Subject for this video:

The Average Value of a Function Over an Interval

Reading:

- General: Section 5.5 The Fundamental Theorem of Calculus
- More Specifically: Pages 375-377, Examples 8,9

Homework: H81: The Average Value of a Function Over an Interval (5.5\#49,51,53,93)

Recall the relationship between the Definite Integral and Signed Area.

The Definite Integral and Signed Area
Symbol: $\int_{a}^{b} f(x) d x$
Spoken: The definite integral of $f(x)$ from a to b.
Informal meaning, in terms of the graph: The signed area of the region between the graph of $f(x)$ and the x axis on the interval $[a, b]$.

And recall the relationship between Definite Integrals and Antiderivatives
The Fundamental Theorem of Calculus (FTC)
(the relationship between definite integrals and antiderivatives)
If $f(x)$ is continuous on the interval $[a, b]$, then

$$
\left.\int_{a}^{b} f(x) d x \underset{F T C}{=}\left(\int f(x) d x\right)\right|_{a} ^{b}
$$

And recall the Substitution Method shown on the next page.

The Substitution Method for finding the indefinite integral

$$
F(x)=\int f(x) d x
$$

where the integrand $f(x)$ involves a nested function.
Step 1 Identify the inner function and call it \boldsymbol{u}. Write the equation inner $(x)=u$ to introduce the single letter u to represent the inner function. Circle the equation.
Step 2 Build the equation $\boldsymbol{d} \boldsymbol{x}=\frac{\mathbf{1}}{\boldsymbol{u}^{\prime}} \boldsymbol{d} \boldsymbol{u}$. To do this, first find u^{\prime}, then use it to build equation $d x=\frac{1}{u^{\prime}} d u$. Circle the equation.
Step 3 Substitute, Cancel, Simplify. In steps (1) and (2) you have two circled equations. Substitute these into the integrand of your indefinite integral. Cancel as much as possible and simplify by using the Constant Multiple Rule. The result should be a new basic integral involving just the variable u. (See Remarks about Step 3 on the next page.)
Step 4 Integrate. Find the new indefinite integral by using the indefinite integral rules. The result should be a function involving just the variable u (with constant of integration $+C$).
Step 5 Substitute Back. Substitute $u=\operatorname{inner}(x)$ into your function from Step (4) The result will be a new function of just the variable x. (Be sure to include the constant of integration $+C$ in your result.) This is the $F(x)$ that we seek.

The Average Value of a Function Over an Integral

We start with a geometric question.

Suppose a given function $f(x)$ is continuous on a given closed interval $[a, b]$. There is a number $S A$ that is the signed area between the graph of $f(x)$ and the x axis on the interval $[a, b]$.
Now suppose that we want to put a rectangle on the same interval $[a, b]$ and we want that rectangle to have the same signed area $S A$.

Here is our question: What would the height h of this rectangle need to be?

The answer is straightforward.
For the region, between the graph of $f(x)$ and the x axis, the signed area is $S A=\int_{a}^{b} f(x) d x$
For the rectangle, the signed area is $S A=$ width \cdot height $=(b-a) \cdot h$.
Equating these, we obtain $\int_{a}^{b} f(x) d x=(b-a) \cdot h$
Dividing by $(b-a)$ we arrive at the formula for the height $\boldsymbol{h}: h=\frac{1}{(b-a)} \int_{a}^{b} f(x) d x$
We have answered our geometric question. The answer, the height h, is given a name.

Definition of the Average Value of a Function Over an Interval

words: The Average Value of $f(x)$ over the interval $[a, b]$.
Usage: The function $f(x)$ is continuous on the interval $[a, b]$.
Meaning: The number h given by this formula: $h=\frac{1}{(b-a)} \int_{a}^{b} f(x) d x$
Graphical Interpretation: The number h is the height of a rectangle sitting on the interval $[a, b]$ that would enclose a signed area that is equal to the signed area of the graph of f on the same interval.

We will consider three examples about computing the average value of a function on an interval.
[Example 1] (a) Find the average value of $g(x)=4 x+3 x^{2}$ on the interval $[-3,2]$.

Solution:

We need to find the quantity

$$
h=\frac{1}{(2-(-3))} \int_{-3}^{2} 4 x+3 x^{2} d x
$$

The calculation follows on the next page.

Calculation of \boldsymbol{h} :

$$
\begin{aligned}
h & =\frac{1}{(2-(-3))} \int_{-3}^{2} 4 x+3 x^{2} d x \\
& =\left.\frac{1}{\overline{=}} \frac{1}{5}\left(\int^{\int 4 x+3 x^{2} d x}\right)\right|_{-3} ^{2} \\
& =\left.\frac{1}{5}\left(2 x^{2}+x^{3}+C\right)\right|_{-3} ^{2} \\
& =\frac{1}{5}\left(\left(2(2)^{2}+(2)^{3}+\not \subset\right)-\left(2(-3)^{2}+(-3)^{3}+C\right)\right) \\
& =\frac{1}{5}((16)-(-9)) \\
& =\frac{1}{5}(25) \\
& =4 \int x d x+3 \int x^{2} d x \\
& =5\left(\frac{x^{(1)+1}}{1+1}\right)+3\left(\frac{x^{(2)+1}}{2+1}\right)+C
\end{aligned}
$$

(b) Illustrate the result using a graph of $g(x)$.

[Example 2] (a) Find the average value of $f(x)=5 \sqrt{x}$ on the interval [1,16].

Solution:

We need to find the quantity

$$
h=\frac{1}{(16-1)} \int_{1}^{16} 5 \sqrt{x} d x
$$

The calculation follows on the next page.

Calculation of \boldsymbol{h}

$$
\begin{aligned}
& h=\frac{1}{(16-1)} \int_{1}^{16} 5 \sqrt{x} d x \\
& =\frac{1}{3} \int_{1}^{16} x^{\frac{1}{2}} d x \\
& \left.\underset{F T C}{=} \frac{1}{3}(\underbrace{\int x^{\frac{1}{2}} d x})\right|_{1} ^{16} \\
& =\left.\frac{1}{3}\left(\frac{2 x^{\frac{3}{2}}}{3}+C\right)\right|_{1} ^{16} \\
& =\frac{1}{3}\left(\left(\frac{2(16)^{\frac{3}{2}}}{3}+\ell\right)-\left(\left(\frac{2(1)^{\frac{3}{2}}}{3}+\varnothing\right)\right)\right) \\
& =\frac{1}{3}\left(\left(\frac{2 \cdot 64}{3}\right)-\left(\frac{2 \cdot 1}{3}\right)\right) \quad\left(a^{b \cdot c}=\left(a^{b}\right)^{c}\right. \\
& =\cdots=14 \\
& \text { Indefinite Integral Details: } \\
& F(x)=\int\left(\frac{1}{2}\right) d x x^{n=\frac{1}{2}} \\
& =\frac{x^{\left(\frac{1}{2}\right)}+1}{\frac{1}{2}+1}+C \\
& \begin{array}{l}
=\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+C \\
=\frac{2 x^{\frac{3}{2}}}{3}+C
\end{array}
\end{aligned}
$$

Rational Power Details $(16)^{\frac{3}{2}}=(16)^{\frac{1}{2} \cdot 3}=\left((16)^{\frac{1}{2}}\right)^{3}=(4)^{3}=64$.
(b) Illustrate the result using a graph of $f(x)$.

[Example 3] (Similar to 5.5\#93) A drug is administered to a patient by a pill. The drug concentration in the bloodstream is described by the function

$$
C(t)=\frac{0.6 t}{t^{2}+9}, \text { for } 0 \leq t \leq 24
$$

where t is the time in hours after the pill is taken and $C(t)$ is the drug concentration in the bloodstream (in milligrams/liter) at time t.
(a) Find the average drug concentration in the bloodstream over the first 6 hours.

Give an exact answer and a decimal approximation.

Solution:

We need to find the quantity

$$
h=\frac{1}{(6-0)} \int_{0}^{6} \frac{0.6 t}{t^{2}+9} d t=\frac{0.6}{6} \int_{0}^{6} \frac{t}{t^{2}+9} d t=\frac{1}{10} \int_{0}^{6} \frac{t}{t^{2}+9} d t
$$

The calculation continues on the next page.

Calculation of \boldsymbol{h} :

$$
\begin{aligned}
h & =\frac{1}{10} \int_{0}^{6} \frac{t}{t^{2}+9} d t \\
& =\left.\frac{1}{10}(\underbrace{\int \frac{t}{t^{2}+9}} d t)\right|_{0} ^{6} \\
& =\left.\frac{1}{10}\left(\frac{1}{2} \ln \left(\left|t^{2}+9\right|\right)+t_{K}\right)\right|_{0} ^{6} \\
& =\frac{1}{10}\left(\left(\frac{1}{2} \ln \left(\left|(6)^{2}+9\right|\right)+C\right)-\left(\frac{1}{2} \ln \left(\left|(0)^{2}+9\right|\right)+C\right)\right) \\
& =\frac{1}{10} \cdot \frac{1}{2}(\ln (|45|)-(\ln (|9|))) \\
& =\frac{1}{20}(\ln (45)-(\ln (9))) \\
& =\frac{1}{20} \ln \left(\frac{45}{9}\right) \quad \ln (a)-\ln (b)=\ln \left(\frac{a}{b}\right) \\
& =\frac{1}{20} \ln (5) \quad \text { exact an ans were } \\
& \approx 0.0805 \quad \text { decimal approximation }
\end{aligned}
$$

Indefinite Integral Details (Using Substitution Method):

Original Integral: $F(t)=\int \frac{t}{t^{2}+9} d t$
Step $1 \longdiv { t ^ { 2 } + 9 = u }$
Step 2: $d t=\frac{1}{2 t} d u$ substatute cancel simplify
Step 3: $\int \frac{t}{t^{2}+9} d t=\int \frac{1}{a} \frac{1}{2 t} d u=\int \frac{1}{2 u} d u=\frac{1}{2} \int \frac{1}{u} d u$
Step 4: $\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln (|u|)+C$

Step 5: $F(t)=\frac{1}{2} \ln \left(\left|t^{2}+9\right|\right)+C$
(b) Illustrate the result using a graph of $C(t)$.

Solution:

