Subject for this video:

Definite Integrals Involving Substitution

Reading:

- General: Section 5.5 The Fundamental Theorem of Calculus
- More Specifically: Pages 372-373, Examples 3, 4

Homework: H79: Definite Integrals Involving Substitution $(5.5 \# 37,39,45)$

The Fundamental Theorem of Calculus (FTC)

(the relationship between definite integrals and antiderivatives)
If $f(x)$ is continuous on the interval $[a, b]$, then

$$
\left.\int_{a}^{b} f(x) d x \underset{F T C}{=}\left(\int f(x) d x\right)\right|_{a} ^{b}
$$

The Substitution Method for finding the indefinite integral

$$
F(x)=\int f(x) d x
$$

where the integrand $f(x)$ involves a nested function.
Step 1 Identify the inner function and call it \boldsymbol{u}. Write the equation inner $(x)=u$ to introduce the single letter u to represent the inner function. Circle the equation.
Step 2 Build the equation $\boldsymbol{d} \boldsymbol{x}=\frac{\mathbf{1}}{\boldsymbol{u}^{\prime}} \boldsymbol{d} \boldsymbol{u}$. To do this, first find u^{\prime}, then use it to build equation $d x=\frac{1}{u^{\prime}} d u$. Circle the equation.
Step 3 Substitute, Cancel, Simplify. In steps (1) and (2) you have two circled equations. Substitute these into the integrand of your indefinite integral. Cancel as much as possible and simplify by using the Constant Multiple Rule. The result should be a new basic integral involving just the variable u. (See Remarks about Step 3 on the next page.)
Step 4 Integrate. Find the new indefinite integral by using the indefinite integral rules. The result should be a function involving just the variable u (with constant of integration $+C$).
Step 5 Substitute Back. Substitute $u=\operatorname{inner}(x)$ into your function from Step (4) The result will be a new function of just the variable x. (Be sure to include the constant of integration $+C$ in your result.) This is the $F(x)$ that we seek.
[Example 1](similar to 5.5\#37) find $\int_{0}^{1} 3 x\left(x^{2}-1\right)^{4} d x$
(Give an exact answer in the form of an integer or a simplified fraction)

$$
\begin{aligned}
& \int_{0}^{1} 3 x\left(x^{2}-1\right)^{4} d x=\left.(\underbrace{}_{\text {FTC }} \frac{\int 3 x\left(x^{2}-1\right)^{4} d x}{})\right|_{0} ^{1} \\
&=\left.\left(\frac{3\left(x^{2}-1\right)^{5}}{10}+D\right)\right|_{0} ^{1} \\
&=\left(\frac{\left.3\left((1)^{2}-1\right)^{5}+D\right)}{10}\right) \\
&-\left(\frac{3\left((6)^{2}-1\right)^{5}}{10}+D\right) \\
&=\frac{3(0)^{5}}{10}-\frac{3(-1)^{5}}{10} \\
&=0-\frac{3(-1)}{10} \\
&=\frac{3}{10}
\end{aligned}
$$

Indefinite Integral Details

Find $F(x)=\int 3 x\left(x^{2}-1\right)^{4} d x$
Step $x^{2}-1=4$
Step $2 u^{\prime}=2 x$ so $d x=\frac{1}{2 x} d u$
Step 3

$$
\begin{aligned}
& \frac{\operatorname{ste} 3}{\int 3 x\left(\left(x^{2}-1\right)\right)^{4}(d x)}=\int 3 x\left((a)^{4}\left(\frac{1}{2 x} d u\right)\right. \\
&=\int \frac{3}{2} u^{4} d u \\
&=\frac{3}{2} \int u^{4} d u \\
& \frac{\text { Step } y}{\frac{3}{2} \int u^{4} d u}=\frac{3}{2}\left(\frac{u^{5}}{5}+c\right)=\frac{3 u^{5}}{10}+D \\
&\left.\frac{\operatorname{stcp} 5}{F(x)}=\int 3 x\left(x^{2}-1\right)^{4} d x\right)=\frac{3\left(x^{2}-1\right)^{5}}{10}+D
\end{aligned}
$$

$$
\text { Step } 5
$$

[Example 2](similar to 5.5\#39) find $\int_{4}^{9} \frac{2}{x-3} d x$
(Give an exact answer and a decimal approximation, rounded to three decimal places.)

$$
\begin{aligned}
& \int_{4}^{9} \frac{2}{x^{2}-3} d x=\left.\left(\int \frac{2}{x-3} d x\right)\right|_{y} ^{9} \quad \rightarrow \begin{array}{l}
\text { Indefinite Integral Details } \\
\text { Find } F(x)=\int \frac{2}{x-3} d x
\end{array} \\
& =\left.(2 \ln (|x-3|)+c)\right|_{4} ^{9} \\
& =(2 \ln (|(9)-3|)+\lambda) \\
& -2 \ln (|(4)-3|)+\varnothing \\
& =2 \ln (161)-2 \ln (111) \\
& =2 \ln (6)-2 \ln (1)^{0} \\
& =2 \ln (6) \quad b \ln (a)=\ln \left(a^{b}\right) \\
& =\ln (36) \text { exact answer } \\
& \approx 3.584 \text { decimal approximation }
\end{aligned}
$$

[Example 3](similar to 5.5\#45) find $\int_{0}^{1} x e^{\left(-x^{2}\right)} d x$
(Give an exact answer and a decimal approximation, rounded to three decimal places.)

$$
\begin{aligned}
& \int_{0}^{1} x e^{\left(-x^{2}\right)} d x=\left.\left(\int x e^{-x^{2}} d x\right)\right|_{0} ^{1} \\
& =\left.\left(\frac{-1}{2} e^{\left(-x^{2}\right)}+c\right)\right|_{0} ^{1} \\
& =\left(-\frac{1}{2} e^{\left.(--1)^{2}\right)}+C\right) \\
& -\left(-\frac{1}{2} e^{\left(-(\theta)^{2}\right)}+\not \subset\right) \\
& =-\frac{1}{2} e^{(-1)}+\frac{1}{2} e^{(0)} \\
& =-\frac{1}{2} \cdot \frac{1}{e}+\frac{1}{2} \cdot 1 \\
& =\frac{1}{2}-\frac{1}{2 e} \\
& =\frac{e-1}{2 e} \text { exact answer } \\
& \text { Stan } 1-x^{2}=4 \\
& \text { Step } 2 \quad u^{2}=\frac{d}{d x}-x^{2}=-2 x \\
& \text { So } d x=\frac{-1}{2 x} d u \\
& \text { Step } 3 x e^{\left(-x^{2}\right)} d(x)=\int x e^{(\omega)}(2 x) \\
& =\int-\frac{1}{2} e^{(u)} d u=-\frac{1}{2} \int e^{(u)} d x \\
& \text { Step } \int^{4}-\frac{1}{2} \int e^{(\omega)} d x=-\frac{1}{2} e^{(\omega)}+c \\
& \frac{\operatorname{stap} 5}{F(x)}=\int x e^{\left(-x^{2}\right)} d x=\frac{-1}{2} e^{\left(-x^{4}\right)}+C \\
& \approx 0.316 \text { decimal approximation }
\end{aligned}
$$

