Brooks, G. P., & Adjanin, N. (2023, April). Back to the Future: Human-friendly Scheffé Contrasts, or, the Art of Multiple Comparisons. Paper presented at the 2023 annual meeting of the American Educational Research Association, Chicago, IL.
n mean sd var median min max skew kurtosis se
Y 40 49.3 9.02 81.4 49 34 70 0.314 -0.613 1.43
n mean sd var median min max skew kurtosis se
Grp_1 10 54.9 9.76 95.2 56.5 40 70 -0.0936 -1.027 3.09
Grp_2 10 45.9 7.28 53.0 45.0 36 56 0.1203 -1.643 2.30
Grp_3 10 51.7 8.29 68.7 49.5 39 65 0.2800 -0.606 2.62
Grp_4 10 44.7 7.65 58.5 44.0 34 57 0.1426 -1.240 2.42
Shapiro-Wilk normality test
data: Residuals
W = 0.96881, p-value = 0.3297
Levene (mean)
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.4331 0.7306
36
Levene (median)
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 3 0.395 0.7573
36
Breusch-Pagan
studentized Breusch-Pagan test
data: lm(y ~ x, data = myDF)
BP = 2.3095, df = 3, p-value = 0.5107
Fisher F
Df Sum Sq Mean Sq F value Pr(>F)
x 3 698.4 232.80 3.382 0.0285 *
Residuals 36 2478.0 68.83
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Robust Welch F
One-way analysis of means (not assuming equal variances)
data: y and x
F = 2.9801, num df = 3.000, denom df = 19.906, p-value = 0.05603
Robust Brown-Forsythe F
BROWN-FORSYTHE F
F = 3.382082 , num df = 3 , den df = 34.10243 , p-value = 0.02918407
The most explanatory contrasts significant at chosen alpha (at least 4 are shown with the MAXIMUM Human Contrast listed first)
The p values reported in the section below have already been adjusted using Scheffe adjustments, so compare the p value to your desired alpha level without further adjustment
A later section provides the Brown-Forsythe adjustment for unequal variances (for the Maximum contrast only by default, but can be changed to all those significant at chosen alpha)
25 total Human-Friendly Contrasts were tested using alpha = 0.15
CONTRAST SSQ Coef1 Coef2 Coef3 Coef4 diff lwr.ci upr.ci pval
24 24 0.930 0.5 -0.500 0.500 -0.500 8.000 0.307 15.693 0.039
10 10 0.893 1.0 -0.500 0.000 -0.500 9.600 0.178 19.022 0.044
5 5 0.756 1.0 0.000 0.000 -1.000 10.200 -0.680 21.080 0.073
16 16 0.716 -0.5 0.000 -0.500 1.000 -8.600 -18.022 0.822 0.085
1 1 0.607 1.0 -0.333 -0.333 -0.333 7.467 -1.417 16.350 0.128
8 8 0.588 1.0 -1.000 0.000 0.000 9.000 -1.880 19.880 0.137
Grp Mean N Hollingsworth ScheffeMAX ScaledMAX HumanMAX
1 1 54.9 10 0.6701 2.1190 0.700 0.5
2 2 45.9 10 -0.4068 -1.2866 -0.425 -0.5
3 3 51.7 10 0.2872 0.9082 0.300 0.5
4 4 44.7 10 -0.5504 -1.7406 -0.575 -0.5
These analyses performed with DescTools ScheffeTest function with the maximum contrasts as input
The p values reported in sections below have already been adjusted using Scheffe adjustments, so compare the p value to your desired alpha level without further adjustment
The sections following this one provide the Brown-Forsythe adjustments for unequal variances for these Maximum Contrasts
Coef1 Coef2 Coef3 Coef4 Family Diff lwr.ci upr.ci pval
Hollingsworth 0.67 -0.407 0.287 -0.550 1,3-2,4 8.36 0.664 16.1 0.0285
ScheffeMAX 2.12 -1.287 0.908 -1.741 1,3-2,4 26.43 2.099 50.8 0.0285
ScaledMAX 0.70 -0.425 0.300 -0.575 1,3-2,4 8.73 0.693 16.8 0.0285
HumanMAX 0.50 -0.500 0.500 -0.500 1,3-2,4 8.00 0.307 15.7 0.0387
The sections below use calculations of statistics and critical values for statistical significance as opposed to the p values provided by the DescTools output above
One critically important part of the results sections below is the robust Brown-Forsythe Adjustment applied to Scheffe for unequal variances, something not available many places
CONTRAST 1 HAS COEFFICIENTS 0.5 -0.5 0.5 -0.5
SUM OF SQUARES = 640 (out of ANOVA Between Sum of Squares = 698.4 )
PROPORTION OF BETWEEN SUM OF SQUARES ACCOUNTED FOR = 0.916
ESTIMATE OF THIS CONTRAST DIFFERENCE = 8
SCHEFFE (EQUAL VARIANCES, BALANCED OR UNBALANCED GROUP SIZES)
CONTRAST IS STATISTICALLY SIGNIFICANT WHEN SCHEFFE_F STATISTIC IS LARGER THAN CONTRAST_FCRIT
(OR EQUIVALENTLY WHEN THE VALUE OF ESTIMATED CONTRAST IS LARGER THAN THE CONTRAST_CV)
ALPHA F_Critical Contrast_Fcrit SCHEFFE_F F_Sig Estimate Contrast_CV
1 0.10 2.242605 6.727816 9.297821 TRUE 8 6.805130
2 0.05 2.866266 8.598797 9.297821 TRUE 8 7.693399
3 0.01 4.377096 13.131287 9.297821 FALSE 8 9.507209
BROWN-FORSYTHE SCHEFFE (UNEQUAL VARIANCES, BALANCED OR UNBALANCED GROUP SIZES))
CONTRAST IS STATISTICALLY SIGNIFICANT WHEN BROWN-FORSYTHE F (BF_F_Stat) IS LARGER THAN CONTRAST_BFCRIT
ALPHA BF_Critical Contrast_BFcrit BF_F_Stat F_Sig Estimate
1 0.10 2.381600 7.144800 9.297821 TRUE 8
2 0.05 3.100975 9.302926 9.297821 FALSE 8
3 0.01 4.944608 14.833823 9.297821 FALSE 8
Hollingsworth, H. (1978). The coefficients of the normalized maximum contrast as statistics for posttest ANOVA data interpretations. Journal of Experimental Education, 46(4), 4-6.
Hollingsworth, H. (1980/1981). Maximized posttest contrasts: A clarification. Journal of Experimental Education, 49(2), 92-93.
HOLLINGSWORTH CONTRAST HAS COEFFICIENTS 0.67 -0.407 0.287 -0.55
SUM OF SQUARES = 698.4 (out of ANOVA Between Sum of Squares = 698.4 )
PROPORTION OF BETWEEN SUM OF SQUARES ACCOUNTED FOR = 1
ESTIMATE OF THIS CONTRAST DIFFERENCE = 8.357
SCHEFFE (EQUAL VARIANCES, BALANCED OR UNBALANCED GROUP SIZES)
CONTRAST IS STATISTICALLY SIGNIFICANT WHEN SCHEFFE_F STATISTIC IS LARGER THAN CONTRAST_FCRIT
(OR EQUIVALENTLY WHEN THE VALUE OF ESTIMATED CONTRAST IS LARGER THAN THE CONTRAST_CV)
Alpha F_Critical Contrast_Fcrit SCHEFFE_F F_Sig Estimate Contrast_CV
1 0.10 2.242605 6.727816 10.14625 TRUE 8.357033 6.805130
2 0.05 2.866266 8.598797 10.14625 TRUE 8.357033 7.693399
3 0.01 4.377096 13.131287 10.14625 FALSE 8.357033 9.507209
BROWN-FORSYTHE SCHEFFE (UNEQUAL VARIANCES, BALANCED OR UNBALANCED GROUP SIZES))
CONTRAST IS STATISTICALLY SIGNIFICANT WHEN BROWN-FORSYTHE F (BF_F_Stat) IS LARGER THAN CONTRAST_BFCRIT
Alpha BF_Critical Contrast_BFcrit BF_F_Stat BF_Sig Estimate
1 0.10 2.345618 7.144800 9.324683 TRUE 8.357033
2 0.05 3.039693 9.302926 9.324683 TRUE 8.357033
3 0.01 4.793481 14.833823 9.324683 FALSE 8.357033
SCHEFFE Maximum Contrast & Maximum Contrast SCALED so positive & negative coefficient sets sum to 0
Original Scheffe contrast coefficients were: 2.119 -1.287 0.908 -1.741
Scaled Scheffe contrasts were original Coefficients divided by: 3.027177
SCALED SCHEFFE CONTRAST HAS COEFFICIENTS 0.7 -0.425 0.3 -0.575
SUM OF SQUARES = 698.4 (out of ANOVA Between Sum of Squares = 698.4 )
PROPORTION OF BETWEEN SUM OF SQUARES ACCOUNTED FOR = 1
ESTIMATE OF THIS CONTRAST DIFFERENCE = 8.73
SCHEFFE (EQUAL VARIANCES, BALANCED OR UNBALANCED GROUP SIZES)
CONTRAST IS STATISTICALLY SIGNIFICANT WHEN SCHEFFE_F STATISTIC IS LARGER THAN CONTRAST_FCRIT
(OR EQUIVALENTLY WHEN THE VALUE OF ESTIMATED CONTRAST IS LARGER THAN THE CONTRAST_CV)
Alpha F_Critical Contrast_Fcrit SCHEFFE_F F_Sig Estimate Contrast_CV
1 0.10 2.242605 6.727816 10.14625 TRUE 8.73 7.108837
2 0.05 2.866266 8.598797 10.14625 TRUE 8.73 8.036748
3 0.01 4.377096 13.131287 10.14625 FALSE 8.73 9.931507
BROWN-FORSYTHE SCHEFFE (UNEQUAL VARIANCES, BALANCED OR UNBALANCED GROUP SIZES))
CONTRAST IS STATISTICALLY SIGNIFICANT WHEN BROWN-FORSYTHE F (BF_F_Stat) IS LARGER THAN CONTRAST_BFCRIT
ALPHA BF_Critical Contrast_BFcrit BF_F_Stat BF_Sig Estimate
1 0.10 2.381600 7.144800 9.324683 TRUE 8.73
2 0.05 3.100975 9.302926 9.324683 TRUE 8.73
3 0.01 4.944608 14.833823 9.324683 FALSE 8.73