Subject for this video:

**Two Variable Abstract Max Min Problems** 

**Reading:** 

- General: Section X Absolute Maxima and Minima -
- More Specifically: there is no discussion of this kind of problem in the reading

**Homework:** H65: Two Variable Abstract Max Min Problems (4.6#9,13,15,17)

Recall the definition of Critical Numbers from Section 4.1 (introduced in the Video for H55)



Recall the definition Absolute Extrema from Section 4.5 (introduced in the Video for H61)

#### **DEFINITION** Absolute Maxima and Minima

If  $f(c) \ge f(x)$  for all x in the domain of f, then f(c) is called the **absolute** maximum of f. If  $f(c) \le f(x)$  for all x in the domain of f, then f(c) is called the **absolute minimum** of f. An absolute maximum or absolute minimum is called an **absolute extremum**.

And these Theorems about absolute extrema from Section 4.5 (introduced the Video for H62)

There is one important situation where both absolute max and absolute min are guaranteed.

THEOREM 1 Extreme Value Theorem

A function f that is continuous on a closed interval [a, b] has both an absolute maximum and an absolute minimum on that interval.

And there is a theorem that tells us where Absolute Extrema have to occur.

**THEOREM 2** Locating Absolute Extrema

Absolute extrema (if they exist) must occur at critical numbers or at endpoints.

Theorems 1 and 2 are the basis for the following *procedure* (the *Closed Interval Method*) for finding the *absolute extrema* on a *closed interval* for a function that is *continuous* on that interval. This procedure was discussed in the Video for Homework H62.

## **PROCEDURE** Finding Absolute Extrema on a Closed Interval

Step 1 Check to make certain that f is continuous over [a, b].

Step 2 Find the critical numbers in the interval (a, b).

Step 3 Evaluate f at the endpoints a and b and at the critical numbers found in step 2.

Step 4 The absolute maximum of f on [a, b] is the largest value found in step 3.

Step 5 The absolute minimum of f on [a, b] is the smallest value found in step 3.

But what about the situation where the domain of the function is *not* a closed interval? How does one determine the absolute extrema that *do* occur? As we will saw in the video for Homework H63, that question is answered in different ways for different functions.

For some familiar function types, the approach can be to

- First, consider the end behavior to determine which kinds of absolute extrema will occur.
- Then, find the locations of those extrema in the following way:
  - $\circ$  Find the critical numbers of the function in the domain
  - Compute values of f(x) at those critical numbers and at endpoints (if there are any)
  - $\circ\,$  Identify the absolute max or min values that you know will occur.

For functions that are not familiar function types, the approach is to

- Find the critical numbers of the function in the domain.
- Determine if any of those critical numbers is the location of an absolute extremum by either
  - studying the sign behavior of f'(x) to determine increasing/decreasing behavior of f(x)
  - $\circ$  or using the Second Derivative Test for Absolute Extrema on an Interval

# **THEOREM 3** Second-Derivative Test for Absolute Extrema on an Interval

Let f be continuous on an interval I from a to b with only one critical number c in (a, b).

If f'(c) = 0 and f''(c) > 0, then f(c) is the absolute minimum of f on I.

If f'(c) = 0 and f''(c) < 0, then f(c) is the absolute maximum of f on I.



In Section 4.6, we are studying problems involving Optimization.

Optimization problems are simply Max/Min problems, but they may have complications

- They may be presented as word problems, about applications to real world situations.
- You will probably have to figure out the function and its domain
- They may have domains that are not closed intervals
- They may involve more than one variable

Homework H65 consists of

### **Two Variable Abstract Optimization Problems**

[Example 1] (Similar to 4.6#9) Find positive numbers x, y such that

- The sum 2x + y = 900.
- The product maximized. the product is maximized.

### Solution:

(Step 1) Identify Equation I:

$$\lambda + y = 900$$

(Step 2) Write Equation II involving x and y and the letter P for the product.

(Step 3) Solve Equation I for y in terms of x.

Equation I 2x + y = 900y = 900-2× new equation I

(Step 4) Substitute New Equation I into Equation II and simplify to get a new equation that gives the product  $\mathcal{R}$  as a function of just one variable x. Call this function P(x). Determine the domain of this function.

New Equation I: y=900-2x Equation II: P=X.y Substitute I into T  $P = \chi \cdot (900 - 2\chi) = 900\chi - 2\chi^2$  $P(x) = 90X - 200 X^2$ Domain We know X>0 We also know Y>0, So 900-2X > 0 > 2 X 450 > X Conclude that the domain is O<X<450, or (0,45

(Step 5) Using Calculus, find the value of x that maximizes P(x).

God: Find the value of X that maximizes  

$$P(x) = 900 \times -2x^2$$
 on the domain (0,450)  
Observe graph of P(x) will be a parabola facing down.  
It will have a max at the one point  
where  $p'(x) = 0$   
Strategy: Find  $P'(x)$   
 $\cdot$  Solve for X  
 $P'(x) = \frac{d}{dx} (900 \times -2x^2) = 900 - 2(2x)$   
 $= 900 - 4x$   
 $0 = P'(x) = 900 - 4x$   
 $4x = 900$   $x = 225$ 

(Step 6) Find corresponding values of y and the product.

900-2X = 900 - 2(225) = 900 - 450450  $P = \chi \cdot \gamma = 225(450) = \dots = 101,250$ product

[Example 2] (similar to 4.6#13) Find positive numbers x, y such that

The product is 9000.
The sum 10x + 25y is minimized.

## Solution:

(step 1) Write an Equation I involving x and y expressing the fact that the product is 9000:

X>0 Y>0

Equation 
$$T: \quad \chi, \gamma = 9000$$

(step 2) Write an equation II involving x and y and the letter S for sum:

(step 3) Solve Equation I for y in terms of x. New Equation I.

100 X. Y EquationI New Equation I 1000

(step 4) Substitute Equation I into Equation II and simplify to get a new equation that gives the sum S as a function of just one variable x. Call this function S(x). Find its domain.



(step 5) Using calculus, find the value of x that minimizes S(x).

Partition numbers for 
$$S'(x) = (0 - 25 \frac{(900)}{x^2})$$
  
Observe  $S'(0) = 10 - 25 \frac{(900)}{200}$  Does not exist.  
So  $\chi = 0$  is a partition number for  $5'(x)$   
Look for  $\chi$  values that cause  $S'(X) = 0$   
 $Q = V0 - \frac{25(900)}{x^2}$   
 $\frac{25(900)}{x^2} = (0)$   
 $\chi^2 = \frac{25(900)}{10} = 25(900)$   
 $\chi = \pm \sqrt{25(900)} = \pm \sqrt{25}\sqrt{900} = \pm 5(30)$   
 $= \pm 150$   
 $\chi = -150$ ,  $\chi = 150$ 

So the partition numbers for S'(X) are  
X=0 because S'(0) DNE  
X=-150 because S'(150) = 0  
X= 150 because S'(150) = 0  
See IF they are critical numbers for S(x) = 10X+25(900)  
S(0) = 10(0) + 25(900) DNE  
S(150) = 10(150) + 25(900) = ... = 3000  
S(-150) = 10(-150) + 25(900) = ... = -3000,  
The only critical numbers for S(x) are X=-150, X=150  
There is only one critical number in the interval  

$$(0, \infty)$$
,  $\mp t$  is X=150,

Find SII(150) in order to use 2<sup>Nd</sup> Derivative text  
We found 
$$S'(X) = 10 - 25(9000)X^2$$
  
 $S_0 S'I(X) = \frac{d}{dx}(10 - 25(9000)X^2)$   
 $= 0 - 25(9000)(-2X^{-2-1})$   
 $= -25(9000)(-2)X^3$   
 $= \frac{25(9000)(-2)X^3}{(150)}$   
 $S_0 S'(150) = 2\frac{5(9000)(2)}{(150)^3} = 0$   
 $S_0 S'(150) = 0$  and  $S_0^{(150)}(150) = 0$  and  $x = 150$  is the only  
critical number on the enterval  $(0, \infty)$   
 $J^{nd}$  Derivative Text tells us that  $X = 150$  is the location of the absolute  
min

(step 6) Find the corresponding values of y and sum, S.



[Example 3] (Similar to 4.6#17) Find the dimensions of a rectangle with a *perimeter* of 150 feet that has the maximum *area*.

Step 5 Winy Calculus, find the value of XStrategy: Set A'(X) = 0 and solve for X.  $A(x) = 75x - x^{2}$ A'(X) = 75 - 2X = 02X = 75 $X = \frac{75}{2}$ Observe  $X = \frac{75}{2}$  is in the interval (0,75)and Altis a parabola facing down. So (X= 75 must be the location at the max. The corresponding value of y is  $y = 75 - x = 75 - \frac{75}{2} = \frac{75}{5}$ 

Conclusion For a rectangle with perimeter 75 to have maximum arca, its dimensions Should be  $X = \frac{75}{2}$ ,  $y = \frac{75}{2}$ 



[Example 4] (Similar to 4.6#15) Find the dimensions of a rectangle with an *area* of 150 square

feet that has the minimum perimeter.

Area = Xy = 150Perimeter Solution P=2Xtzy minimize P Step 1 Equation I is 120 Xy Equation I is 2x+2y = P minimize P Sive equation I for y Substitute into equation 2  $P = 2 \times +2y = 2 \times +2(\frac{150}{2})$ P(x) = 2x + 300 Demain x>0. That is (0,00)

Step 5 Using calculus, find value of X that minimizes P(X) = 2X7300 on the interval (0,00) Kewrite P(x) to make derivative easier  $P(X) = 2X + \frac{300}{X} = 2X + \frac{300}{X}$  $P'(X) = d(2X + 300 X^{-1}) = 2(1) + 300(-1X^{-1})$  $(P'(x) = 2 - 300 x^{-2} = 2 - 300 x^{-2}$ Partition numbers for P'(x) X=0 because P'(0) DNE, Sct P(X) = a and Solve for X

0 = 2 - 300300 = 2  $\chi^2 = \frac{300}{2} = 150$  $X = \pm \sqrt{150} = \pm 25.6 =$  $= \pm 125.16 = \pm 5.16$ Partition numbers for P(X) are X=0, X=-556, X=516 Observe PCO) DNE, So the critical numbers for P(X) are X=-516, X=516

So we are to Minimize P(X)= 20x +300 on the interval (0,00), and there is only one critical number X= 556 on frat interval. So X=556 must be the location of the min. Check with 2nd Derivative test  $P'(x) = 2 - 300 x^{-2} = 2 - \frac{300}{x^2}$  $50 P''(X) = 0 - 300 (-2X^{2-1}) = 600 X^{3} = 600 X^$  $P''(5r_{5})^{2} = \frac{600}{(5r_{5})^{3}} > 0$ Since P'(556) =0 and P''(556) >0, we conclude that X = 556 must be the location of an absolute min,

The corresponding value of y is  $y = \frac{150}{x}$  $y = \frac{150}{5\sqrt{6}}$ = 30 = 5.6 = 516So X= 516 and y=516 y=556 Square! X=51