Subject for this video:

Find Particular Antiderivative Satisfying Extra Condition

Reading:

- General: Section 5.1 Antiderivatives and Indefinite Integrals
- More Specifically: Page 330, Example 4

Homework: H72: Find particular antiderivative satisfying extra condition (5.1\#55, 57,58, 61)

Recall the definition of antiderivative from previous videos.

Definition of Antiderivative

Words: F is an antiderivative of f.
Meaning: f is the derivative of F. That is, $f=F^{\prime}$.

Arrow diagram:

Theorem about the Collection of Antiderivatives of a Function

If a function $F(x)$ is an antiderivative of a function $f(x)$, then any function of the form $F(x)+C$ where C is a real number constant, will also be an antiderivative of $f(x)$.
Furthermore, these are all the antiderivatives of $f(x)$. That is, if $G(x)$ is also an antiderivative of $f(x)$, then it must be that $G(x)=F(x)+C$ where C is a real number constant.

Recall the definition of particular antiderivative and general antiderivative

When a choice of an actual number for C is made, the resulting function is called a particular antiderivative of $f(x)$. That is,

- The function $F(x)=\frac{x^{3}}{3}$ is a particular antiderivative of $f(x)=x^{2}$.
- The function $G(x)=\frac{x^{3}}{3}+17$ is a particular antiderivative of $f(x)=x^{2}$.

But if C has not been chosen, then the function form

$$
y=\frac{x^{3}}{3}+C
$$

is called the general antiderivative of $f(x)$.

Recall the definition of indefinite integral

Definition of Indefinite Integral

symbol: $\int f(x) d x$
spoken: the indefinite integral of $f(x)$
meaning: the general antiderivative of $f(x)$
Remark: We know that, given one function $F(x)$ that is known to be an antiderivative of $f(x)$, we can get all other antiderivatives by adding constants to $F(x)$. The general antiderivative of $f(x)$ is denoted by writing $F(x)+C$, where C is a constant that can be any real number. That is,

$$
\text { If } F^{\prime}(x)=f(x) \text { then } \int f(x) d x=F(x)+C
$$

Additional Terminology:

- The function $f(x)$ inside the integral symbol is called the integrand.
- The unknown constant C is called the constant of integration.

And finally, recall the Indefinite Integral Rules that we discussed in the previous video, presented here along with two new rules.

The power rule: $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$ when $n \neq-1$
The $\frac{1}{x}$ rule: $\int \frac{1}{x} d x=\ln (\|x\|)+C$ for all $x \neq 0$
The $\boldsymbol{e}^{(x)}$ rule: $\int e^{(x)} d x=e^{(x)}+C$
The $\ln (\boldsymbol{x})$ rule: $\int \ln (x) d x=x \ln (x)-x+C$
The constant multiple rule: $\int a f(x) d x=a \int f(x) d x$
The sum rule: $\int f(x) \pm g(x) d x=\int f(x) d x \pm \int g(x) d x$
The sum and constant multiple rule: $\int a f(x) \pm b g(x) d x=a \int f(x) d x \pm b \int g(x) d x$

So far in Section 5.1., we have often used the following conventions when discussing functions and their antiderivatives:

- We have used a lowercase letter for a function
- We have used an uppercase letter for an antiderivative or indefinite integral of that function

Suppose:

Then:

general antiderivative of $f(x)$

In this video, and in the accompanying homework set, we will use a different style of notation.

We will start by knowing $f^{\prime}(x)$, and we will seek to find $f(x)$.

This situation can be illustrated by slightly modifying the previous diagram.

Suppose: Derivative $f^{\prime}(x)$ is given.
Find: General antiderivative $f(x)+C$ such that

[Example 1] (a) Find the $\left\{\right.$ antiderivative of the derivative $C^{\prime}(x)=12 x^{2}-22 x$. general

$$
\begin{aligned}
& \text { Solution } \\
& \text { General antiderivative }=\int C^{\prime}(x) d x=\int 12 x^{2}-22 x d x= \\
& \text { constant multiple rule } n=2 \\
&=\frac{12}{2} x^{2} d x-22 \int x^{2} d x \\
& \text { power } n=1 \\
&=12\left(\frac{x^{2+1}}{2+1}+(D)-22\left(\frac{x^{1+1}}{1+1}+E\right)\right. \\
&=12\left(\frac{x^{3}}{3}+D\right)-22\left(\frac{x^{2}}{2}+E\right) \\
&=\frac{12 x^{3}}{3}+12 D-\frac{2 x^{2}}{2}-22 E \\
&=4 x^{3}-11 x^{2}+12 D-22 E \\
& C(x)=4 x^{3}-11 x^{2}+K \text { where K can be any } \\
& \text { real number }
\end{aligned}
$$

(b) (similar to 5.1\#55) Find the particular antiderivative of the derivative $C^{\prime}(x)=12 x^{2}-22 x$ that satisfies $C(0)=30$.
extra condition.
Strategy Find the General Antiderivative
We did this in (a). The result was

$$
C(x)=4 x^{3}-11 x^{2}+K
$$

Find the value of the constant of integration that will Satisfy the extra condition.

$$
\begin{aligned}
& 30=C(0)=4(0)^{3}-11(0)^{2}+K=0+K=K \\
& \text { So } K=30
\end{aligned}
$$

Write Clear conclusion presenting the Particular Antiderivative

$$
C(x)=4 x^{3}-11 x^{2}+30
$$

(c) Illustrate your result on the given collection of graphs.
must have $C(0)=30$

[Example 2] (similar to 5.1\#5)
(a) Find f such that

$$
f^{\prime}(x)=\frac{7}{\sqrt{x}} \text { and } f(25)=80
$$

Integrate to find the general antiderivative
Rewrite $f^{\prime}(x)=\frac{7}{\sqrt{x}}=\frac{7}{x^{1 / 2}}=7 \cdot x^{-1 / 2}$

$$
\begin{aligned}
& =7(2 \sqrt{x}+c)=14 \sqrt{x}+7 c=14 \sqrt{x}+D
\end{aligned}
$$

Find value of the constant of integration to general antiderivative

$$
\begin{aligned}
& 80=f(25)=14 \sqrt{25}+D=14(5)+D=70+D \\
& \text { So } D=10
\end{aligned}
$$

Write clear conclusion presenting the particular antiderivative

$$
f(x)=14 \sqrt{x}+10
$$

(b) Illustrate your result on the given collection of graphs.

$f(25)=80$ means $(x, y)=(25,80)$ is on the graph.
[Example 1 (a) (similar to 5.1\#61) Find the particular antiderivative of the derivative

$$
\frac{d f}{d x}=5 e^{(x)}-19
$$

that satisfies $f(0)=25$. extra condition
Integrate to find the general antiderivatise
First rewrite the integrand $\frac{d f}{d x}=5 e^{(x)}-19=5 e^{(x)}-19.1$

$$
\left.\begin{array}{rl}
\text { Now integrate } \\
(f(x))=\left(\int \frac{d f}{d x}\right) d x & =\int \underline{5} e^{(x)}-19 \cdot 1 d x=5 \int^{(x)} d x-19 \int 1 d x \\
\text { Sum and constant } \\
\text { multiple rule }
\end{array} \quad \begin{array}{rl}
\text { power rule } \\
\text { worn } n=0
\end{array}\right)
$$

Satisfy the extra condition $f(0)=25$

$$
\begin{aligned}
25=f(0) & =5 e^{(0)}-19(0)+E \\
& =5 \cdot 1-0+E \\
25 & =5+E
\end{aligned}
$$

$$
20=E
$$

Write Clear Conclusion presenting the particular antiderivative

$$
f(x)=5 e^{(x)}-19 x+20 \quad \text { particular artiderivation }
$$

(b) Illustrate your result on the given collection of graphs.

Extra condition $f(c)=25$ means that $(x, y)=(0,25)$ is on graph
(c) Now change variable $t \phi t$ and the problem statement becomes

Find the particular antiderivative of the derivative

$$
\frac{d f}{d t}=5 e^{(t)}-19
$$

that satisfies $f(0)=25$.
Resat

$$
\binom{f(t)=5 e^{(t)}-19 t+20}{\text { pat renter anivicersion }}
$$

(d) Now change function name to $x(t)$, and we get a problem statement similar to that of 5.1\#61.

Find the particular antiderivative of the derivative

$$
\frac{d x}{d t}=5 e^{(t)}-19
$$

that satisfies $x(0)=25$.
Result

$$
\begin{aligned}
x(t)= & 5 e^{(t)}-19 t+20 \\
& \text { particular antiderivative }
\end{aligned}
$$

