Subject for this video:

Basic Indefinite Integrals

Reading:

- General: Section 5.1 Antiderivatives and Indefinite Integrals
- More Specifically: Pages 324-330, Examples 2,3

Homework: H70: Basic Indefinite Integrals (5.1\#9, 11, 13, 17, 19, 21, 23)

Recall the definition of antiderivative from the previous video.

Definition of Antiderivative
Words: F is an antiderivative of f.
Meaning: f is the derivative of F. That is, $f=F^{\prime}$.

Arrow diagram:

Common Form of Question:

Is One Given Function an Antiderivative of Another Given Function?
That is, given a function F and a function f, is F an antiderivative of f ?
To answer this question, simply find the derivative of F.

- If $F^{\prime}=f$, then F is an antiderivative of f.
- If $F^{\prime} \neq f$, then F is not an antiderivative of f.

Write a clear conclusion.

Also recall, from the previous video, this diagram illustrating the collection of all antiderivatives of the function $f(x)=x^{2}$.

the collection of all antiderivatives of $f(x)=x^{2}$

This makes sense in terms of the graphs of functions of the form $F(x)+C$

We discussed how the observations about the function $f(x)=x^{2}$ and its antiderivatives can be generalized to other functions.

Theorem about the Collection of Antiderivatives of a Function

If a function $F(x)$ is an antiderivative of a function $f(x)$, then any function of the form

$$
F(x)+C
$$

where C is a real number constant, will also be an antiderivative of $f(x)$.
Furthermore, these are all the antiderivatives of $f(x)$. That is, if $G(x)$ is also an antiderivative of $f(x)$, then it must be that $G(x)=F(x)+C$ where C is a real number constant.

the collection of all antiderivatives of $f(x)$

The previous video ended with a discussion of

Particular Antiderivative and General Antiderivative

When a choice of an actual number for C is made, the resulting function is called a particular antiderivative of $f(x)$. That is,

- The function $F(x)=\frac{x^{3}}{3}$ is a particular antiderivative of $f(x)=\frac{x^{3}}{3}$.
- The function $G(x)=\frac{x^{3}}{3}+17$ is a particular antiderivative of $f(x)$.

But if C has not been chosen, then the function form

$$
y=\frac{x^{3}}{3}+C
$$

is called the general antiderivative of $f(x)$. Note the use of the word the. Realize that this expression is a function form. There is only one such form.

In this video, we will discuss Indefinite Integrals, which are defined as follows.

Definition of Indefinite Integral

symbol: $\int f(x) d x$
spoken: the indefinite integral of $f(x)$
meaning: the general antiderivative of $f(x)$
Remark: We know that, given one function $F(x)$ that is known to be an antiderivative of $f(x)$, we can get all other antiderivatives by adding constants to $F(x)$. The general antiderivative of $f(x)$ is denoted by writing $F(x)+C$, where C is a constant that can be any real number. That is,

$$
\text { If } F^{\prime}(x)=f(x) \text { then } \int f(x) d x=F(x)+C
$$

Additional Terminology:

- The function $f(x)$ inside the integral symbol is called the integrand.
- The unknown constant C is called the constant of integration.

The indefinite integral can be illustrated by the diagrams below.

Suppose:

$$
\begin{aligned}
& F(x) \\
& \text { an antiderivative } \\
& \text { of } f(x)
\end{aligned}
$$

Then:

$$
\int f(x) d x=\begin{gathered}
F(x)+C \\
\begin{array}{c}
\text { general } \\
\text { antiderivative } \\
\text { of } f(x)
\end{array} \\
\text { find indefinite integral }
\end{gathered}
$$

Remark on Wording:

Notice the above definition of indefinite integral says the indefinite integral of $f(x)$.
Contrast this with the earlier definition of antiderivative that said an antiderivative of f.
There are many antiderivatives of $f(x)$, but there is only one indefinite integral of $f(x)$.

In today's video, we will learn rules for finding indefinite integrals. First, though, we will simply revisit some of our examples of antiderivatives from previous videos, and and rewrite the results using the new terminology and notation of indefinite integrals.

In the videos for Homeworks H68 and H69, we found that $F(x)=\frac{x^{3}}{3}$ and $G(x)=\frac{x^{3}}{3}+17$ were both antiderivatives of $f(x)=x^{2}$. They are particular antiderivatives of $f(x)=x^{2}$. Using integral notation and terminology, we write

$$
\int x^{2} d x=\frac{x^{3}}{3}+C
$$

That is, the general antiderivative of x^{2} is $\frac{x^{3}}{3}+C$

In the video for Homework H68, we found that for all real numbers $n \neq-1, F(x)=\frac{x^{n+1}}{n+1}$ is an antiderivative of $f(x)=x^{n}$. Using integral notation and terminology, we write the following, which will be our first indefinite integral rule

$$
\text { The power rule for indefinite integrals: } \int x^{n} d x=\frac{x^{n+1}}{n+1}+C \text { when } n \neq-1
$$

That is, when $n \neq-1$, the general antiderivative of x^{n} is $\frac{x^{n+1}}{n+1}+C$

In another example in the video for Homework H68, we found that $F(x)=x \ln (x)-x$ is an antiderivative of $f(x)=\ln (x)$. Using integral notation and terminology, we write the following, which will be another indefinite integral rule

$$
\text { The } \ln (\boldsymbol{x}) \text { rule for indefinite integrals: } \int \ln (x) d x=x \ln (x)-x+C
$$

That is, the general antiderivative of $\ln (x)$ is $x \ln (x)-x+C$

$$
\int \ln (x) d x=x \ln (x)-x+C \quad \text { general } \quad \ln (x)
$$

In another example in the video for Homework H68, we found that $g(x)=5 e^{(x)}$ is an antiderivative of itself. A simpler result would be the following:

The function $e^{(x)}$ is an antiderivative of itself.
Using integral notation and terminology, we have the following indefinite integral rule

$$
\text { The } \boldsymbol{e}^{(x)} \text { rule for indefinite integrals: } \int e^{(x)} d x=e^{(x)}+C
$$

That is, the general antiderivative of $e^{(x)}$ is $e^{(x)}+C$

Finding $\int \frac{1}{x} d x$
If we tried to find this indefinite integral using the power rule, we would find

But remember, the power rule does not apply to the case of a power function with $n=-1$.
So how, then, should we find the integral?

Here is the rule

$$
\text { The } \frac{\mathbf{1}}{\boldsymbol{x}} \text { rule for indefinite integrals: } \int \frac{1}{x} d x=\ln (|x|)+C \text { for all } x \neq 0
$$

To understand this integral rule, we need to understand the corresponding derivative relationship:

Two equation form: If $f(x)=\ln (|x|)$ then $f^{\prime}(x)=\frac{1}{x}$
Single equation form: $\frac{d}{d x} \ln (|x|)=\frac{1}{x}$

To understand this derivative relationship, we should examine the graphs of $y=\ln (|x|)$ and $y=\frac{1}{x}$

The graph of $y=\ln (x)$ is obtained from the graph of $y=e^{(x)}$ by interchanging all the x, y values.

Note that the domain of $y=\ln (x)$ is the set of all $x>0$. That is, the interval $(0, \infty)$

The graph of $y=\ln (|x|)$ has is as shown.

Note that the domain of $y=\ln (|x|)$ is the set of all $x \neq 0$.

Now consider the graphs of $\ln (|x|)$ and $y=\frac{1}{x} \quad f(x)=\ln (|x|)$
m small negative M medium negative m large negative
The numbers that are the Slopes of the tangent lines on $f(x)$ equal
the numbers that are the Yvalucs or the graph of $f^{\prime}(x)$
y small negation y medium negates

$$
\begin{aligned}
& \text { medium negatic } \longrightarrow 0 \\
& y \text { large negative } \longrightarrow 0
\end{aligned}
$$

So, it is believable that if $f(x)=\ln (|x|)$ then $f^{\prime}(x)=\frac{1}{x}$

And therefore, the corresponding indefinite integral rule makes sense.

$$
\int \frac{1}{x} d x=\ln (|x|)+C \text { for all } x \neq 0
$$

Recall the Constant Multiple Rule for Derivatives:
If $f(x)$ is a function and a is a real number, then

$$
\frac{d}{d x} a f(x)=a \frac{d}{d x} f(x)
$$

The corresponding rule for integrals is as follows

Constant Multiple Rule for Indefinite Integrals

If $f(x)$ is a function and a is a real number, then

$$
\int a f(x) d x=a \int f(x) d x
$$

This rule seems obvious enough. But we will see that there is a bit of subtlety in the issue of the constant of integration. That subtlety will be discussed in an example.

Here is a summary of the Indefinite Integral Rules that we have discussed in this video

The power rule:	$\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$ when $n \neq-1$
The $\frac{1}{x}$ rule:	$\int \frac{1}{x} d x=\ln (\|x\|)+C$ for all $x \neq 0$
The $\boldsymbol{e}^{(x)}$ rule:	$\int e^{(x)} d x=e^{(x)}+C$
The $\ln (\boldsymbol{x})$ rule:	$\int \ln (x) d x=x \ln (x)-x+C$
The constant multiple rule:	$\int a f(x) d x=a \int f(x) d x$

[Example 1] Find the following indefinite integrals.
(A) $\left.\int x^{2}\right)^{n} d x^{n=2}=\frac{x^{2+1}}{2+1}+C=\frac{x^{3}}{3}+C$
with $n=2$

(C) $\int x d x$

Observe that $x=x^{\prime}$

$$
\int x d x=\int x^{1} d x \underset{\substack{i \\ \text { powercule } \\ \text { with } n=1}}{=} \frac{x^{1+1}}{1+1}+C=\frac{X^{2}}{2}+C
$$

(D) $\int 1 d x$

Observe that $1=x^{0}$

$$
\int 1 d x=\int x^{0} d x \underset{\substack{1 \\ \text { use power rule } \\ \text { with } n=0}}{n+1} \frac{X^{0+1}}{0+1}+c=\frac{x^{\prime}}{1}+c=X+C \text {. }
$$

With $n=0$
Corresponding derivative equation: $\frac{d}{d x}(x+C)=1+0=1$
(E) $\int \frac{1}{x^{8}} d x$

Put integrand in power function form

$$
\begin{aligned}
& \frac{1}{x^{8}}=X^{-8}
\end{aligned}
$$

(F)

$$
\begin{aligned}
& \int_{\substack{5 x^{8} d x}}=\frac{5}{\substack{\text { constant multiple } \\
\text { rule }}} \int_{\substack{8^{8} d x=8 \\
\text { pasecrule } \\
\text { with } n=8}}^{n+1}\left(\frac{x^{8+1}}{8+1}+C\right)= \\
&=5\left(\frac{x^{9}}{9}+C\right) \\
&=\frac{5 x^{9}}{9}+5 C
\end{aligned}
$$

The number C can be any real number.
Then 5 C can he any real number.

$$
=\frac{5 x^{9}}{9}+D
$$

where D can be any real number
(G) $\int \frac{5}{x^{8}} d x$

Write the integrand in power function form $\frac{5}{x^{8}}=5 X^{-8}$

$$
\left.\begin{array}{rl}
\int \frac{5}{x^{8}} d x & =\int x^{-8} d x=5 \int x^{-8} d x=5\left(\frac{x^{-8+1}}{-8+1}+c\right) \\
& =5\left(\frac{x^{-7}}{-7}+C\right)=-\frac{5}{7} x^{-7}+5 C \\
\text { powernule } \\
\text { with } n=-8
\end{array}\right)
$$

(H) $\int \frac{5}{x} d x$

Note we do not want to rewrite $\frac{5}{x}=5 x^{-1}$ power function
form
because we cant use the power rale when $n=-1$.
Better to rewrite the integrand by separating the constant.

$$
\begin{aligned}
& \frac{5}{x}=5 \cdot \frac{1}{x} \\
& \int \frac{5}{x} d x=\int \frac{5}{x} \cdot \frac{1}{x} d x=\frac{5}{\uparrow} \int \frac{1}{x} d x=5(\ln (|x|)+C) \\
&=5 \ln (|x|)+5 C \\
& \text { constant }+ \text { apple rule } \\
&=5 \ln (|x|)+D
\end{aligned}
$$

(I) $\int 5 \sqrt{x} d x$

Rewrite the integrand $5 \sqrt{x}=5 x^{\frac{1}{2}}$

$$
\begin{aligned}
& \begin{array}{l}
\text { radical power function } \\
\text { form form }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =5\left(\frac{x^{\text {rule }}}{3 / 2}+C\right)=5\left(\frac{2 x^{3 / 2}}{3}+C\right) \\
& =\frac{10 x^{3 / 2}}{3}+5 c \\
& =\frac{10 x^{3 / 2}}{3}+D
\end{aligned}
$$

$$
\text { (0) } \begin{aligned}
& 5 e^{5(x)} d x=5 \int e^{(x)} d x=5\left(e^{(x)}+c\right)=5 e^{(x)}+5 c \\
& \begin{array}{c}
\uparrow \\
\text { constant } \\
\text { mutiple } \\
\text { inle }
\end{array} \\
&=5 e^{(x)}+D .
\end{aligned}
$$

(K) $\int 5 d x$

Rewrite the integrand $5=5 \cdot 1=5 \cdot \chi^{0}$ power function

$$
\begin{aligned}
& \text { fum }
\end{aligned}
$$

$$
\begin{aligned}
& =5\left(\frac{x^{\prime}}{1}+c\right)=5(x+c)=5 x+5 c \\
& =5 x+c
\end{aligned}
$$

The integral equation $\quad \int 5 d x=5 x+c$ corresponds to the derivative equation $\frac{d}{d x}(5 x+c)=5$.
(L)

$$
\begin{aligned}
& \int 5 \ln (x) d x \\
& \int \operatorname{sen}(x) d x \underset{\substack{ \\
\text { constant } \\
\text { multiple } \\
\text { cule }}}{\int \ln (x) \text { cule }} \underset{\substack{5}}{\int \ln (x) d x}=5(x \ln (x)-x+c) \\
& =5 x \ln (x)-5 x+5 c \\
& \int 5 \ln (x) d x=5 x \ln (x)-5 x+D
\end{aligned}
$$

