Subject for this video:

The Area Between Curves

Reading:

- General: Section 6.1 The Area Between Curves
- More Specifically: Pages 390-391 Examples 3,4,5

Homework: H83: Area between two curves

- Barnett 6.1\#37,53,55
- Briggs \& Cochran 6.2\#9,42,46

Recall the theorem introduced in the previous video.

Theorem about the Area between Curves for a Simple Region.

If $\operatorname{top}(x)$ and $\operatorname{bottom}(x)$ are continuous functions and $\operatorname{bottom}(x) \leq \operatorname{top}(x)$ on the interval $[a, b]$, then the region bounded by the four curves

$$
\begin{aligned}
& y=\operatorname{top}(x) \\
& y=\operatorname{bottom}(x) \\
& x=a \\
& x=b
\end{aligned}
$$

is what we in this course will call a simple region.

The Area Between Curves (unsigned area) for this region is given by the definite integral

$$
U S A=\int_{a}^{b} \operatorname{top}(x)-\operatorname{bottom}(x) d x
$$

In the previous video, we applied this theorem to find the area between curves in examples where one of the curves was the x axis. That familiarized us with the method of setting up the integrals while keeping the calculations simple.

In this video, we will study examples where neither of the curves involved is the x axis. That will make the calculations harder.
[Example 1](Similar to 6.1\#37) Set up a definite integral calculation that computes the area between the graphs of $f(x)$ and $g(x)$ for $a \leq x \leq d$.

[Example 2](similar to 6.1\#53) Find the area bounded by the graphs of the equations $y=x^{2}+2$ and $y=2 x-3$ over the interval $-2 \leq x \leq 4$. Give an exact, simplified answer.
Must graph the equations in order to understand the region

(2,

$$
U S A=\int_{-2}^{4}\left(x^{2}+2\right)-(2 x-3) d x
$$

Simplify integrand before int grating!

$$
\begin{aligned}
& =\int_{-2}^{4} \sqrt{x^{2}-2 x+5} d x \\
& =\left.\left(\int x^{2}-2 x+5 d x\right)\right|_{-2} ^{4} \\
& \rightarrow \text { Indctivite Integral Detri,ls } \\
& \text { rewrite the integrand } \\
& f(x)=x^{2}-2 x+5 \\
& =x^{2}-2 \cdot x^{1}+5 \cdot x^{0} \\
& =\left.\left(\frac{x^{3}}{3}-x^{2}+5 x+C\right)\right|_{-2} ^{4} \\
& =\left(\frac{(4)^{3}}{3}-(4)^{2}+5(4)+4\right)-\left(\frac{(-2)^{3}}{3}-(-2)^{2}+5(-2)+4\right) \\
& F(x)=\int x^{2}-2 x^{\prime}+5 x^{0} d x \\
& =\frac{x^{2+1}}{2+1}-\frac{2 x^{1+1}}{1+1}+\frac{5 x^{0+1}}{0+1}+C \\
& =\frac{x^{3}}{3}-x^{2}+5 x+c \\
& =\left(\frac{64}{3}-16+20\right)-\left(\frac{-8}{3}-4-10\right) \\
& =\frac{64}{3}+4+\frac{8}{3}+14=\frac{72}{3}+18=24+18=42
\end{aligned}
$$

[Example 3](similar to 6.1\#55) Find area bounded by the graphs of the equations $y=e^{(0.5 x)}$ and $y=-\frac{3}{x}$ over the inter al $2 \leq x \leq 4$.
Give an exact, simplified answer and a decimal approximation rounded to 3 decimal places.

$$
y=e^{(.5 x)}
$$

$$
y=\frac{1}{x}
$$

$$
y=\frac{3}{x}
$$

$$
y=-\frac{3}{x}
$$

$$
=\begin{aligned}
& 2 e^{2}-2 e+3 \ln (2) \\
& \text { exact answer }
\end{aligned} \approx \begin{aligned}
& 11.421 \\
& \text { decimal }
\end{aligned}
$$

decimal approximation

$$
\begin{aligned}
& \text { USA }=\int_{2}^{4} \underbrace{e^{(0.5 x)}-\left(-\frac{3}{x}\right)}_{\text {Simplify before index mutiny }} d x \\
& =\int_{0}^{4} e^{(0,5 x)}+\frac{3}{x} d x \\
& ==\left.(\underbrace{\int e^{(0.5 x)}+\frac{3}{x} d x})\right|_{2} ^{4} \\
& =\left.\left(2 e^{(0,5 x)}+3 \ln (|x|)+c\right)\right|_{2} ^{4} \\
& =\left(2 e^{(0.5(4))}+3 \ln (\mid 41)+C\right)(0.5(2)) \\
& -\left(2 e^{(0,5(2))}+3 \ln (121)+c\right) \\
& =\left(2 e^{2}+3 \ln (4)\right)-\left(2 e^{1}+3 \ln (2)\right) \\
& \begin{array}{l}
=\left(2 e^{2}+3 \ln (4)\right)-\left(2 e^{1}+3 \ln (2)\right) \\
=2 e^{2}-2 e+3 \ln (4)-3 \ln (2)=2 e^{2}-2 e+3 \ln \left(\frac{4}{2}\right)
\end{array} \\
& =2 e^{2}-2 e+3 \ln (2) \approx 11.421 \\
& \text { Indefinite Integral Details } \\
& F(x)=\int e^{(0,5 x)}+\frac{3}{x} d x \\
& =\int e^{(0.5 x)} d x+3 \int \frac{1}{x} d x \\
& =\frac{e^{(0,5 x)}}{0,5}+3 \ln (x)+c \\
& \left.=2 e^{(0,5 x)}+3 \ln ((x))+c\right)
\end{aligned}
$$

[Example 4](similar to Briggs \& Cochran 6.2\#9)
Find the area bounded by the graphs of the equations $y=x^{2}$ and $y=x+6$.
Give an exact, simplified answer and a decimal approximation rounded to 3 decimal places. Graph the equations to determine the region

$$
\text { USA } A=\int_{-2}^{3}(x+6)-x^{2} d x=\int_{-2}^{3}-x^{2}+x+6 d x
$$

$$
\begin{aligned}
& U S A=\int_{-2}^{3}-x^{2}+x+6 d x \\
& =\left.\left(\int-x^{2}+x+6 d x\right)\right|_{-2} ^{3} \\
& \text { Indefinite Integral Details } \\
& \text { Rewrite the integrand } \\
& f(x)=-x^{2}+x^{1}+6 \cdot x^{0} \\
& \begin{array}{l}
\text { Integrate } \\
F(x)=\int_{3}^{2}-x^{2}+x^{\prime}+6 X^{0} d x
\end{array} \\
& =\left.\left(-\frac{x^{3}}{3}+\frac{x^{2}}{2}+6 x+c\right)\right|_{-2} ^{3} \\
& =\left(-\frac{(3)^{3}}{3}+\frac{(3)^{2}}{2}+6(3)+\not \subset\right)-\left(\frac{-(-2)^{3}}{3}+\frac{(-2)^{2}}{2}+6(-2)+2\right) \\
& =\left(\frac{-27}{3}+\frac{9}{2}+18\right)-\left(\frac{-(-8)}{3}+\frac{4}{2}-12\right) \\
& =\left(-9+\frac{9}{2}+18\right)-\left(\frac{8}{3}+2-12\right)=\left(9+\frac{9}{2}\right)-\left(\frac{8}{3}-10\right) \\
& =19+\frac{9}{2}-\frac{8}{3}=19+\frac{27}{6}-\frac{16}{6}=19+\frac{11}{6}=\frac{114}{6}+\frac{11}{6} \\
& =\frac{125}{6} \approx 20.833
\end{aligned}
$$

[Example 5](similar to Briggs \& Cochran 6.2\#42)
Find the area bounded by the graphs of the equations $y=x^{2}$ and $y=8 \sqrt{x}$.
Give an exact, simplified answer and a decimal approximation rounded to 3 decimal places.

$$
\text { USA } A=\int_{0}^{4} 8 \sqrt{x}-x^{2} d x
$$

$$
\begin{aligned}
\text { USA } & =\int_{0}^{4} 8 \sqrt{x}-x^{2} d x \\
& =\left.(\underbrace{\int T C} 8 \sqrt{x}-x^{2} d x)\right|_{0} ^{4}
\end{aligned}
$$

Indefinite Integral betads

$$
=\left(\frac{16}{3} x^{\frac{3}{2}}-\frac{x^{3}}{3}+c\right)_{0}^{4}
$$

$$
=\left(\frac{16(4)^{3 / 2}}{3} \frac{-(4)^{3}}{3}+C\right)-\left(\frac{16(0)}{3}-\frac{(00)^{3}}{3}+\varnothing\right)
$$

$$
=\frac{\left.16(4)^{1 / 2}\right)^{3}}{3}-\frac{64}{3}=\frac{16(2)^{3}}{3}-\frac{64}{3}
$$

$$
=\frac{16(8)}{3}-\frac{64}{3}=\frac{128}{3}-\frac{64}{3}
$$

$$
=\frac{64}{3} \text { exact answer }
$$

$$
\begin{aligned}
& \text { rewrite the integrant } \\
& f(x)=8 \sqrt{x}-x^{2}=8 x^{\frac{1}{2}}-x^{2} \\
& \text { Integrate } \\
& \begin{aligned}
F(x) & =\int 8 x^{\frac{1}{2}}-x^{2} d x \\
& =\frac{8 x^{\frac{1}{2}+1}}{\frac{1}{2}+1}-\frac{x^{2+1}}{2+1}+C \\
& =\frac{8 x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{x^{3}}{3}+C \\
& =8\left(\frac{2}{3}\right) x^{3 / 2}-\frac{x^{3}}{3}+C
\end{aligned}
\end{aligned}
$$

$$
\approx 21.333 \text { decimal approximation. }
$$

[Example 6](similar to Briggs \& Cochran 6.2\#46)
Find the area bounded by the graphs of the equations $y=x^{3}$ and $y \Rightarrow 8 x . y=4 x$ Give an exact, simplified answer.

we need one definite integral for each simple region

$$
\text { USA }=\int_{-2}^{0} x^{3}-4 x d x+\int_{0}^{2} 4 x-x^{3} d x
$$

$$
\begin{aligned}
U S A & =\int_{-2}^{0} x^{3}-4 x d x+\int_{0}^{2} 4 x-x^{3} d x \\
& =\left.\left(\int x^{3}-4 x d x\right)\right|_{-2} ^{0}+\left.\left(\int 4 x-x^{3} d x\right)\right|_{0} ^{2} \\
& =\left.\left(\frac{x^{4}}{4}-2 x^{2}+c\right)\right|_{-2} ^{0}+\left.\left(2 x^{2}-\frac{x^{4}}{4}+D\right)\right|_{0} ^{2} \\
& =\left[\left(\frac{(0)^{4}}{4}-2(0)^{2}+(4)-\left(\frac{\left.\left.(-2)^{4}-2(-2)^{2}+c\right)\right]+\left[\left(2\left(2^{2}\right)-\left(\frac{(2)^{4}}{4}+2\right)\right)-\left(2(0)^{2}-\frac{(0)^{4}}{4}+x\right)\right]}{}\right.\right.\right. \\
& =-\left(\frac{16}{4}-2(4)\right)+\left(2(4)-\frac{16}{4}\right) \\
& =-4+8+8-4 \\
& =8
\end{aligned}
$$

