Subject for this video:

Introduction to Antiderivatives

Reading:

- General: Section 5.1 Antiderivatives and Indefinite Integrals
- More Specifically: Pages 322 - 324, Example 1

Homework:
H68: Is one function an antiderivative of another?

- Problems in MyLab: 5.1\#35,37
- Problems in Book but not in MyLab 5.1\#25,27,28,29,31,33,34,36,38

[Example 1] Is $F(x)=\frac{x^{3}}{3}$ an antiderivative of $f(x)=x^{2}$?
Strategy: find $F^{\prime}(x)$, see if it equals $f(x)$.
First, rewrite $F(x)=\frac{x^{3}}{3}=\left(\frac{1}{3}\right) x^{3}$
Now find the derivative

$$
\begin{aligned}
& \text { Now find the derivative } \\
& F^{\prime}(x)=\frac{d}{d x}\left(\frac{1}{3}\right) x^{3}=\left(\frac{1}{3}\right) \frac{d}{d x} x^{3}=\frac{1}{3}\left(3 x^{3-1}\right)=x^{2}=f(x)
\end{aligned}
$$

yes, because $F^{\prime}(x)=f(x)$
[Example 2] Is $F(x)=\frac{(5 x+7)^{3}}{3}$ an antiderivative of $f(x)=(5 x+7)^{2}$?
Solution
Again, find $F^{\prime}(x)$, see if $F^{\prime}(x)=f(x)$
First rewrite $F(x)$ in power function form

$$
\begin{aligned}
& F(x)=\frac{(5 x+7)^{3}}{3}=\left(\frac{1}{3}\right)(5 x+7)^{3} \\
& F^{\prime}(x)=\frac{d}{d x}\left(\frac{1}{3}\right)(5 x+7)^{3} \\
& =\left(\frac{1}{3}\right) \frac{d}{d x}(5 x+7)^{3} \\
& =\left(\frac{1}{3}\right) \frac{d}{d x} \operatorname{auter}(\operatorname{iancec}(x)) \\
& \text { inner }(x)=5 x+7 \\
& \text { inner }^{\prime}(x)=5 \\
& \text { outer } C \text {) }=(\\
& \text { outer }(x)=3()^{2} \\
& \begin{array}{c}
\text { chainnule } \\
=\left(\frac{1}{3}\right) \text { Outer }^{\prime}(\text { inner }(x)) \cdot \text { inner }^{\prime}(x)
\end{array} \\
& =\left(\frac{1}{3}\right) 3(5 x+7)^{2} \cdot 5=(5 x+7)^{2} \cdot 5 \neq f(x)
\end{aligned}
$$

No, because $F^{\prime}(x) \neq f(x)$
[Example 3] Is $F(x)=x \ln (x)-x$ an antiderivative of $f(x)=\ln (x)$?
Strategy: Find $F^{\prime}(x)$, see if $F^{\prime}(x)=f(x)$.

$$
\begin{aligned}
F^{\prime}(x) & =\frac{d}{d x}(x \ln (x)-x)= \\
& =\frac{d}{d x}(x \ln (x))-\frac{d}{d x} x \\
& =\left(\frac{d}{d x} x \cdot \ln (x)+x \cdot \frac{d}{d x} \ln (x)\right)-\frac{d}{d x} x \\
& =(1) \cdot \ln (x)+x \cdot\left(\frac{1}{X x}\right)-(1) \\
& =\ln (x)+1-1 \\
& =\ln (x) \\
& =f(x)
\end{aligned} E^{\prime}(x)=f(x)
$$

Yes! Because $F^{\prime}(x)=f(x)$.
[Example 4](A) Is $F(x)=e^{\left(x^{2}\right)}$ an antiderivative of $f(x)=e^{\left(x^{2}\right)}$?

$$
\begin{aligned}
& \text { Check by finding } F^{\prime}(x) \\
& F^{\prime}(x)=\frac{d}{d x} e^{\left(x^{2}\right)}=\frac{d}{d x} \text { outer(inner }(x) \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& =e^{\left(x^{2}\right)} \cdot 2 x \neq f(x)
\end{aligned}
$$

No, not an antider ivative, because $F^{\prime}(x) \neq f(x)$,

Chain Rule Details

$$
\begin{aligned}
& \text { innec }(x)=x^{2} \\
& \text { inneri }(x)=2 x \\
& \text { Onterc } \left.)=e^{(}\right)
\end{aligned}
$$

$$
\text { onter' }()=e^{()}
$$

(B) $\left.\operatorname{Is} F(x)=e^{\left(\frac{x_{3}^{3}}{3}\right)}\right)_{\text {an andiderivative }}$ o $\left.f(f)=e^{\left(x^{2}\right)}\right)$

Check by Finding $F^{\prime}(x)$

$$
\begin{aligned}
& F^{\prime}(x)=\frac{d}{d x}\left(e^{\left(\frac{x}{3}\right)}\right)^{=}=\frac{d}{d x}(\operatorname{outer}(\text { innec }(x))) \\
& \text { chaincuioutec }{ }^{\prime}(\operatorname{inner}(x)) \cdot \text { inner }^{\prime}(x) \\
& =e^{\left(\frac{x^{3}}{3}\right)} \cdot X^{2} \\
& \neq f(x)
\end{aligned}
$$

No, not an antiderivative, hecanse $F^{\prime}(x) \neq f(x)$.

Chain Rule Details imec $(x)=\frac{x^{3}}{3}=\left(\frac{1}{3}\right) x^{3}$ $\operatorname{inner}^{\prime}(x)=\left(\frac{1}{3}\right) 3 x^{2}=x^{2}$ outer ()$=e^{c}$) outer' ()$=e^{()}$

Important fact from higher math:

The Good News: The function $f(x)=e^{\left(x^{2}\right)}$ does have an antiderivative.
The Bad News: That antiderivative cannot be $/$ in the usual way as a function made up of basic writien functions. That is, it cannot be expressed as a finite combination of simple functions.

Therefore, when presented with the question

$$
\text { Is } F(x)=\text { some ordinary function an antiderivative of } f(x)=e^{\left(x^{2}\right)} \text { ? }
$$

The answer will always be $n o$. But one must always justify that answer by finding $F^{\prime}(x)$ and confirming that $F^{\prime}(x) \neq f(x)$.
[Example 5] True/False Questions
(A) The constant function $f(x)=\pi$ is an antiderivative of the constant function $k(x)=0 . \mathrm{T} \mathrm{F}$

Strategy: Find $f^{\prime}(x)$, see if it equals $K(x)$,

$$
f(x)=\frac{d}{d}(\pi), 0_{1}=k(x) \text {. }
$$

(B) the constant function $\mathbb{R}(x) \stackrel{\text { co }}{=0}$ stan fan ant ion an derivative of the constant function $f(x)=\pi$. F

Find $k^{\prime}(x)=\frac{d}{d x} k(x)=\frac{d}{d x} 0=0 \neq f(x)$
(C) The constant function $k(x)=0$ is an antiderivative of itself $(1) \mathrm{F}$

True, because $k^{\prime}(x)=\frac{d}{d x} k(x)=\frac{d}{d x}(0)=0=k(x)$
(D) The function $g(x)=5 e^{(x)}$ is an antiderivative of itself T F

Observe $g^{\prime}(x)=\frac{d}{d x} 5 e^{(x)}=5 \frac{d}{d x} e^{(x)}=5 \cdot e^{(x)}=g(x)$
constant multinlecule exponential function rule \#/
(E) The function is $h(x)=5 e^{\pi}$ an antiderivative of itself. T(F)

$$
h^{\prime}(x)=\frac{d}{d x} h(x)=\frac{d}{d x} \frac{5 e^{\pi}}{\text { constant faction }}=0 \neq h(x)
$$

[Example 6] For which values of n is $F(x)=\frac{x^{n+1}}{n+1}$ is an antiderivative of $f(x)=x^{n}$?
We need $F^{\prime \prime}(x)$
Start by rewriting $F(x)=\frac{X^{n+1}}{n+1}=\left(\frac{1}{n+1}\right) X^{n+1}$
So $F^{\prime}(X)=\frac{d}{d}\left(\frac{1}{n+1}\right) x^{n+1} \quad\binom{1}{n+1} \begin{aligned} & \text { Powerfunctionform } \\ & n+1\end{aligned}$
So $F^{\prime}(X)=\frac{d}{d x} \underline{\left(\frac{1}{n+1}\right)} X^{n+1}=\left(\frac{1}{n+1}\right) \frac{d}{d x} x^{\text {Power function form }} X^{n+1}=\left(\frac{1}{(n)}\right) \cdot\left((n+1) X^{(n+1)-1)}\right)$
constant multiple rale powersule

$$
\begin{aligned}
& =x^{n} \\
& =f(x)
\end{aligned}
$$

Observe: When $n=-1, F(x)=\frac{x^{-1+1}}{-1+1}=\frac{x^{0}}{0}$ Doer not exist!
So for all real numbers $n \neq-1$,
$F(x)$ will be an antiderivative of $f(x)$.

