Subject for this video:

## Rewrite the Integrand First!

## Reading:

- General: Section 5.1 Antiderivatives and Indefinite Integrals
- More Specifically: Pages 326-330, Examples 2,3

Homework: H71: Rewrite the Integrand First! (5.1\#43,45,47,49,51,53)

## Recall the definition of antiderivative from previous videos.

## Definition of Antiderivative

Words: $F$ is an antiderivative of $f$.
Meaning: $f$ is the derivative of $F$. That is, $f=F^{\prime}$.

Arrow diagram:


## Theorem about the Collection of Antiderivatives of a Function

If a function $F(x)$ is an antiderivative of a function $f(x)$, then any function of the form $F(x)+C$ where $C$ is a real number constant, will also be an antiderivative of $f(x)$.
Furthermore, these are all the antiderivatives of $f(x)$. That is, if $G(x)$ is also an antiderivative of $f(x)$, then it must be that $G(x)=F(x)+C$ where $C$ is a real number constant.


## Recall the definition of particular antiderivative and general antiderivative

When a choice of an actual number for $C$ is made, the resulting function is called a particular antiderivative of $f(x)$. That is,

- The function $F(x)=\frac{x^{3}}{3}$ is a particular antiderivative of $f(x)=\frac{x^{3}}{3}$.
- The function $G(x)=\frac{x^{3}}{3}+17$ is a particular antiderivative of $f(x)$.

But if $C$ has not been chosen, then the function form

$$
y=\frac{x^{3}}{3}+C
$$

is called the general antiderivative of $f(x)$.

## Recall the definition of indefinite integral

## Definition of Indefinite Integral

symbol: $\int f(x) d x$
spoken: the indefinite integral of $f(x)$
meaning: the general antiderivative of $f(x)$
Remark: We know that, given one function $F(x)$ that is known to be an antiderivative of $f(x)$, we can get all other antiderivatives by adding constants to $F(x)$. The general antiderivative of $f(x)$ is denoted by writing $F(x)+C$, where $C$ is a constant that can be any real number. That is,

$$
\text { If } F^{\prime}(x)=f(x) \text { then } \int f(x) d x=F(x)+C
$$

## Additional Terminology:

- The function $f(x)$ inside the integral symbol is called the integrand.
- The unknown constant $C$ is called the constant of integration.

Recall that the indefinite integral can be illustrated by the diagrams below.

Suppose:
 an antiderivative

$$
\text { of } f(x)
$$

Then:


And finally, recall the Indefinite Integral Rules that we discussed in the previous video, presented here along with two new rules.

| The power rule: $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$ when $n \neq-1$ |
| ---: |
| The $\frac{1}{x}$ rule: $\int \frac{1}{x} d x=\ln (\|x\|)+C$ for all $x \neq 0$ |
| The $\boldsymbol{e}^{(x)}$ rule: $\int e^{(x)} d x=e^{(x)}+C$ |
| The $\ln (\boldsymbol{x})$ rule: $\int \ln (x) d x=x \ln (x)-x+C$ |
| The constant multiple rule: $\int a f(x) d x=a \int f(x) d x$ |
| The sum rule: $\int f(x) \pm g(x) d x=\int f(x) d x \pm \int g(x) d x$ |
| The sum and constant multiple rule: $\int a f(x) \pm b g(x) d x=a \int f(x) d x \pm b \int g(x) d x$ |

[Example 1] Find indefinite integrals $(A)-(G)$.
(If the integrand needs to be rewritten, do that first, before doing the integral!)
(A) $\int \underbrace{17 x(3-x)} d x$
rewrite the integrand $f(x)=17 x(3-x)=51 x-17 x^{2}$
Now inter rate

$$
\begin{aligned}
& \text { Now integrate } \\
& \begin{aligned}
& \int f(x) d x=\int 51 x-17 x^{2} d x \\
& \text { Sumand constant }=51 \int x d x-17 \int x^{2} d x \\
&=5 l\left(\frac{x^{1+1}}{1+1}\right)-17\left(\frac{x^{2+1}}{2+1}\right)+C \\
& \text { multiple rule power rule } \\
&= 51 \frac{x^{2}}{2}-\frac{17 x^{3}}{3}+C \\
&=\frac{51 x^{2}}{2}-\frac{17 x^{3}}{3}+C
\end{aligned} \\
& \text { Conclude that } \frac{\int 17 x(3-x) d x}{}=\frac{51 x^{2}}{2}-\frac{17 x^{3}}{3}+C
\end{aligned}
$$

(B) $\int \frac{15}{\sqrt{u}} d u$
first rewrite the integrand $\frac{15}{\sqrt{u}}=\frac{15}{u^{1 / 2}}=15 u^{-1 / 2}$ power function

$$
\int \frac{15}{\sqrt{u}} d u=\int 15 u^{-1 / 2} d u=15 \int u^{1-1 / 2} d u \quad-\frac{1}{2} \text { form }
$$

powersule
withn
co-
constantmutitile
cule

$$
\begin{aligned}
& \text { wersule } \left.\begin{array}{l}
\text { Constant multple } \\
\text { cule } \\
\text { withn }=-\frac{1}{2} \\
=15\left(\frac{u^{-\frac{1}{2}+1}}{\frac{-1}{2}+1}+c\right)=15\left(\frac{u^{1 / 2}}{1 / 2}+c\right)=
\end{array}=.1 / 2\right)
\end{aligned}
$$

$$
=15\left(2 u^{1 / 2}+c\right)=30 u^{1 / 2}+15 c
$$

$$
=30 \sqrt{n}+D
$$

Conclude $\int \frac{15}{\sqrt{u}} d u=30 \sqrt{u}+D$
(C) $\int \frac{1}{5 x^{17}} d x$
rewrite the integrand $\frac{1}{5 x^{17}}=\frac{1}{5} \cdot \frac{1}{x^{17}}=\frac{1}{5} \cdot x^{-17}$
power function form
with $=-17$ multiple ale

$$
\begin{aligned}
& =\left(\frac{1}{5}\right)\left(\frac{x^{-17+1}}{-17+1}+C\right)=\left(\frac{1}{5}\right)\left(\frac{x^{-16}}{-16}+C\right)= \\
& =\left(\frac{1}{5}\right)\left(-\frac{1}{16 x^{16}}+C\right)=-\frac{1}{(5) 16 x^{16}}+\left(\frac{1}{5}\right) C \\
& =-\frac{1}{80 x^{16}}+D
\end{aligned}
$$

Conclude $\int \frac{1}{5 x^{16}} d x=-\frac{1}{80 x^{16}}+D$
(D) $\int 13 x^{5}-\frac{11}{x^{5}} d x$

Rewrite the integrand $13 x^{5}-\frac{11}{x^{5}}=13 x^{5}-11 x^{-5}$.
power function form

$$
\int 13 x^{5}-\frac{11}{x^{5}} d x=\int \begin{gathered}
13 x^{5}-11 x^{-5} d x=13 \int_{i} \int^{5} x^{5} d x-11 \int x^{(-5)} d x \\
\text { sum and constant } \\
\text { multiple pale }
\end{gathered}
$$

multiple rale
now use power rule with $n=5$ and $n=-5$

$$
\begin{aligned}
& =13\left(\frac{x^{5+1}}{5+1}\right)-11\left(\frac{x^{-5+1}}{-5+1}\right)+C \\
& =\frac{13 x^{6}}{6}-\frac{11 x^{-4}}{-4}+C \\
& =\frac{13 x^{6}}{6}+\frac{11}{4 x^{4}}+C \text { positive exponent foes }
\end{aligned}
$$

Conclude that $\int 13 x^{5}-\frac{11}{x^{5}} d x=\frac{13 x^{6}}{6}+\frac{11}{4 x^{4}}+C$
(E) $\int \frac{2}{\sqrt[3]{x}}-5 \sqrt[3]{x} d x$
rewrite integrand $f(x)=\frac{2}{\sqrt[3]{x}}-5 \sqrt[3]{x}=2 \cdot \frac{1}{x^{1 / 3}}-5 x^{1 / 3}=2 x^{-1 / 3}-5 x^{1 / 3}$

Power rule

$$
\begin{aligned}
& =2\left(\frac{x^{-\frac{1}{3}}+1}{-\frac{1}{3}+1}\right)-5\left(\frac{x^{\frac{1}{3}}+1}{\frac{1}{3}+1}\right)^{\frac{2}{3}}+C=2 \frac{x^{3}}{\frac{2}{3}}-\frac{x^{\frac{4}{3}}}{\frac{4}{3}}+C \\
& =2 \cdot\left(\frac{3}{2}\right) x^{\frac{2}{3}-5} \cdot\left(\frac{3}{4}\right) x^{\frac{4}{3}}+C=3 x^{\frac{2}{3}}-\frac{15 x^{4 / 3}}{4}+C \\
& \frac{2}{2}+x^{4 / 3}
\end{aligned}
$$

Conclude $\int \frac{2}{\sqrt[3]{x}}-5 \sqrt[3]{x} d x=3 x^{\frac{2}{3}}-\frac{15 x^{4 / 3}}{4}+c$
(F) $\int \frac{1-x^{2}}{3 x} d x$
crew rite integrand $f(x)=\frac{1-x^{2}}{3 x}=\frac{1}{3 x}-\frac{x^{2}}{3 x}=\frac{1}{3} \cdot \frac{1}{x}-\frac{1}{3} \cdot x$

$$
\begin{aligned}
\int f(x) d x & =\int \frac{1}{3} \cdot \frac{1}{x}-\frac{1}{3} x d x=\frac{1}{3} \int \frac{1}{x} d x-\frac{1}{3} \int x^{n} d x= \\
& =\frac{1}{3} \ln (|x|)-\frac{1}{3}\left(\frac{x^{1+1}}{1+1}\right)+C^{\text {nsc power rule with } n=1} \\
& =\frac{1}{3} \ln (|x|)-\frac{1}{3} \frac{x^{2}}{2}+C \\
& =\frac{1}{3} \ln (|x|)-\frac{x^{2}}{6}+C
\end{aligned}
$$

$$
\text { Conclude } \int \frac{1-x^{2}}{3 x} d x=\frac{1}{3} \ln (|x|)-\frac{x^{2}}{6}+C
$$

(G) $\int 7 e^{x}+5 d x$
rewrite the integrand $f(x)=7 e^{(x)}+5=7 e^{(x)}+5.1$

$$
\text { Conclude } \int 7 e^{(x)}+5 d x=7 e^{(x)}+5 x+c
$$

$$
\begin{aligned}
& \text { Sum oconstant multinte cale } \\
& =7\left(e^{(x)}\right)^{0}+5\left(\frac{x^{0+1}}{0+1}\right)+C \text { Power rable with } n=0 \\
& =7 c^{(x)}+\frac{5 x^{1}}{1}+c \\
& =7 e^{(x)}+5 x+C
\end{aligned}
$$

[Example 2] Valid and Invalid Solutions to an Indefinite Integral Problem
One of these five solutions is correct. Each of the other solutions has at least one invalid step. The equal signs are all numbered. Discuss the validity or invalidity of each equal sign.

Conclude by saying which solution is the correct one.


Solution: We must consider the validity of each equal sign.

## Steps in Solution (a)

1) Invalid. Moving the $x^{5}$ to the numerator and changing the sign of its exponent was valid, but it is not valid to just move the 7 from the denominator to the numerator.
2) Valid: Used the Power Rule for Indefinite Integrals, with $n=-4$.
3) Valid: Cancelled a 2 and moved the minus sign out front.
4) Valid: Moved the $x^{-4}$ to the denominator and changed the sign of its exponent.

Conclude that Solution (a) is invalid because it contains an invalid step.

Steps in Solution (b)

1) Valid. Moved the $x^{5}$ to the numerator and changed the sign of its exponent.
2) Valid: Used the Power Rule for Indefinite Integrals, with $n=-4$.
3) Invalid. Moving the $x^{-4}$ to the numerator and changing the sign of its exponent was valid, but it is not valid to just move the 2 from the numerator to the denominator.
4) Valid: Multiplied the constants and moved the minus sign out front.

Conclude that Solution ( $b$ ) is invalid because it contains an invalid step.

## Steps in Solution (c)

1) Valid. Moved the $x^{5}$ to the numerator and changed the sign of its exponent.
2) Valid: Used the Power Rule for Indefinite Integrals, with $n=-4$.
3) Valid: Cancelled a 2 and moved the minus sign out front.
4) Valid: Moved the $x^{-4}$ to the denominator, changed the sign of its exponent, and multiplied the constants.

## Conclude that Solution (c) is valid because all of it steps are valid.

## Steps in Solution (d)

1) Invalid. Moving the $x^{5}$ to the numerator and changing the sign of its exponent was valid, but it is not valid to just move the 7 from the denominator to the numerator.
2) Valid: Used the Power Rule for Indefinite Integrals, with $n=-4$.
3) Valid: Cancelled a 2 and moved the minus sign out front.
4) Invalid. Moving the $x^{-4}$ to the numerator and changing the sign of its exponent was valid, but it is not valid to just move the 7 from the numerator to the denominator.
5) Valid: Multiplied the constant.

Conclude that Solution ( $d$ ) is invalid because it contains two invalid steps.

## Steps in Solution (e)

1) Valid. Moved the $x^{5}$ to the numerator and changed the sign of its exponent.
2) Invalid: Used $n-1$ instead of $n+1$ in the Power Rule for Indefinite Integrals.
3) Valid: Cancelled a 2 and moved the minus sign out front.
4) Valid: Moved the $x^{-6}$ to the denominator, changed the sign of its exponent, and multiplied the constants.

## Conclude that Solution ( $e$ ) is invalid because it contains an invalid step.

Conclusion: Solution $(c)$ is a valid solution because all its steps are invalid. All the other solutions are invalid, because each contains at least one invalid step.

Remark: Notice that solution $(d)$ is invalid, even though it led to the correct expression in the end. In fact, solution $(d)$ is the worst solution of the five, because it contains two invalid steps!

## End of [Example 2]

## End of Video

