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The Homogeneity of Covariances Assumption in MANOVA: Differential Impact of 

Heterogenous Variances and Covariances 

 

Objectives 

Many applied researchers have learned that MANOVA is not robust to violations of 

heterogeneous covariance matrices, and that, when Box’s M is statistically significant, indicating 

the probable violation of homogeneity, they should use Pillai’s Trace (V) as their multivariate 

statistic (e.g., Meyers, Gamst, & Guarino, 2017). There have been few studies since Olson (1974, 

1976) and the issue remains confusing. While this Monte Carlo experiment investigates the 

robustness of multivariate statistics, its focus in on the diagnosis of the assumption of 

homogeneity of covariance matrices using Box’s M and the potential to use Levene’s test to 

examine homogeneity of variances. 

 

Perspectives 

Olson (1976) reported that “The Pillai-Bartlett V test is recommended for general use. It 

is the most robust of the invariant tests and is sufficiently powerful…” (p. 583). However, he 

used some interesting examples to make his point that V should be preferred to Wilks’ Lambda 

(W), Hotelling’s Trace (T), or Roy’s Largest Root (R): 

Consider an experiment with three groups of five subjects [emphasis added] each and a 

nominal significance level of .05. If there are p = 3 dependent variables and one group is 

sampled from a population with standard deviations three times those for the other 
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groups, the actual Type I error rates for the four statistics are .09 for V, .13 for W, .15 for 

T, and .17 for R. (p. 583). 

 

 Stevens (1979) was particularly bothered by five subjects per group in multivariate 

examples. He responded with his own work that showed that V is only more robust in extreme 

conditions (e.g., 36-to-1 variance ratio, small samples). Stevens’s tables did confirm that 

generally there is a slight robustness advantage for V over T and W. Stevens ultimately concluded 

that although “…V will generally be slightly more robust…” (p. 359), W and T may have a 

power advantage. Olson (1979) further responded and, ultimately, many textbooks over the years 

have simply stated that V should be used when Box’s M test is statistically significant, implying 

violation of homogeneity of covariance matrices. For whatever reason, this issue has not been 

studied much over the decades, but there have been a few studies (e.g., Beasley & Sheehan, 

1994; Finch & French, 2013).  

 

Methods and Data Source 

This study used Monte Carlo methods in R to generate and analyze data for many 

conditions. We generated at least 10,000 samples across three, four, and five groups. We varied 

variance-covariance matrices across groups as well as patterns of variances and covariances 

across groups. That is, we created different patterns of four types of matrices: all groups equal, 

groups with equal variances but different covariances, groups with equal covariances but 

different variances, and groups with both different variances and covariances. All group mean 

vectors were set equal in this robustness study of Type I error rates. All data were generated from 
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a multivariate normal distribution. In each condition, rejections of multivariate tests were 

counted for calculation of Type I error or statistical power rates (e.g., rejections of the omnibus 

tests or the assumptions tests). 

For initial simulations reported here, we ran samples sizes across groups of nearly 50. 

That is, for balanced group sizes we used N = 50 for all groups. For other conditions, we set 

roughly half of the group sizes above 50 and roughly half below (see Table 1 for an example). 

Also, for initial simulations, variances and covariances varied in multiple ways across groups. 

Table 2 provides an example of one of the more extreme covariance matrices across groups for 

both three and four groups. When combining number of groups, sample sizes, covariance 

matrices, and patterns of covariances, we simulated 10,000 samples each within over 500 

conditions. 
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Table 1. Examples of Sample Sizes for initial simulations and some of the extreme examples 
of heterogeneous Variance-Covariance matrices (variances on diagonal, covariances off-
diagonal) based on 4 groups 
 
Sample Sizes Covariance Matrices 

      Group1 Group2 Group3 Group4 
 [1,]     50     50     50     50 
 [2,]     54     52     50     48 
 [3,]     58     54     50     46 
 [4,]     62     56     50     44 
 [5,]     66     58     50     42 
 [6,]     70     60     50     40 
 [7,]     74     62     50     38 
 [8,]     78     64     50     36 
 [9,]     82     66     50     34 
[10,]     86     68     50     32 

$Group1 
     [,1] [,2] [,3] [,4] 
[1,]  1.0  0.3  0.3  0.3 
[2,]  0.3  1.0  0.3  0.3 
[3,]  0.3  0.3  1.0  0.3 
[4,]  0.3  0.3  0.3  1.0 
 
$Group2 
     [,1] [,2] [,3] [,4] 
[1,]  3.0  0.5  0.5  0.5 
[2,]  0.5  3.0  0.5  0.5 
[3,]  0.5  0.5  3.0  0.5 
[4,]  0.5  0.5  0.5  3.0 
 
$Group3 
     [,1] [,2] [,3] [,4] 
[1,]  5.0  0.7  0.7  0.7 
[2,]  0.7  5.0  0.7  0.7 
[3,]  0.7  0.7  5.0  0.7 
[4,]  0.7  0.7  0.7  5.0 
 
$Group4 
     [,1] [,2] [,3] [,4] 
[1,]  7.0  0.9  0.9  0.9 
[2,]  0.9  7.0  0.9  0.9 
[3,]  0.9  0.9  7.0  0.9 
[4,]  0.9  0.9  0.9  7.0 

 

 

In each sample, we calculated the omnibus ANOVA using Pillai’s Trace (V), Wilks’ 

Lambda (W), Hotelling’s Trace (T), and Roy’s Largest Root (R). We tested homogeneity of 

covariance matrices using the commonly used Box’s M test, but we also included Levene’s test 

and a Bonferroni adjustment to Levene’s test (alpha divided by the number of dependent 

variables) for homogeneity of variances. A sample was determined to have heterogeneous 

variances if any of the dependent variables had statistically significant Levene’s tests using 

alpha=.05, and then similarly using the Bonferroni-adjusted alpha based on the number of 
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variables. We used both R built-in functions and several packages (e.g., biotools, car, MASS, 

Matrix).  

 

Results 

We use example results from four group simulations for the tables below, but the patterns 

of results were essentially consistent with three and five groups and different numbers of 

variables. We provide illustrative results in this paper for the main conclusions. 

Table 3 shows that all four tests studied (V, W, T, and R) maintained Type I error when 

the assumption of homogeneity of covariance matrices was true in the population. Table 3 also 

shows that Box’s test at alpha=.05 (pBOX), at alpha=.01 (BOX_01), and at alpha=.001 

(BOX001) maintained robust Type I error rates. Further, it is apparent that Levene’s test is 

inflated if we perform the tests for all dependent variables at alpha=.05 (ANYLEV) and reject 

homogeneity if any significant Levene’s test exists. However, using the Bonferroni correction 

(based on the number of dependent variables) for multiple tests in the same way maintains the 

family-wise Type I error rate below alpha=.05 (ANYBON). We base these robustness 

conclusions on the criterion which considered Type I error rates for nominal alpha=.05 robust if 

they fell between .04-.06, slightly less conservative than Bradley’s (1979) stringent criterion of 

.045-.055. In all tables below, the N column corresponds to the sample sizes in Table 1. 
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Table 3. Type I error rates for equal covariance matrices conditions across four groups 

 

 

 Table 4 shows that as covariance matrices deviated across groups (both variances and 

covariances unequal) and sample sizes become more unbalanced, the Type I error rates tended to 

increase. In these conditions, variances and covariances were inversely related to sample sizes 

(i.e., larger variances and covariances occurring with smaller sample sizes). Table 4 also shows 

that all alpha-level versions of Box’s M and both alpha-level versions of Levene’s test are very 

powerful when both the variances and covariances differ across groups. 

  

Table 4. Type I error rates for unequal covariance matrices conditions (both variance and 

covariances unequal) across four groups 
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Table 5 shows that when covariances are equal across groups but variances differ, the 

Type I error rates become. All versions of Box’s M and both versions of Levene’s test are very 

powerful when only variances differ across groups. The Type I error rate inflation of the 

multivariate statistics was essentially the same as that found in Table 4. Table 5 shows that 

different patterns of covariances across the groups do not seem to impact the level of inflation of 

Type I error rates dramatically. 

 

Table 5. Type I error rates for equal covariances but unequal variances across four groups 

 Variances increase as group sample sizes decrease 

 

 Variance for Group 1 = 2, Variances for Group 3 = 4, and Variances for 3 & 4 > 1 & 2   
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Finally, Table 6 shows condition with equal variances in all groups and illustrates that 

almost none of the inflated Type I error rates across both unequal variances and covariances (like 

Table 4) resulted from only heterogeneous covariances when the groups had equal variances. 

Table 6 shows that the Bonferroni-adjusted version of Levene’s test maintains robustness when 

variances are equal even in the presence of unequal covariances, but the unadjusted version of 

Levene’s test again becomes inflated. Table 6 also shows that Box’s M has different power 

levels depending on the character of the covariances. Curiously, there is slight indication that as 

sample sizes become more diverse the Type I error rates became more conservative.  

 

Table 6. Type I error rates for equal variances but unequal covariances across four groups 

 Variances increase as group sample sizes decrease 

 

 Variance for Group 1 = 2, Variances for Group 3 = 4, and Variances for 3 & 4 > 1 & 2   
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Conclusions 

 Ultimately, we determined that there was not much difference in Type I error rates 

between V, W, T, and R. We were able to see that using Box’s M as a preliminary test does not 

serve much useful purpose. For example, it was typically powerful in unequal covariance 

conditions, which does not impact Type I error rates of the multivariate statistics. Although not 

presented in the tables above, the Type I error rate for Pillai’s trace conditionally after running 

Box’s M was not usually better than simply running Pillai’s Trace unconditionally. 

The argument to use Pillai when Box’s M is statistically significant does not appear 

justified in our results. Pillai’s Trace is not much more robust than Wilks’ Lambda and 

Hotelling’s Trace—but is very slightly more robust, particularly with small sample sizes. We 

found that even just a few cases different per group caused Type I error to become inflated in 

some conditions. Indeed, even with equal sample sizes the Type I error was outside our 

robustness criteria for some conditions. 

However, what is not reported loudly in the literature is that when the variances differ 

across groups along with sample sizes differing across groups (the inverse relationship between 

variances and sample sizes), NONE of the multivariate statistics is robust. Further, we found, 

like Beasley and Sheehan (1994), that it is the heterogeneous variances that have the larger 

impact on Type I error inflation rather than heterogeneous covariances. 

Most importantly, we found that using a Bonferroni adjustment to Levene’s test can be 

used to identify heterogenous variances across groups in the multivariate situation like in the 

univariate situation. Using the Bonferroni-adjusted Levene’s in this way may run counter to the 
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multivariate relationships among dependent variables, but our results suggest that the approach 

will control Type I error. More work will need to be done to study power. Our recommendation 

is not to worry about Box’s M but rather to test equality of variances using a Bonferroni-

corrected Levene’s test. If any of the variables has statistically significantly unequal variances, 

then concern and limitations should be raised regarding the robustness of any of the multivariate 

statistics. 
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