Subject for this video:

The Area Between a Curve and the \boldsymbol{x} Axis

Reading:

- General: Section 6.1 The Area Between Curves
- More Specifically: Pages 388-389 Examples 1,2

Homework: H82: Area between a curve and the x axis $(6.1 \# 9,11,17,21,23,25,57)$

Recall the Concept of Unsigned and Signed Area, first introduced in the video for H76.

We discussed two kinds of area created by the graph of a function $f(x)$ and the \boldsymbol{x} axis from $x=a$ to $x=b$.

The two kinds of area were

- Unsigned Area $(U S A)=(1)+(2)+(3)$
- Signed Area $(S A)=(1)-(2)+(3)$ (Regions under the x axis get a negative sign.)

In Chapter 5 (Sections 5.4 and 5.5), we were primarily interested in signed area. We saw the development of the definite integral (defined as the limit of Riemann sums).
The Definite Integral refers to signed area: $S A=\int_{a}^{b} f(x) d x$

But now, in Chapter 6, we are interested in finding what is referred to as area between curves, which is an unsigned area. How are we to find unsigned area if our only tool for finding area is the Definite Integral, which finds signed area?

The key is to first define what I will call simple regions.

Definition of Simple Regions If $\operatorname{top}(x)$ and $\operatorname{bottom}(x)$ are continuous functions and $\operatorname{bottom}(x) \leq \operatorname{top}(x)$ on the interval $[a, b]$, then the region bounded by the four curves $\begin{aligned} & y=\operatorname{top}(x) \\ & y=\operatorname{bottom}(x) \\ & x=a \\ & x=b \end{aligned}$	
	$x=a \quad x=b$

The following theorem explains how one can use the Definite Integral to find the unsigned area between curves for simple regions.

Theorem about the Area between Curves for a Simple Region.

If $\operatorname{top}(x)$ and $\operatorname{bottom}(x)$ are continuous and $\operatorname{bottom}(x) \leq \operatorname{top}(x)$ on the interval $[a, b]$, then the region bounded by the four curves

$$
\begin{aligned}
& y=\operatorname{top}(x) \\
& y=\operatorname{bottom}(x) \\
& x=a \\
& x=b
\end{aligned}
$$

is what we have defined to be called a simple region.
The Area Between Curves (unsigned area) for this region is given by the definite integral

$$
U S A=\int_{a}^{b} \operatorname{top}(x)-\operatorname{bottom}(x) d x
$$

For the rest of this video, we will study examples involving computing the Area Between Curves.
[Example 1](Similar to 6.1\#9,11) Function $f(x)$ has graph shown below.

(a) Set up a definite integral that represents the area between the graph of $f(x)$ and the x axis from a to b.

$$
\begin{array}{ll}
\operatorname{top}(x)=f(x) & \text { unsigned area } \\
\operatorname{botom}(x)=0 & \text { USA }=\int_{a}^{b} \operatorname{top}(x)-b_{r} \operatorname{ttan}(x) d x=\int_{a}^{b} f(x)-0 d x=\left(\int_{a}^{b} f(x) d x\right.
\end{array}
$$

(b) Set up a definite integral that represents the area between the graph of $f(x)$ and the x axis from b to $c . \operatorname{top}(x)=0, b \cdot \operatorname{tom}(x)=f(x)$

$$
\begin{aligned}
\text { USA } & =\int_{b}^{c} \operatorname{top}(x)-\operatorname{botom}(x) d x=\int_{b}^{c} 0-f(x) d x=\int_{b}^{c}-f(x) d x \\
& =-\int_{b}^{c} f(x) d x
\end{aligned}
$$

this definite integral gives the signed area, which is negative this will be the unsigned area, which is positive
(c) Set up a definite integral that represents the area between the graph of $f(x)$ and the x axis from a to d.

$$
u>A=\int_{a}^{b} f(x) d x-\int_{b}^{c} f(x) d x+\int_{c}^{d} f(x) d x
$$

[Example 2](Similar to 6.1\#17)
Find the area bounded by the graphs of $y=x^{2}-9$ and $y=0$ over the interval $-2 \leq x \leq 1$ graph $y=x^{2}$ first

$y=x^{2}-9$ will be that graph moved down 9 units

$$
\begin{aligned}
\text { USA } & =\int_{-2}^{1} \operatorname{tap}(x)-b_{0} \tan (x) d x=\int_{-2}^{1} 0-\left(x^{2}-7\right) d x= \\
& =\int_{-2}^{1}-x^{2}+9 d x \\
& \left.=\left.\left(\int_{\text {FTC }}-x^{2}+9 d x\right)\right|_{-2} ^{1} \quad \int_{-2}-x^{2}+9 d x=-\frac{x^{3}}{3}+9 x+C\right) \\
& =\left.\left(-\frac{x^{3}}{3}+9 x+C\right)\right|_{-2} ^{1} \quad\left(-\frac{(1)^{3}}{3}+9(1)+\ell\right)-\left(\frac{-(-2)^{3}}{3}+9(-2)+C\right. \\
& =\left(-\frac{1}{3}+9\right)-\left(-\frac{(-8)}{3}-18\right) \\
& =-\frac{1}{3}+9-\frac{8}{3}+18 \\
& =-\frac{9}{3}+27 \\
& =24
\end{aligned}
$$

[Example 3](Similar to 6.1\#21)
Find the area bounded by the graphs of $y=x^{3}+7$ and $y=0$ over the interval $-4 \leq x \leq 2$ Give an exact answer.
Graph $y=x^{3}$

$$
\begin{aligned}
& \text { ea bounded by the graphs of } y=x^{3}+7 \text { end } y=0 \text { over the interval }-4 \leq x \leq \\
& \text { act answer. } \\
& y=x^{3}
\end{aligned}
$$

$$
\begin{aligned}
\text { USA } & =\int_{-4}^{-2} 0-\left(x^{3}+7\right) d x \\
& =\int_{-4}^{-2}-x^{3}-7 d x \\
& =\left.\left(\underline{\left(-x^{3}-7 d x\right.}\right)\right|_{-4} ^{-2} \\
& =\left.\left(\frac{-x^{4}}{4}-7 x+c\right)\right|_{-4} ^{-2} \\
& =\left(-\frac{(-2)^{4}}{4}-7(-2)+\varnothing\right)-\left(-\frac{(-4)^{4}}{4}-7(-4)+C\right) \\
& =\left(-\frac{16}{4}+14\right)-\left(-\frac{256}{4}+28\right) \\
& =-\frac{4}{4}+14-(-64+28) \\
& =10-(-36) \\
& =46
\end{aligned}
$$

[Example 4](Similar to 6.1\#23)
Find the area bounded by the graphs of $y=-e^{(-x)}$ and $y=0$ over the interval $-1 \leq x \leq 1$ Give an exact answer and a decimal approximation, rounded to three decimal places.

$$
y=e^{(x)}
$$

$y=e^{(-x)}$ flip across the y axis

$$
\begin{aligned}
& U S A=\int_{-1}^{1} \operatorname{top}(x)-b_{0} \operatorname{ton}(x) \\
& =\int_{-1}^{1} 0-\left(-e^{(-x)}\right) d x \\
& =\int_{-1}^{1} e^{(-x)} d x \\
& \frac{d}{d x} e^{(k x)}=k e^{(k x)} \\
& \int e^{(k x \lambda)} d x=\frac{e^{(k x)}}{k}+C \\
& F=\left.\left(\int e^{(-x)} d x\right)\right|_{-1} ^{1} \\
& =\left.\left(-e^{(-x)}+c\right)\right|_{-1} ^{1} \\
& =\left(-e^{(-(1))}+\kappa\right)-\left(-e^{(-(-1))}+\varepsilon\right) \\
& =-e^{-1}+e^{1} \\
& =-\frac{1}{e}+e=e-\frac{1}{e} \approx 2.350
\end{aligned}
$$

exact answer decimal apporsimaxion-
[Example 4](Similar to 6.1\#25)
Find the area bounded by the graphs of $y=-\frac{5}{x}$ and $y=0$ over the interval $-1 \leq x \leq e$ Give an exact answer and a decimal approximation, rounded to three decimal places.

$$
y=\frac{1}{x} \quad \left\lvert\,(\underbrace{(1,1)\left(e, \frac{1}{e}\right)}\right.
$$

$$
y=\frac{-5}{x}
$$

$$
\begin{aligned}
& \text { USA }=\int_{1}^{e} \operatorname{top}(x)-b_{0} \operatorname{tom}(x) d x \\
& =\int_{1}^{e} 0-\left(\frac{-5}{x}\right) d x \\
& =\int_{1}^{e} \frac{5}{x} d x \\
& \text { Fic }\left.\left(\int \frac{5}{x} d x\right)\right|_{1} ^{e} \\
& \text { Indetinite Integral Diaki, is } \\
& =\left.(5 \ln (|x|)+c)\right|_{1} ^{e} \\
& =(5 \ln (|e|)+\ell)-(5 \ln (111)+\zeta) \\
& =5 \ln (e)^{\prime \prime}-5 \ln t \pi^{\circ} \\
& =5
\end{aligned}
$$

[Example 5](Similar to 6.1\#27)
Find the area bounded by the graphs of $y=\sqrt{49-x^{2}}$ and $y=0$ over the interval $0 \leq x \leq 7$
Give an exact answer and a decimal approximation, rounded to three decimal places.
notice $x^{2}+y^{2}=49$ is a circle, $r=7$, centered at $(0,0)$

$$
\begin{aligned}
& y^{2}=49-x^{2} \\
& y= \pm \sqrt{49-x^{2}}
\end{aligned}
$$

So $y=\sqrt{49-x^{2}}$ will be the top half of the circle

$$
\text { usA }=\int_{0}^{1} \sqrt{49-x^{2}} d x=? ?
$$

We can use geometry! USA $=\frac{1}{4} \pi r^{2}=\frac{1}{4} \pi(7)^{2}=\frac{1}{4} \pi \cdot 49$

$$
=\frac{49 \pi}{\text { exact }} \approx 38.485
$$

