array}{l}\text { Area } A=X \cdot y \text { maximize area }\end{array}\right.$ Two equation: Equation I $150=2 x+2 y$ Equation. II $A=x y$ maximize A
Step 3 Solve Equation I for y

$$
\begin{aligned}
150 & =2 x+2 y \\
75 & =x+y \\
y & =75-x
\end{aligned}
$$

Step 4 Substitute Equation I into Equation. II

$$
\begin{aligned}
& A=x \cdot y=x \cdot(75-x)=75 x-x^{2} \\
& A(x)=75 x-x^{2}
\end{aligned}
$$

Domain: clearly $x>0$ (length cant be 0 and $y>0$ or negative
but $y=75-x$
So we must have $25-x>0$

$$
75>x
$$

So the domain is $0<x<75$
So our jus is to maximize $A(x)=75 x-x^{2}$ on the domain $(0,75)$

Step 5 using calculus, find the value of x Strategy: Set $A^{\prime}(x)=0$ and solve for X.

$$
\begin{aligned}
& A(x)=75 x-x^{2} \\
& A^{\prime}(x)=75-2 x=0 \\
& 2 x=75 \\
& x=\frac{75}{2}
\end{aligned}
$$

Observe $\quad X=\frac{75}{2}$ is in the interval $(0,75)$ and $A(x)$ is a parabola facing down.
So $x=\frac{75}{2}$ must be the location of the max The corresponding value of y is

$$
y=75-x=75-\frac{75}{2}=\frac{75}{2}
$$

Conclusion
For a rectangle with perimeter 75 to have maximum area, its dimensions Should be $x=\frac{75}{2}, y=\frac{75}{2}$

A square!
[Example 4] (Similar to 4.6\#15) Find the dimensions of a) rectangle with an area of 150 square feet that has the minimum perimeter.

Solution

$$
A_{\text {req }}=x y=150
$$

Perimeter

$$
P=2 x+2 y \text { minimize } P
$$

Step 1 Equation. I is $\quad x y=150$
Step 2 Equation II is $2 x+2 y=P$ minimize P
step 3 Save equation I for y

$$
y=\frac{150}{x}
$$

Step 4 Substitute into equation 2

$$
\begin{aligned}
& P=2 x+2 y=2 x+2\left(\frac{150}{x}\right) \\
& P(x)=2 x+\frac{300}{x} \quad \text { Domain } x>0 . \text { That is }(0, \infty)
\end{aligned}
$$

Step 5 using calculus, find value of x that minimizes $P(x)=2 x+\frac{300}{x}$ on the interval $(0, \infty)$
Rewrite $P(x)$ to make derivative easier

$$
\begin{aligned}
& P(x)=2 x+\frac{300}{x}=2 x+300 x^{-1} \\
& P^{\prime}(x)=\frac{d}{d x}\left(2 x+300 x^{-1}\right)=2(1)+300\left(-1 x^{-1-1}\right) \\
& P^{\prime}(x)=2-300 x^{-2}=2-\frac{300}{x^{2}}
\end{aligned}
$$

Partition numbers for $P^{\prime}(x)$
$X=0$ because $P^{\prime}(0)$ DNE, $\operatorname{Sct} P^{\prime}(x)=0$ and Solve for x

$$
\begin{aligned}
& 0=2-\frac{300}{x^{2}} \\
& \frac{300}{x^{2}}=2 \\
& x^{2}=\frac{300}{2}=150 \\
& x= \pm \sqrt{150}= \pm \sqrt{25.6}= \\
& \\
& = \pm \sqrt{25} \cdot \sqrt{6}= \pm 5 \sqrt{6}
\end{aligned}
$$

Partition numbers for $P^{\prime}(x)$ are

$$
x=0, x=-5 \sqrt{6}, x=5 \sqrt{6}
$$

Observe P(0) DNE, So the critical numbers for $P(x)$ are $x=-5 \sqrt{6}, x=5 \sqrt{6}$

So we are to minimize $P(x)=20 x+\frac{300}{x}$ on the interval $(0, \infty)$,
and there is only one critical number $x=5 \sqrt{6}$
on that interval. So $x=5 \sqrt{6}$ must
be the location of the min.
Check with $2^{\text {nd }}$ Derivative test

$$
P^{\prime}(x)=2-300 x^{-2}=2-\frac{300}{x^{2}}
$$

So $P^{\prime \prime}(x)=0-300\left(-2 x^{-2-1}\right)=600 x^{-3}=\frac{600}{x^{3}}$

$$
P^{\prime \prime}(5 \sqrt{6})=\frac{600}{(5 \sqrt{6})^{3}}>0
$$

Since $P^{\prime}(5 \sqrt{6})=0$ and $P^{\prime \prime}(5 \sqrt{6})>0$, we conclude that $x=5 \sqrt{6}$ must he the location $\hat{\partial f}$ an absolute min.

The corresponding value of y is

$$
\begin{aligned}
y & =\frac{150}{x} \\
y & =\frac{150}{5 \sqrt{6}} \\
& =\frac{30}{\sqrt{6}} \\
& =\frac{5.6}{\sqrt{6}}=5 \sqrt{6}
\end{aligned}
$$

So $x=5 \sqrt{6}$ and $y=5 \sqrt{6}$

$$
\prod_{x=5 \sqrt{6}} y=5 \sqrt{6} \quad \text { square! }
$$

