Subject for this video:

The Collection of All Antiderivatives of a Function

Reading:

- General: Section 5.1 Antiderivatives and Indefinite Integrals
- More Specifically: Pages 322 - 324, Example 1

Homework:
H69: Graphs of antiderivatives of a function (5.1: \#39,41*)

Recall the definition of antiderivative from the previous video.

Definition of Antiderivative
Words: F is an antiderivative of f.
Meaning: f is the derivative of F. That is, $f=F^{\prime}$.

Arrow diagram:

And recall this example from the previous video:
[Example 1] Is $F(x)=\frac{x^{3}}{3}$ an antiderivative of $f(x)=x^{2}$?

$$
\begin{aligned}
& \text { We fond } \\
& F^{\prime}(x)=\frac{d}{d x} F(x)=\frac{d}{d x}\left(\frac{x^{3}}{3}\right)=\cdots=x^{2}=f(x)
\end{aligned}
$$

$$
F^{\prime}(x) \text { is an antidecrivatios of } f(x) \text { because } F^{\prime}(x)=f(x) \text {. }
$$

[Example 1](continued) Is $G(x)=\frac{x^{3}}{3}+17$ an antiderivative of $f(x)=x^{2}$?

$$
\begin{aligned}
& \text { check } \\
& \begin{array}{l}
\text { check } \\
G^{\prime}(x)=\frac{d}{d x}\left(\frac{x^{3}}{3}+17\right)=\left(\frac{d}{d x} \frac{x^{3}}{3}\right)+\frac{d}{d x} \frac{17}{\hat{q}}=X^{2}+0=x^{2}=f(x) .
\end{array} \\
& \text { by result of earlier }
\end{aligned}
$$

So $G(x)=\frac{x^{3}}{3}+17$ is an antiderivative of $f(x)=x^{2}$

We see from [Example 1] that there is more than one antiderivative of $f(x)$, and we realize that there are many more than just the two that we have seen in this example. Any function of the form

$$
y=\frac{x^{3}}{3}+C
$$

where C is a real number) will also be an antiderivative of $f(x)$.

the collection of all antiderivatives of $f(x)$
This realization lets us appreciate a subtlety in the definition of antiderivative.
Notice that the definition uses the sentence

$$
F \text { is an antiderivative of } f .
$$

It does not say

$$
F \text { is the antiderivative of } f .
$$

Now we see why. There is not just one antiderivative of f; there are many!

This makes sense in terms of the graphs of functions of the form $F(x)+C$

Note that horizontal translations of $F(x)=x^{3} / 3$ are not antiderivatives of $f(x)=x^{2}$

$$
\begin{aligned}
& \text { tangent ines } \\
& \text { are not } \\
& \text { parallel }
\end{aligned}
$$

The observations from [Example 1] can be generalized to other functions.

Theorem about the Collection of Antiderivatives of a Function

If a function $F(x)$ is an antiderivative of a function $f(x)$, then any function of the form

$$
F(x)+C
$$

where C is a real number constant, will also be an antiderivative of $f(x)$.
Furthermore, these are all the antiderivatives of $f(x)$. That is, if $G(x)$ is also an antiderivative of $f(x)$, then it must be that $G(x)=F(x)+C$ where C is a real number constant.

Particular Antiderivative and General Antiderivative

Return to [Example 1], in which we observed that, for the function $f(x)=x^{2}$,

- The function $F(x)=\frac{x^{3}}{3}$ is an antiderivative of $f(x)$.
- The function $G(x)=\frac{x^{3}}{3}+17$ is also an antiderivative of $f(x)$.
- Any function of the form $y=\frac{x^{3}}{3}+C$ where C is a real number, is an antiderivative of $f(x)$.

When a choice of an actual number for C is made, the resulting function is called a particular antiderivative of $f(x)$. That is,

- The function $F(x)=\frac{x^{3}}{3}$ is a particular antiderivative of $f(x)$.
- The function $G(x)=\frac{x^{3}}{3}+17$ is a particular antiderivative of $f(x)$.

But if C has not been chosen, then the function form

$$
y=\frac{x^{3}}{3}+C
$$

is called the general antiderivative of $f(x)$. Note the use of the word the. Realize that this expression is a function form. There is only one such form.

Even this is subtle. The general antiderivative of $f(x)$ can appear in different guises. For instance, the function form

$$
y=\frac{x^{3}}{3}+C
$$

where C is a constant that can be any real number, is the general antiderivative of $f(x)=x^{2}$. But the function form

$$
y=\frac{x^{3}}{3}+17+D
$$

where D is a constant that can be any real number, is also the general antiderivative of $f(x)=x^{2}$. This will be confusing at first. The key is to realize that the two expressions above are the same form. That is, if D can be any real number, then the quantity $17+D$ can also be any real number. So having a $+17+D$ tacked onto the end is the same as having $a+C$ tacked onto the end.

