
Subject for this video: 

 

Approximating Areas with Sums 

 

Reading: 

• General: Section 5.4 The Definite Integral 

• More Specifically: Page 358 – top of 364, Examples 1,2 

 

Homework: H76: Approximating Areas with Sums 

• Barnett 5.4#7,13,17,19 

• Briggs & Cochran 5.1#13,23,30, 

 

 

  



Today, we discuss a new idea: 

 

The area between the graph of a function 𝒇(𝒙) and the 𝒙 axis from 𝒙 = 𝒂 to 𝒙 = 𝒃. 

 

We will be interested in two kinds of area. 

• Unsigned Area (𝑈𝑆𝐴) = (1) + (2) + (3) 

• Signed Area (𝑆𝐴) = (1) - (2) + (3)  (Regions under the 𝑥 axis get a negative sign.) 

 

Signed Area may seem like a weird quantity to consider, but mathematically, it is very important. 

We will discuss it extensively for the rest of the semester. Today, we will consider examples of 

computing unsigned area and signed area. In simple examples, we can do this using geometry. 

  

 

𝑓(𝑥) 

𝑥 = 𝑎 𝑥 = 𝑏 

(1) 

(2) 

(3) 



[Example 1] Let 𝑓(𝑥) = −𝑥 + 11.  

Find the unsigned and signed areas between the graph of 

𝑓(𝑥) and the 𝑥 axis from 𝑥 = 7 to 𝑥 = 14  by using geometry 

Solution: 

The graph of 𝑓(𝑥) = −𝑥 + 11 will be a line with 

• slope 𝑚 = −1 

• 𝑦 intercept at (𝑥, 𝑦) = (0,11) 

• 𝑥 intercept at (𝑥, 𝑦) = (11,0) 
 

It is drawn at right, with the region between the graph of 𝑓(𝑥) and the 𝑥 axis from 𝑥 = 7 to 𝑥 =

14 shaded. 

Green region is a right triangle with base 𝑏 = 4, height ℎ = 4 and area 𝐴 =
1

2
𝑏ℎ =

1

2
⋅ 4 ⋅ 4 = 8. 

Blue region is a right triangle with base 𝑏 = 3, height ℎ = 3, and area 𝐴 =
1

2
⋅ 3 ⋅ 3 =

9

2
. 

The unsigned area is 𝑈𝑆𝐴 = 𝑔𝑟𝑒𝑒𝑛 + 𝑏𝑙𝑢𝑒 = 8 +
9

2
=
25

2
. 

The signed area is 𝑆𝐴 = 𝑔𝑟𝑒𝑒𝑛 − 𝑏𝑙𝑢𝑒 = 8 −
9

2
=
7

2
. 

End of [Example 1] 

 

𝑓(𝑥) = −𝑥 + 11 
11 

7 11 14 



[Example 2] Let 𝑔(𝑥) be defined by the graph at right. 

(The graph of 𝑔(𝑥) is part of a circle centered at (5,1).). 

Find the unsigned and signed areas between the graph of 

g(𝑥) and the 𝑥 axis on the interval [5,8] by using 

geometry. Give an exact answer and a decimal 

approximation. 

Solution: 

The top part of the region is a quarter of a circle with 

radius 𝑟 = 3 and area 𝐴 =
1

4
𝜋𝑟
2
=
1

4
𝜋(3)

2
=
9𝜋

4
. 

But the quarter circle region is sitting on a rectangle. 

The rectangle has width 𝑤 = 3, height ℎ = 1, and 

area 𝐴 = 𝑤 ⋅ ℎ = 3. 

The unsigned area and signed area will be the same because this entire region is above the 𝑥 

axis. 

Their value is 𝑈𝑆𝐴 = 𝑆𝐴 = 𝑔𝑟𝑒𝑒𝑛 =
9𝜋

4
+ 3

⏟  

𝑒𝑥𝑎𝑐𝑡

≈ 10.07⏟  

𝑎𝑝𝑝𝑟𝑜𝑥

. 

End of [Example 2] 
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We have seen that for regions made up of simple geometric shapes, we can get the signed area 

using geometry. 

 

But what about regions that are not made up of simple geometric shapes? For example, for the 

function 𝑓(𝑥) defined by the curvy graph below, consider the following two questions. 

 

 

Two Questions about Area 

(1) How can we define the signed area between the graph of a function 𝑓(𝑥) and the 𝑥 axis 

from 𝑥 = 𝑎 to 𝑥 = 𝑏 for a general function 𝑓(𝑥) whose graph is not made up basic shapes? 

(2) How can we find the value of that signed area? 

 

 

𝑓(𝑥) 

𝑥 = 𝑎 𝑥 = 𝑏 



If you think back to your experience with area in previous courses, you probably never encountered 

a definition of what area means. Rather, you just had various formulas for computing the area of 

basic shapes, and rules for computing the areas of more complicated regions that area made up of 

basic shapes. 

 

It may seem like we would have to answer Area Question (1) before answering Area Question (2). 

But it turns out that we can fumble our way to an answer to Question (1) by first trying to answer 

Question (2). 

 

  



Approximating Areas with Rectangles 

Our quest to answer the Area Questions will begin by considering Area Question (2): 

How would we find the value of the signed area between the graph of a function 𝑓(𝑥) and the 𝑥 

axis from 𝑥 = 𝑎 to 𝑥 = 𝑏 for a general function 𝑓(𝑥) whose graph is not made up basic shapes? 

 

We will consider doing this for a particular choice of 𝑓(𝑥) and interval [𝑎, 𝑏]. 

 

 

 

We will try to find the value of the signed area between the graph 

of 

𝑓(𝑥) = 5 +
𝑥
2

10
 

 

and the 𝑥 axis from 𝑥 = 2 to 𝑥 = 12. 

 

  

𝑓(𝑥) = 5 +
𝑥
2

10
 

2 12 
Signed Area SA = ? 



Remember: we haven’t yet defined what signed area even means for such a region. (That’s what 

we’re trying to figure out.) But we can formulate two requirements that we will ask of the 

definition of area:  

 

Requirements that we want a Definition of Area to Satisfy: 

• Positivity: For any non-empty region 𝑅 above the 𝑥 axis, the area of Region 𝑅 should be a 

positive number. 

• Additivity: If some region 𝑅 above the 𝑥 axis is made up of the disjoint union of regions 𝐴 

and 𝐵, then the area of region 𝐴 plus the area of region 𝐵 should equal the area of Region 𝑅. 

 

As a result of Positivity and Additivity, it will be true that if some region 𝐴 above the 𝑥 asis is 

entirely contained in some region 𝑅 above the 𝑥 axis, then the area of 𝐴 should be less than the area 

of 𝑅. That idea can be used to give an upper and lower estimate of the signed area of the blue 

region shown above. 

  



Consider the green, blue, and red shaded regions in the figure below. 

 

 

We don’t know the value of the signed area 𝑆𝐴 for the blue region. We have not even defined what 

signed area means for that region. But the green and red regions are made up of rectanges, so we 

can find the signed area of those regions. Then, we will have lower and upper bounds for the 

unknown (and even undefined) area of the blue region. Sort of an “area sandwich”. That is the 

general idea of approximating areas with rectangles. We will now set about computing the green 

and red areas, doing it in a way that the process can be generalized to other examples. The 

terminology we will be introduced to is that of left rectangles, right rectangles, left sums, right 

sums, and more generally, Riemann sums. 

      Green Region Blue Region Red Region 



Left and Right Rectangles 

For a given function 𝑓(𝑥), Left Rectangles and Right Rectangles will be defined as follows 

Definition of Left Rectangle  

For a given function 𝑓(𝑥), a Left Rectangle sits on the 𝑥 axis and is the 

correct height so that it touches the graph of 𝑓(𝑥) at the rectangle’s left 

corner. 

 

Definition of Right Rectangle  

For a given function 𝑓(𝑥), a Right Rectangle sits on the 𝑥 axis and is 

the correct height so that it touches the graph of 𝑓(𝑥) at the rectangle’s 

right corner. 

 

 

 Left Rectangle 

 Right Rectangle 



 

Remark: These definitions sound simple enough. However, notice that if the graph of 𝑓(𝑥) is 

below the 𝑥 axis, the rectangles will have to go down to touch the graph. And if the graph of 𝑓(𝑥) 

happens to have an 𝑥 intercept, then a rectangle may have no height at all if its corner happens to 

occur at that 𝑥 value.  



Left and Right Sums 

 

A Left Sum will be defined to be a number that obtained by adding the areas of a bunch of Left 

Rectangles in a certain way. 

 

Definition of Left Sum  

Symbol: 𝐿𝑛 

Spoken: The Left Sum with 𝑛 rectangles 

Usage: a continuous function 𝑓(𝑥) and an interval [𝑎, 𝑏] are given 

Meaning: 

• put 𝑛 equal-width Left Rectangles on the interval 𝑎 ≤ 𝑥 ≤ 𝑏. 

• Add up their area. 

• The resulting sum is denoted 𝐿𝑛 

Picture: Here is a picture of the 5 rectangles that would be used to 

compute 𝐿5 for 𝑓(𝑥) = 5 +
𝑥
2

10
 on the interval [2,12]. 

 

  

2 12 4 6 8 10 

𝑓(𝑥) = 5 +
𝑥
2

10
 



Similarly for the definition of a Right Sum. 

 

Definition of Right Sum  

Symbol: 𝑅𝑛 

Spoken: The Right Sum with 𝑛 rectangles 

Usage: a continuous function 𝑓(𝑥) and an interval [𝑎, 𝑏] are given 

Meaning: 

• put 𝑛 equal-width Right Rectangles on the interval 𝑎 ≤ 𝑥 ≤ 𝑏. 

• Add up their area. 

• The resulting sum is denoted 𝑅𝑛 

Picture: Here is a picture of the 5 rectangles that would be used to 

compute 𝑅5 for 𝑓(𝑥) = 5 +
𝑥
2

10
 on the interval [2,12]. 

 

 

 

 

 

2 12 4 6 8 10 

𝑓(𝑥) = 5 +
𝑥
2

10
 



Riemann Sums 

 

The Left Sum and Right Sum are two examples of a whole family of sums called Riemann Sums, 

named for German mathematician Bernhard Riemann (1826 – 1866) Riemann was an important 

figure in the development of the theory of the integral. 

 

Computing Left and Right Riemann Sums 

 

We will compute one example involving a particular function 𝑓(𝑥) and then present the general 

procedure. 

  



[Example 3] Find the Left Sum and Right Sum with 5 rectangles for 𝑓(𝑥) = 5 +
𝑥
2

10
 on the interval 

[2,12]. That is, find the values of 𝐿5 and 𝑅5. 

 

The regions corresponding to 𝐿5 and 𝑅5 each have five rectangles. To compute their areas, we will 

need their widths and their heights. 

 

Notice that all of the rectangles will have the same width, 𝑤 = 2. 

 

That width is obtained by dividing the width of the whole interval by the number of rectangles: 

2 =
12 − 2

5
=
𝑏 − 𝑎

𝑛
 

For the sake of generalizing this procedure, it is helpful to name the rectangle width and make note 

of how it is computed in general. 

 

𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 𝑤𝑖𝑑𝑡ℎ = Δ𝑥 =
𝑏 − 𝑎

𝑛
 

. 

2 12 4 6 8 10 



 

The heights of the five left rectangles are the same as the height of the 

graph of 𝑓(𝑥) at the left edges of the green rectangles. (Because these are 

left rectangles.) 

Those left edges are located at the 𝑥 values 2,4,6,8,10. 

 

 

 

 

The heights of the five right rectangles are the same as the height of the 

graph of 𝑓(𝑥) at the right edges of the red rectangles. (Because these are 

right rectangles.) 

Those right edges are located at the 𝑥 values 4,6,8,10,12.  

 

 

Notice that there are six important 𝑥 values involved in computing the heights of the five left 

rectangles and the five right rectangles. 

  

2 12 4 6 8 10 

𝑓(𝑥) = 5 +
𝑥
2

10
 

2 12 4 6 8 10 

𝑓(𝑥) = 5 +
𝑥
2

10
 



For the sake of generalizing this procedure later, it is helpful to name those six 𝑥 important values 

and observe how they are computed. 

 

Computing the six important 𝑥 values. 

𝑥0 = 2 = 𝑎 

𝑥1 = 4 = 2 + 2 = 𝑎 + Δ𝑥 

𝑥2 = 6 = 2 + 2(2) = 𝑎 + 2Δ𝑥 

𝑥3 = 8 = 2 + 3(2) = 𝑎 + 3Δ𝑥 

𝑥4 = 10 = 2 + 4(2) = 𝑎 + (𝑛 − 1)Δ𝑥 

𝑥5 = 12 = 2 + 5(2) = 𝑎 + 𝑛Δ𝑥 = 𝑏 

 

  



The heights of the five left rectangles will be the five 𝑦 values 𝑓(2), 𝑓(4), 𝑓(6), 𝑓(8), 𝑓(10), and 

the heights of the five right rectangles will be the five 𝑦 values 𝑓(4), 𝑓(6), 𝑓(8), 𝑓(10), 𝑓(12).  

We see that it will be necessary to compute the 𝑦 values for all six of the important 𝑥 values listed. 

𝑓(2) = 5 +
(2)

2

10
= 5 +

4

10
=
54

10
 

𝑓(4) = 5 +
(4)

2

10
= 5 +

16

10
=
66

10
 

𝑓(6) = 5 +
(6)

2

10
= 5 +

36

10
=
86

10
 

𝑓(8) = 5 +
(8)

2

10
= 5 +

64

10
=
114

10
 

𝑓(10) = 5 +
(10)

2

10
= 5 +

100

10
=
150

10
 

𝑓(12) = 5 +
(12)

2

10
= 5 +

144

10
=
194

10
 

For the sake of generalizing this procedure later, notice that those six 𝑦 values can be denoted. 

𝑇ℎ𝑒 𝑦 𝑣𝑙𝑎𝑢𝑒𝑠 𝑎𝑟𝑒 𝑓(𝑥0), 𝑓(𝑥1), 𝑓(𝑥2), 𝑓(𝑥3), 𝑓(𝑥4), 𝑓(𝑥6) 

.  



Finally, we compute the sums. 

 

The Left Sum 𝐿5 will be the sum of the areas of the five green left rectangles, with each area being a 

height times a width. The five heights are 𝑓(2), 𝑓(4), 𝑓(6), 𝑓(8), 𝑓(10); the widths are all Δ𝑥 = 2.  

 

𝐿5 = 𝑓(2) ⋅ 2 + 𝑓(4) ⋅ 2 + 𝑓(6) ⋅ 2 + 𝑓(8) ⋅ 2 + 𝑓(10) ⋅ 2 

= (𝑓(2) + 𝑓(4) + 𝑓(6) + 𝑓(8) + 𝑓(10)) ⋅ 2 

= (
54

10
+
66

10
+
86

10
+
114

10
+
150

10
) ⋅ 2 

= (
470

10
) ⋅ 2 

= 47 ⋅ 2 

= 94 

 

We have found a value for the Left Sum:  𝐿5 = 94. 

 

  



The Right Sum 𝑅5 will be the sum of the areas of the five red right rectangles, with heights 

𝑓(4), 𝑓(6), 𝑓(8), 𝑓(10), 𝑓(12) and widths Δ𝑥 = 2.  

 

𝑅5 = 𝑓(4) ⋅ 2 + 𝑓(6) ⋅ 2 + 𝑓(8) ⋅ 2 + 𝑓(10) ⋅ 2 + 𝑓(12) ⋅ 2 

= (𝑓(4) + 𝑓(6) + 𝑓(8) + 𝑓(10) + 𝑓(12)) ⋅ 2 

= (
66

10
+
86

10
+
114

10
+
150

10
+
194

10
) ⋅ 2 

= (
610

10
) ⋅ 2 

= 61 ⋅ 2 

= 122 

 

We have found a value for the Right Sum:  𝑅5 = 122. 

 

  



For the sake of generalizing this procedure later, notice the sums turned out to be 

 

𝐿𝑛 = (𝑓(𝑥0) + 𝑓(𝑥1) + 𝑓(𝑥2) + ⋯+ 𝑓(𝑥𝑛−1)) ⋅ Δ𝑥 

𝑅𝑛 = (𝑓(𝑥1) + 𝑓(𝑥2) + ⋯+ 𝑓(𝑥𝑛−1) + 𝑓(𝑥𝑛)) ⋅ Δ𝑥 

 

These sums can be abbreviated using summation notation. We will not use the summation 

notation in our course, but it is interesting because it will be the inspiration for a symbol that we 

will be introduced to later. 

 

𝐿𝑛 = (𝑓(𝑥0) + 𝑓(𝑥1) + 𝑓(𝑥2) + ⋯+ 𝑓(𝑥𝑛−1)) ⋅ Δ𝑥 = ∑𝑓(𝑥𝑘−1)Δ𝑥

𝑛

𝑘=1

 

𝑅𝑛 = (𝑓(𝑥1) + 𝑓(𝑥2) + ⋯+ 𝑓(𝑥𝑛−1) + 𝑓(𝑥𝑛)) ⋅ Δ𝑥 = ∑𝑓(𝑥𝑘)Δ𝑥

𝑛

𝑘=1

 

 

In the summation notation, the large symbol is the Greek capital letter Sigma.  



Discussion of our results: We found 𝐿5 = 94 and 𝑅5 = 122. Recall our picture illustrating how 

we were going to find lower and upper bounds for the area of the region between the graph 𝑓(𝑥) =

5 +
𝑥
2

10
 and the 𝑥 axis from 𝑥 = 2 to 𝑥 = 12. 

 

We still don’t have a value for the blue region, or a definition of what it even means. But we now 

have lower and upper bounds for what the area should be. 

𝐿5 < 𝑆𝐴 < 𝑅5 

94 < 𝑆𝐴 < 122 

End of [Example 3] 

      

𝐿5 = 94 SA = ? 

𝑓(𝑥) = 5 +
𝑥
2

10
 𝑓(𝑥) = 5 +

𝑥
2

10
 𝑓(𝑥) = 5 +

𝑥
2

10
 

𝑅5 = 122 2 12 2 12 2 12 



General Procedure 

 

The example we just finished was very long. But along the way, we made note of the important 

steps in the solution and wrote formulas showing how the calculations for those steps could be 

generalized. We put those general formulas in four green boxes. The whole procedure can be 

summarized succinctly into a three-step process by simply gathering up the formulas in those four 

green boxes and repackaging them in one. It is shown on the next page. 

 

  



Steps for Computing Left and Right Riemann Sums 

Given a continuous function 𝑓(𝑥) and an interval [a, b], 

Step 1: Compute the Rectangle Width 𝑤 = Δ𝑥 =
𝑏−𝑎

𝑛
 

Step 2: Make a list of the 𝑥 coordinates of the edges of all the rectangles. (Notice, there will be 

𝑛 + 1 numbers) Find the corresponding 𝑦 coordinates on the graph of 𝑓(𝑥). 

𝑥 𝑦 = 𝑓(𝑥) 

𝑥0 = 𝑎 𝑦0 = 𝑓(𝑥0) 

𝑥1 = 𝑎 + Δ𝑥 𝑦1 = 𝑓(𝑥1) 

𝑥2 = 𝑎 + 2Δ𝑥 𝑦2 = 𝑓(𝑥2) 

𝑥3 = 𝑎 + 3Δ𝑥 𝑦3 = 𝑓(𝑥3) 

⋮ ⋮ 

𝑥𝑛−1 = 𝑎 + (𝑛 − 1)Δ𝑥 𝑦𝑛−1 = 𝑓(𝑥𝑛−1) 

𝑥𝑛 = 𝑎 + 𝑛Δ𝑥 = 𝑏 𝑦𝑛 = 𝑓(𝑥𝑛) 

Step 3: Use the 𝑦 values on the list and Δ𝑥 to compute 𝐿𝑛 and 𝑅𝑛 

𝐿𝑛 = (𝑓(𝑥0) + 𝑓(𝑥1) + 𝑓(𝑥2) + ⋯+ 𝑓(𝑥𝑛−1)) ⋅ Δ𝑥 

𝑅𝑛 = (𝑓(𝑥1) + 𝑓(𝑥2) + 𝑓(𝑥3) + ⋯+ 𝑓(𝑥𝑛)) ⋅ Δ𝑥 



Getting tighter lower and upper bounds 

 

In [Example 3], in our picture showing the region between the graph of 𝑓(𝑥) = 5 +
𝑥
2

10
 and the 𝑥 

axis on the interval [2,12] along with the rectangles for 𝐿5 and 𝑅5, notice that there are sizeable 

spaces between the rectangles and the graph of 𝑓(𝑥). That is why our lower and upper bounds of 

𝐿5 = 94 and 𝑅5 = 122 are so far apart. If we used more rectangles, skinnier rectangles, we could 

eliminate some of that empty space, and our lower and upper bounds would be closer together. We 

will do that in our next example, and we will let a computer do the hard work. 

 

  



[Example 4] We will find better lower and upper bounds for the unknown quantity that is the area 

of the region between the graph of 𝑓(𝑥) = 5 +
𝑥
2

10
 and the 𝑥 axis on the interval [2,12], abbreviated 

𝑆𝐴 for signed area. 

 

We will find these better lower and upper bounds by computing the Left Sum and Right Sum with 𝑛 

rectangles (that is, find the values of 𝐿𝑛 and 𝑅𝑛) with higher and higher values of 𝑛. To compute 

the Left and Right Sums, we will use the Riemann Sum Calculator on the GeoGebra web site 

 

Riemann Sum Calculator on GeoGebra Web Site 

 

We will present the results in a table, with a column for 𝐿𝑛 and a column for 𝑅𝑛. 

 

Remembering that these will always be lower and upper bounds for the unknown value 𝑆𝐴, we will 

include a column for this unknown quantity. (We will show the results from [Example 3] in the first 

row of the table.) 

  



Left and Right Riemann Sums for 𝒇(𝒙) = 𝟓 +
𝒙
𝟐

𝟏𝟎
 on the interval [𝟐, 𝟏𝟐]. 

 

𝑛 𝐿𝑛 𝑆𝐴 (unknown) 𝑅𝑛 

5 𝐿5 = 94 𝑆𝐴 (unknown) 𝑅5 = 122 

10 𝐿10 = 100.5 𝑆𝐴 (unknown) 𝑅10 = 114.5 

100 𝐿100 = 106.635 𝑆𝐴 (unknown) 𝑅100 = 108.035 

1000 𝐿1000 = 107.263 𝑆𝐴 (unknown) 𝑅1000 = 107.403 

10000 𝐿10000 = 107.3263 𝑆𝐴 (unknown) 𝑅10000 = 107.3403 

⋮ ⋮ ⋮ ⋮ 

𝑛 → ∞ 𝐿𝑛 getting closer to around 107.33 𝑆𝐴 (unknown) 𝑅𝑛 getting closer to around 107.33 

 

Based on the table, we can see that unknown (and undefined) value 𝑆𝐴 of the area of the region 

between the graph of 𝑓(𝑥) = 5 +
𝑥
2

10
 and the 𝑥 axis on the interval [2,12], must be around 

𝑆𝐴 ≈ 107.33 

 

End of [Example 4] 



 

Observations:  

There are two very important observations to be made about the results of [Example 4]. 

 

Observation #1 Higher values of 𝒏 allow us to give better and better estimates of 𝑺𝑨. 

 

Notice that  

• Based on the 𝑛 = 10 row of the table, we might guess that 𝑆𝐴 ≈ 108. 

• Based on the 𝑛 = 100 row of the table, we might guess that 𝑆𝐴 ≈ 107. 

• Based on the 𝑛 = 1000 row of the table, we might guess that 𝑆𝐴 ≈ 107.3. 

• Based on the 𝑛 = 10,000 row of the table, we might guess that 𝑆𝐴 ≈ 107.33. 

 

  



Observation #2 The Area Sandwich won’t always occur. 

 

Notice that in every row of the table, 𝐿𝑛 < 𝑆𝐴 < 𝑅𝑛. This is because of the “area sandwich” that 

was illustrated in an earlier figure. 

 

Realize that the inequality 𝐿𝑛 < 𝑆𝐴 < 𝑅𝑛 occurs because the function 𝑓(𝑥) = 5 +
𝑥
2

10
 is increasing 

on the interval [2,12]. 

 

      Green Region Blue Region Red Region 



If, instead, we were dealing with a function 𝑔(𝑥) that was decreasing on an interval [𝑎, 𝑏], we 

would have the reversed inequalities 𝐿𝑛 > 𝑆𝐴 > 𝑅𝑛. 

 

And in general, if we were dealing with a function ℎ(𝑥) that was not strictly increasing or 

decreasing on an interval [𝑎, 𝑏], there might not be an area sandwich at all, and so we won’t be able 

to predict the relative sizes of 𝐿𝑛, 𝑆𝐴, 𝑅𝑛. This might seem discouraging, because we wanted to use 

the Riemann sums to find a value of the unknown signed area, and a key part of that was that the 

Riemann sums provided lower and upper bounds because of the “area sandwich”. But luckily, it 

turns out one does not need the area sandwich: 
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Big Fact: (This is the sort of thing that the mathematician Riemann proved) 

It is a fact from more advanced math that for a function 𝑓(𝑥) that is continuous on a closed 

interval [𝑎, 𝑏], the values of 𝐿𝑛 and 𝑅𝑛 always approach some common number as 𝑛 → ∞. 

 

That is, if 𝑓(𝑥) is continuous on a closed interval [𝑎, 𝑏], 

then lim
𝑛→∞

𝐿𝑛 and lim
𝑛→∞

𝑅𝑛 both exist and lim
𝑛→∞

𝐿𝑛 = lim
𝑛→∞

𝑅𝑛 

 

  



Answering both area questions at once. 

 

The Big Fact gives us a way to define the signed area of the region between the graph of a general 

curvy function 𝑓(𝑥) and the 𝑥 axis on a closed interval [𝑎, 𝑏], and also compute its value. We can 

just define the signed area to be the number that is the limit of the Riemann Sums. That is, define 

 

𝑆𝑖𝑔𝑛𝑒𝑑 𝐴𝑟𝑒𝑎 = 𝑆𝐴 ≝ lim
𝑛→∞

𝐿𝑛 = lim
𝑛→∞

𝑅𝑛 

 

Notice that this answers both of our earlier questions about area: 

 

Two Questions about Area 

(1) How can we define the signed area between the graph of a function 𝑓(𝑥) and the 𝑥 axis 

from 𝑥 = 𝑎 to 𝑥 = 𝑏 for a general function 𝑓(𝑥) whose graph is not made up basic shapes? 

(2) How can we find the value of that signed area? 

 

Because it answers both questions about area, the definition of signed area is incredibly important. 

  



Because the definition is so important, it gets a name and a symbol. 

 

Definition of the Definite Integral and Signed Area 

Words: The definite integral of 𝑓(𝑥) from 𝑥 = 𝑎 to 𝑥 = 𝑏. 

Symbol: 

∫ 𝑓(𝑥)𝑑𝑥

𝑥=𝑏

𝑥=𝑎

 

Alternate Words: The signed area of the region between the graph of 𝑓(𝑥) and the 𝑥 axis on 

the interval [𝑎, 𝑏]. 

Alternate Symbol: 𝑆𝐴 

Usage: 𝑓(𝑥) is continuous on the interval [𝑎, 𝑏]. 

Meaning: the number lim
𝑛→∞

𝐿𝑛 (which is also the value of lim
𝑛→∞

𝑅𝑛) 

That is, 

𝑆𝐴 = ∫ 𝑓(𝑥)𝑑𝑥

𝑥=𝑏

𝑥=𝑎

≝ lim
𝑛→∞

𝐿𝑛 = lim
𝑛→∞

𝑅𝑛 

 



Remark on Symbol:  

We have defined signed area to be the value of a limit. We can focus on the limit of the right sum. 

𝑆𝐴 ≝ lim
𝑛→∞

𝑅𝑛 = lim
𝑛→∞

∑𝑓(𝑥𝑘)Δ𝑥

𝑛

𝑘=1

 

The symbol chosen for the definite integral is meant to signify that the definite integral is a limit. 

• The large S-like symbol is meant to meant to evoke kind of a smoothed out greek letter Sigma 

• The 𝑑𝑥 symbol is meant to evoke kind of a smoothed out Δ𝑥. 

That is, 

𝑆𝐴 = ∫ 𝑓(𝑥)𝑑𝑥

𝑥=𝑏

𝑥=𝑎

≝ lim
𝑛→∞

∑𝑓(𝑥𝑘)Δ𝑥

𝑛

𝑘=1

 

 

Another Big Fact: For graphs made of simple geometric shapes, this definition of signed area 

gives the same answer as doing finding the signed area using geometric area formulas. 

 

  



But this is still a little puzzling: We have only seen one example of this definition in use. In that 

example, we have used a computer to find 𝐿𝑛 and 𝑅𝑛 for particular values of 𝑛, as 𝑛 got larger and 

larger, and we guessed at a rough value for the limit.  

 

Obvious questions: 

Question: Can we do the Riemann Sums 𝐿𝑛 and 𝑅𝑛 analytically, obtaining general formulas 

instead of having to do repeated calculations of 𝑦 values? 

Answer: Yes, for most functions 𝑓(𝑥) it is possible to obtain formulas for the sums that give 𝐿𝑛 

and 𝑅𝑛. However, the math involved in obtaining those formulas is above the level of 

MATH 1350. (Some of the techniques are discussed in the more advanced calculus course 

MATH 2301, but only for some simple cases.)  

 

Question: Can we figure out the limit lim
𝑛→∞

𝐿𝑛 analytically, without having to use a computer to 

find 𝐿𝑛 and 𝑅𝑛 for larger and larger values of 𝑛? 

Answer: Yes. If one had the general formula for the value of a particular Riemann sum 𝐿𝑛 or 

𝑅𝑛, then it would be possible to find the limit lim
𝑛→∞

𝐿𝑛 or lim
𝑛→∞

𝑅𝑛 using our limit laws. 

 



Neither of those answers is satisfying for us in MATH 1350. We would like to be able to find the 

value of definite integrals using analytic techniques at the level of our course.  

 

Is There an Easier Way to Compute Definite Integrals Analytically? 

For a general function 𝑓(𝑥) whose graph is not made up of basic geometric shapes, we want an 

analytic way to find 

𝑆𝑖𝑔𝑛𝑒𝑑 𝐴𝑟𝑒𝑎 = 𝑆𝐴 = ∫ 𝑓(𝑥)𝑑𝑥

𝑥=𝑏

𝑥=𝑎

≝ lim
𝑛→∞

𝐿𝑛 = lim
𝑛→∞

𝑅𝑛 

but the computation of those limits analytically depends on finding formulas for the Riemann 

sums that give 𝐿𝑛 and 𝑅𝑛, something that is beyond the level of this class. 

 

Question: What do we do? Is there another way, an easier way, to find this value? 

𝑆𝑖𝑔𝑛𝑒𝑑 𝐴𝑟𝑒𝑎 = 𝑆𝐴 = ∫ 𝑓(𝑥)𝑑𝑥

𝑥=𝑏

𝑥=𝑎

≝ lim
𝑛→∞

𝐿𝑛 = lim
𝑛→∞

𝑅𝑛 =? 

Answer: We will see the answer to that question in the next video.  


