Subject for this video:

Using Properties of the Definite Integral

Reading:

- General: Section 5.4 The Definite Integral
- More Specifically: Pages 364-365, Examples 3,4

Homework: H77: Using Properties of the Definite Integral 5.4\#33,41,45,49,51,53

Recall the Definition fo the Definite Integral from the previous previous video

Definition of the Definite Integral and Signed Area

Words: The definite integral of $f(x)$ from $x=a$ to $x=b$.
Symbol:

$$
\int_{x=a}^{x=b} f(x) d x
$$

Alternate Words: The signed area of the region between the graph of $f(x)$ and the x axis on the interval $[a, b]$.

Alternate Symbol: SA
Usage: $f(x)$ is continuous on the interval $[a, b]$.
Meaning: the number $\lim _{n \rightarrow \infty} L_{n}$ (which is also the value of $\lim _{n \rightarrow \infty} R_{n}$)
That is,

$$
S A=\int_{x=a}^{x=b} f(x) d x \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} L_{n}=\lim _{n \rightarrow \infty} R_{n}
$$

[Example 1] The graph of $f(x)$ is shown.
(unsigned areas)
The areas of the six shaded regions are:
The area of region A is 6 .
The area of region B is 5 .
The area of region C is 7 .
The area of region D is 3 .
The area of region E is 2 .
The area of region F is 4 .

Find the value of the definite integrals.

$$
\begin{aligned}
& \int f(x) d x=-B+C-D=-5+7-3=-1=\underset{\substack{\text { sigudece }}}{S A} \\
& \int_{x=2}^{5} f(x) d x=C-D+E=7-3+2=6=5 A
\end{aligned}
$$

[Example 2] The graph of $f(x)$ is shown.

Shade the region corresponding to the definite integral and find the value of the integral

$$
\begin{aligned}
& \int_{x=-6}^{x=5} f(x) d x=\frac{4}{2}=\frac{3}{12}+\left.\sum_{2}\right|_{2}+\frac{Q_{2}, 2}{4}{ }^{2} \\
& =\frac{1}{2} \cdot 2 \cdot 4-\frac{1}{2} \cdot 3 \cdot 2+\frac{1}{2} \cdot 2 \cdot 2+\frac{1}{2} \cdot \pi \cdot(2)^{2}+4 \cdot 2 \\
& =4-3+2+2 \pi+8 \\
& =11+2 \pi \text { exact answer } \\
& \approx 17.28 \text { decimal approximation }
\end{aligned}
$$

PROPERTIES Properties of Definite Integrals

1. $\int_{a}^{a} f(x) d x=0$

2. $f(x) d x=-f_{b}^{a} f(x) d x$
3. $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x, k$ a constant
4. $\int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
5. $\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x$
[Example 3] Given the values of the following definite integrals,

$$
\int_{1}^{4} x d x=0.75 \text { and } \int_{1}^{4} x^{2} d x=21 \text { and } \int_{4}^{5} x^{2} d x=\frac{61}{3}
$$

compute the following integrals.
(a) $\int_{x=1}^{x=4}\left(7 x-2 x^{2}\right) d x=7 \int_{x=1}^{x=4} x d x-2 \int_{x=1}^{x=4} x^{2} d x$
$3+4$

$$
=7(0.75)-2(21)
$$

$$
=-57.75
$$

(b)

$$
\begin{aligned}
& \int_{\substack{\text { Property } \\
3}}^{x=5}-4 x^{2} d x=-4 \int_{x=1}^{x=5} x^{2} d x \\
& =-4\left[\int_{x=1}^{x=4} x^{2} d x+\int_{x=4}^{x=5} x^{2} d x\right] \\
& \text { property } 5 \\
& =-4\left[21+\frac{61}{3}\right] \\
& =-4\left[\frac{63}{3}+\frac{61}{3}\right] \\
& =-4\left[\frac{124}{3}\right] \\
& =-\frac{496}{3} \text { exact answer } \\
& \approx-165.33 \text { decimal approximation }
\end{aligned}
$$

(c) $\int_{x=5}^{x=5}$

property 1
(d) $\int_{x=4}^{x=1}\left(7 x-2 x^{2}\right) d x$

