Using Human-Friendly Scheffé Comparisons to

Explore Group Differences in One-way ANOVA

Gordon Brooks, Ph.D.
Ohio University (Athens, Ohio)

Nina Adjanin, Ph.D.
Northwest Missouri State University

Presented at
The Athens Institute for Education and Research (ATINER)
18th Annual International Conference on Statistics: Teaching, Theory \& Applications
1-4 July 2024, Athens, Greece

Multiple Comparison Procedures (Post Hoc)

- Researchers commonly use MCPs following statistically significant ANOVA and main effects from Factorial ANOVA
- Most commonly these are post hoc pairwise comparisons (e.g., Tukey-Kramer or Games-Howell), but researchers do sometimes use a priori contrasts that include non-pairwise (complex) comparisons
- Very few use the Scheffé post hoc method because it is well-known to lack the statistical power of other MCPs for the pairwise post hoc comparisons that most researchers use-and most statistics programs provide only pairwise Scheffé
- The Scheffé MCP has lower power because it adjusts for all possible comparisons: all pairwise and non-pairwise comparisons-but researchers often don't know where to start with non-pairwise post hoc comparisons

First... a little joke...
One of the Most Embarrassing Outcomes for a Statistician...

- Result: The F-test for a One-Way ANOVA with five treatment groups is significant at the .05 level but NONE of the pairwise comparisons between the five means is statistically significant.
- Solution: Cry hard... then work hard... to find some obscure, meaningless complex (i.e., Scheffé) comparison that IS significant, such as: the average of the first three treatment means is significantly different from the average of the last two treatment means!
(from Gary Ramseyer's First Internet Gallery Of Statistics Jokes:
https://about.illinoisstate.edu/gcramsey/other/]

Congruence of Scheffé with Omnibus ANOVA

- However, only Scheffé MCP guarantees congruence to find a statistically significant comparison when the omnibus ANOVA is statistically significant-and conversely, NOT find one when ANOVA is not significant
- As the joke said... ANOVA can be significant, but no pairwise comparison is
- See Kirk (2013), Maxwell, Delaney, \& Kelley (2018), Keppel \& Wickens (2004)
- A maximum Scheffé contrast/comparison can be calculated that provides the set of contrast coefficients for the means that maximally differentiates some combination of groups on the dependent variable
- And there is a formula... so it is not a lot of hard work to calculate the MAX
- This maximum comparison has the same statistical significance as the omnibus Fisher F ANOVA and is usually a non-pairwise, complex comparison
- Unfortunately, the hard work can be in the interpretation

Scheffé Maximum Contrast/Comparison

Scheffé (see Keppel \& Wickens, 2004; Williams, 1979)

Hollingsworth (1978, see also Williams, 1979)

$$
c_{i}^{\prime}=\frac{N_{i}\left(\bar{X}_{i}-\bar{T}\right)}{\sqrt{S S B}}
$$

$$
c_{i}=\frac{\sqrt{\widetilde{N}}\left(\bar{X}_{i}-\bar{T}\right)}{\sqrt{S S B}}
$$

Where:
c_{i} is the contrast/comparison coefficient for group i
N_{i} is the sample size in each group
\bar{T} is the dependent variable grand mean for the total sample
$\overline{X_{i}}$ is the dependent variable mean for group i
SSB is the sum of squares between groups from ANOVA
\widetilde{N} is the harmonic mean group sample size

Maximum Contrast/Comparisons (continued)

For example: $N_{i}=10$ for all groups SSB $=698.4$

$$
\begin{aligned}
& \bar{T}=49.3 \\
& \overline{X_{i}}=\{54.9,45.9,51.7,44.7\}
\end{aligned}
$$

Therefore, the unscaled contrast coefficients, c_{i}, are calculated as follows:

$$
\begin{aligned}
& c_{1}=10(54.9-49.3) / 26.43=56 / 26.43=2.119 \\
& c_{2}=10(45.9-49.3) / 26.43=-34 / 26.43=-1.286 \\
& c_{3}=10(51.7-49.3) / 26.43=24 / 26.43=0.908 \\
& c_{4}=10(44.7-49.3) / 26.43=-46 / 26.43=-1.742
\end{aligned}
$$

Scheffé and Non-pairwise Complex Comparisons

- Unfortunately, coefficient weights from this maximum Scheffé comparison are often uninterpretable or meaningless from a practical or theoretical perspective (see introductory joke... also see Schmid, 1977).
- For example, it is hard to make sense of the maximum Scheffé coefficients from the previous slide

Scheffé Max

$c_{1}=$	2.119
$c_{2}=$	-1.286
$c_{3}=$	0.908
$c_{4}=$	-1.742

Robert Barcikowski \& Rationale for "Human Contrasts"

```
C This program computes one-way analysis of variance with
C both Scheffe and Brown-Forsythe-Scheffe post hoc tests.
C It was pieced together by Robert S. Barcikowski during
C the last week in April, 1993 and revised April, 2000.
C********************************************************
    DO 14 I = 1, JN
    ZMEAN(I) = (XBAR(I) - GM) / DMS
14 CONTINUE
    CALL HOLLY(LEVELS, SSB, GM, XBAR, BARCOE, RN)
    PRINT 12, (BARCOE(I), I = 1, LEVELS)
12 FORMAT(1H0,'MAXIMUM CONTRAST HAS FOLLOWING COEFFICIENTS'
    < ,//,10F8.3,//)
    CALL HELMRT(HELM, LEVELS, ALLCON, HELNUM)
    CALL SCHEFE (BARCOE, XBAR, LEVELS, MSE, . . . , ITEST)
    CALL BFS(SDE, BARCOE, RN, LEVELS, DFB, ALPHA, APSI)
    IF (NC .EQ. O) GO TO 23
23 STOP
    END
```

Barcikowski originally wrote the program in FORTRAN and Brooks \& Adjanin converted it to R and R Shiny.

The purpose is to provide a relatively easy way (unlike in the joke) to find statistically significant - and INTERPRETABLE Scheffé comparisons (and Brown-Forsythe adjustments for unequal variances, like Games-Howell)

Barcikowski "Human-Friendly" Complex Comparisons

- Barcikowski suggested a method to identify the maximum "humanfriendly" comparison that approximates the maximum Scheffé comparison-but with coefficients that are reasonably interpretable
- Barcikowski approach tests all possible comparisons that use "reasonable" (i.e., human-friendly) ways to compare complex combinations of groups, for example:
- Comparison of a control (or combination of treatments) group with the average of multiple treatment groups (i.e., something versus nothing)
- Comparison of a low-dose treatment group with the average of higher-dose groups (i.e., some versus more)
- Comparison of the average of 2 control groups with average of 3 treatment groups (we disagree with the joke here...)

"Human-friendly" contrasts ("Helmert-plus" complex comparisons)

Helmert:

$$
\left\{\begin{array}{l}
1 \mu_{1}-\frac{1}{4} \mu_{2}-\frac{1}{4} \mu_{3}-\frac{1}{4} \mu_{4}-\frac{1}{4} \mu_{5} \\
0 \mu_{1}+1 \mu_{2}-\frac{1}{3} \mu_{3}-\frac{1}{3} \mu_{4}-\frac{1}{3} \mu_{5} \\
0 \mu_{1}+0 \mu_{2}+1 \mu_{3}-\frac{1}{2} \mu_{4}-\frac{1}{2} \mu_{5} \\
0 \mu_{1}+0 \mu_{2}+0 \mu_{3}+1 \mu_{4}-1 \mu_{5}
\end{array}\right.
$$

P/US (for example): $\left\{\begin{array}{l}\frac{1}{2} \mu_{1}+\frac{1}{2} \mu_{2}-\frac{1}{3} \mu_{3}-\frac{1}{3} \mu_{4}-\frac{1}{3} \mu_{5} \\ 0 \mu_{1}+\frac{1}{2} \mu_{2}+\frac{1}{2} \mu_{3}-\frac{1}{2} \mu_{4}-\frac{1}{2} \mu_{5}\end{array}\right.$

Comparison Coefficient									- msoun sat incos	
Comparison	1	2	3	4	5	6	7	8		
1	0.25	0.25	0.25	0.25	-0.25	-0.25	-0.25	-0.25		
2	0.33	0.33	0.33	-0.20	-0.20	-0.20	-0.20	-0.20		
3	0.33	0.33	0.33	0	-0.25	-0.25	-0.25	-0.25	Groups	Comparisons
4	0.33	0.33	0.33	0	0	-0.33	-0.33	-0.33		
5	0.50	0.50	-0.17	-0.17	-0.17	-0.17	-0.17	-0.17	3	6
6	0.50	0.50	0	-0.20	-0.20	-0.20	-0.20	-0.20	4	25
7	0.50	0.50	0	0	-0.25	-0.25	-0.25	-0.25		
8	0.50	0.50	0	0	0	-0.33	-0.33	-0.33	5	75
9	0.50	0.50	0	0	0	0	-0.50	-0.50	6	301
10	1.00	-0.14	-0.14	-0.14	-0.14	-0.14	-0.14	-0.14		
11	1.00	0	-0.17	-0.17	-0.17	-0.17	-0.17	-0.17	7	476
12	1.00	0	0	-0.20	-0.20	-0.20	-0.20	-0.20	8	3025
13	1.00	0	0	0	-0.25	-0.25	-0.25	-0.25	8	3025
14	1.00	0	0	0	0	-0.33	-0.33	-0.33		
15	1.00	0	0	0	0	0	-0.50	-0.50		
16	1.00	0	0	0	0	0	0	-1.00		

And then all permutations of these sets of coefficients... resulting in 3025 unique comparisons (in the case of 8 groups)

Barcikowski Human-Friendly Complex Comparisons

- Barcikowski's method identifies the maximum comparisons (based on contrast sum of squares explained) from among all possible reasonably interpretable Scheffé-like, Human-friendly contrasts/comparisons
- This will include any statistically significant pairwise comparisons
- We call them "comparisons" because they are intended for Post Hoc (even though Scheffé are typically called "contrasts")
- We have created an R Shiny web app to obtain
- the Scheffé, Scaled Scheffé, and Hollingsworth maximum comparisons
- the maximum Barcikowski human-friendly comparison, and all other statistically significant human-friendly comparisons
- the relatively unknown Brown-Forsythe adjustment to the Scheffé MCP for when the equal variances assumption is not met

Purpose of Presentation

- To share results from recent research (especially, congruence) that supports the use of Barcikowski's Human-friendly comparisons method
- Further, we will share information about using the R Shiny App
- Finally, we share some examples of datasets from among several well-known design and analysis textbooks that might have benefited from using Scheffé maximum comparisons and Barcikowski human-friendly comparisons instead of focusing only on Pairwise comparisons

Congruence for Non-significance (robustness)

Congruence for Significance (statistical power)

	Scheffé maximum comparison	Hollingsworth maximum comparison	$1^{\text {st }}$ most explanatory Human-friendly comparison	$2^{\text {nd }}$ most explanatory Human-friendly comparison
Means				
50, 50, 50, $54{ }^{1}$	100.00\%	100.00\%	97.52\%	93.31\%
50, 50, 50, $58{ }^{1}$	100.00\%	100.00\%	98.98\%	96.62\%
50, 50, 54, $54{ }^{1}$	100.00\%	100.00\%	96.95\%	91.03\%
50, 50, 54, $54{ }^{2}$	100.00\%	99.11\%	96.17\%	90.56\%
50, 50, 54, $54{ }^{3}$	100.00\%	100.00\%	96.94\%	91.18\%
50, 50, 54, $58{ }^{1}$	100.00\%	100.00\%	98.15\%	94.37\%
50, 50, 58, $58{ }^{1}$	100.00\%	100.00\%	99.24\%	97.04\%
50, 54, 54, $58{ }^{1}$	100.00\%	100.00\%	97.53\%	92.35\%

4-group results were presented at American Educational Research Association (AERA) in April 2023 and 5-group results were presented at Mid-Western Educational Research Association (MWERA) in October 2023, and all results have been accepted for publication in the General Linear Model Journal (glmj.org).

Value of Complex versus Pairwise Comparisons

- We reviewed many datasets used as examples for ANOVA in well-known textbooks and also many datasets provided by R datasets package
- Most of these example datasets were also used to illustrate Pairwise Multiple Comparison Procedures
- We identified numerous examples from among these well-known datasets where the pairwise comparisons were not the most explanatory-we will share several such examples
- We believe there can be value in identifying, and making sense of, the maximum Scheffé comparison (which is frequently a complex comparison), or similarly, a Barcikowski Human-friendly comparison

Example: All 25 sets of coefficients for 4 groups

Comparison	Contrast/Comparison Coefficient				Comparison	Contrast/Comparison Coefficient			
	1	2	3	4		1	2	3	4
1	1.00	-0.50	-0.50	0	13	1.00	-0.33	-0.33	-0.33
2	1.00	-0.50	0	-0.50	14	-0.33	1.00	-0.33	-0.33
3	1.00	0	-0.50	-0.50	15	-0.33	-0.33	1.00	-0.33
4	0	1.00	-0.50	-0.50	16	-0.33	-0.33	-0.33	1.00
5	-0.50	1.00	-0.50	0	17	1.00	-1.00	0	0
6	-0.50	1.00	0	-0.50	18	1.00	0	-1.00	0
7	-0.50	0	1.00	-0.50	19	1.00	0	0	-1.00
8	0	-0.50	1.00	-0.50	20	0	1.00	-1.00	0
9	-0.50	-0.50	1.00	0	21	0	1.00	0	-1.00
10	-0.50	-0.50	0	1.00	22	0	0	1.00	-1.00
11	-0.50	0	-0.50	1.00	23	0.50	0.50	-0.50	-0.50
12	0	-0.50	-0.50	1.00	24	0.50	-0.50	0.50	-0.50
					25	0.50	-0.50	-0.50	0.50

Barcikowski's Most Explanatory Human-Friendly Comparisons (with Scheffe tests assuming equal variances)

Stevens

 (2007) IRS Data(p. 97)

Scheffe Tests of Maximum Comparisons assuming equal Variances

	i Information					
		Coef1 ${ }^{\text {¢ }}$	Coef2 ${ }^{\text {¢ }}$	Coef3 ${ }^{\text {¢ }}$	Coef4	Family
Example contrasts from earlier in	ScheffeMAX	2.1190	-1.2866	0.9082	-1.7406	1,3-2,4
	ScaledMAX	0.7000	-0.4250	0.3000	-0.5750	1,3-2,4
	HollingsworthMAX	0.6701	-0.4068	0.2872	-0.5504	1,3-2,4
presentation	BarcikowskiMAX	0.5000	-0.5000	0.5000	-0.5000	1,3-2,4

Diff ${ }_{\text {- }}$	Iwr.ci $\frac{1}{\sim}$	upr.ci $\stackrel{\text { - }}{ }$	pval ${ }_{\text {¢ }}$	Cohens.d ${ }^{\text {¢ }}$
26.4273	2.0986	50.7559	0.0285	3.1853
8.7300	0.6933	16.7667	0.0285	1.0522
8.3570	0.6636	16.0504	0.0285	1.0073
8.0000	0.3066	15.6934	0.0387	0.9643

DV	Days_to_Complete
Group	IRS_Region
1	East
2	Midwest
3	South
4	West
Output shows comparisons that were statistically significant at alpha = . 15 Family 13-24 No pairwise Scheffé SIG (but 1v4 was SIG as Tukey) Scheffé MAX itself is hard to interpret	

OHIO
Adjanin and Brooks (2023)

Barcikowski's Most Explanatory Human-Friendly Comparisons (with Scheffe tests assuming equal variances)

MISSOURI STATE UNIVERSITY

Additional Results

One-way ANOVA results from jmv package with pairwise comparisons
i Codebook for Variables

Adjanin and
 Brooks (2023)

 continued

MISSOURI STATE UNIVERSITY

Computer

- Includes output from the jmv package in R for both GamesHowell and Tukey (and Scheffé)
- Also includes Helmert contrasts for information... but these are UNADJUSTED p values

MISSOURI STATE UNIVERSITY
Total number of Comparisons tested:
[1] }7

```

Toothaker (1991)

Table 3.3
(p. 72)
```

i Information

```
```

i Information

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SSQ & Coef1 \({ }^{-}\) & Coef2 \({ }^{\text {- }}\) & Coef3 \({ }^{\text {- }}\) & Coef4 & Coef5 \({ }^{\text {- }}\) & diff \(\stackrel{\square}{ }\) & Iwr.ci \({ }^{\text {¢ }}\) & upr.ci \({ }^{\text {® }}\) & pval \({ }^{\text {¢ }}\) & Cohens.d \({ }^{\text {¢ }}\) \\
\hline 40 & 9.1669 & -0.5000 & -0.5000 & 0.0000 & 0.0000 & 1.0000 & 9.9500 & 4.9738 & 14.9262 & 0.0001 & 3.7081 \\
\hline 60 & 7.6445 & -0.3333 & -0.3333 & -0.3333 & 0.0000 & 1.0000 & 8.5667 & 3.8750 & 13.2583 & 0.0002 & 3.1926 \\
\hline 7 & 7.5111 & 1.0000 & 0.0000 & 0.0000 & 0.0000 & -1.0000 & -10.4000 & -16.1461 & -4.6539 & 0.0002 & 3.8758 \\
\hline 58 & 7.4084 & -0.3333 & -0.3333 & 0.0000 & -0.3333 & 1.0000 & 8.4333 & 3.7417 & 13.1250 & 0.0002 & 3.1429 \\
\hline 65 & 6.7167 & -0.2500 & -0.2500 & -0.2500 & -0.2500 & 1.0000 & 7.7750 & 3.2323 & 12.3177 & 0.0004 & 2.8976 \\
\hline \multicolumn{10}{|l|}{} & 56 & 7 Next \\
\hline
\end{tabular}

Scheffe Tests of Maximum Comparisons assuming equal Variances
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline i Information & Coef1 \({ }^{\text {¢ }}\) & Coef2 \({ }^{\text {- }}\) & Coef3 \({ }^{\text {- }}\) & Coef4 & Coef5 \({ }^{\text {- }}\) & Family & Diff \({ }^{\text {F }}\) & Iwr.ci & upr.ci \({ }^{\text {- }}\) & pval \({ }^{\text {¢ }}\) & Cohens.d \\
\hline ScheffeMAX & -1.1354 & -0.8909 & 0.1141 & 0.2227 & 1.6895 & 3,4,5-1,2 & 18.4076 & 9.3223 & 27.4929 & 0.0000 & 6.8601 \\
\hline ScaledMAX & -0.5603 & -0.4397 & 0.0563 & 0.1099 & 0.8338 & \(3,4,5-1,2\) & 9.0842 & 4.6006 & 13.5678 & 0.0000 & 3.3855 \\
\hline HollingsworthMAX & -0.5078 & -0.3984 & 0.0510 & 0.0996 & 0.7556 & \(3,4,5-1,2\) & 8.2321 & 4.1690 & 12.2952 & 0.0000 & 3.0679 \\
\hline BarcikowskiMAX & -0.5000 & -0.5000 & 0.0000 & 0.0000 & 1.0000 & 5-1,2 & 9.9500 & 4.9738 & 14.9262 & 0.0001 & 3.7081 \\
\hline
\end{tabular}
- Scheffé Family 345-12 not most explanatory after "humanized" (two coefficients very close to 0)
- 345-12 Family appears as \(6^{\text {th }}\) contrast on page 2 of results
- Barcikowski MAX does not include them (they are 0)
- Could simplify the SchefféMAX and test it specifically, but there could be multiple ways to simplify it
- The Barcikowski comparisons do this automatically
Based on
Miller (1981)

Barcikowski's Most Explanatory Human-Friendly Comparisons (with Scheffe tests assuming equal variances)
i Information
Total number of Comparisons tested:
[1] 25
[1] 25

\section*{i Information}
\begin{tabular}{|lllll|l|}
\hline & Coef1 & Coef2 & Coef3 & Coef4 & Family \\
\hline ScheffeMAX & -1.5536 & -0.9282 & 0.6731 & 1.8087 & \(3,4-1,2\) \\
\hline ScaledMAX & -0.6260 & -0.3740 & 0.2712 & 0.7288 & \(3,4-1,2\) \\
\hline HollingsworthMAX & -0.5872 & -0.3508 & 0.2544 & 0.6836 & \(3,4-1,2\) \\
\hline BarcikowskiMAX & \(\mathbf{- 0 . 5 0 0 0}\) & \(\mathbf{- 0 . 5 0 0 0}\) & \(\mathbf{0 . 0 0 0 0}\) & \(\mathbf{1 . 0 0 0 0}\) & \(\mathbf{4 - 1 , 2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Diff \({ }^{\text {\% }}\) & Iwr.ci & upr.ci \(\stackrel{\text { - }}{ }\) & pval \(\frac{1}{}\) & Cohens.d \({ }^{\text {¢ }}\) \\
\hline 28.8130 & 16.2933 & 41.3327 & 0.0000 & 6.9143 \\
\hline 11.6094 & 6.5650 & 16.6539 & 0.0000 & 2.7860 \\
\hline 10.8903 & 6.1583 & 15.6223 & 0.0000 & 2.6134 \\
\hline 12.5529 & 6.7574 & 18.3484 & 0.0000 & 3.0123 \\
\hline
\end{tabular}
(2000) Table
Tamhane
and
Dunlop
(2000)
Table
12.5
(p. 479)

Showing 1 to 5 of 16 entries

\section*{Scheffe Tests of Maximum Comparisons assuming equal Variances}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & SSQ & Coef1 & Coef2 & Coef3 & Coef4 & diff \(\stackrel{\text { - }}{ }\) & Iwr.ci & upr.ci \({ }^{\text {- }}\) & & pval \({ }^{\text {¢ }}\) & & Cohens.d \\
\hline 18 & 6.0495 & -0.5000 & -0.5000 & 0.0000 & 1.0000 & 12.5529 & 6.7574 & 18.3484 & & 0.0000 & & 3.0123 \\
\hline 23 & 6.0098 & 0.5000 & 0.5000 & -0.5000 & -0.5000 & -10.2157 & -14.9477 & -5.4837 & & 0.0000 & & 2.4515 \\
\hline 5 & 5.5153 & 1.0000 & 0.0000 & 0.0000 & -1.0000 & -13.8400 & -20.5321 & -7.1479 & & 0.0000 & & 3.3212 \\
\hline 9 & 5.0798 & 1.0000 & 0.0000 & -0.5000 & -0.5000 & -11.5029 & -17.2984 & -5.7074 & & 0.0001 & & 2.7604 \\
\hline 22 & 4.2559 & -0.3333 & -0.3333 & -0.3333 & 1.0000 & 9.9267 & 4.4626 & 15.3907 & & 0.0002 & & 2.3821 \\
\hline \multicolumn{8}{|l|}{Showing 1 to 5 of 16 entries} & Previous & 1 & 2 & 3 & 4 Next \\
\hline
\end{tabular}
\begin{tabular}{cc}
\hline DV & Test_Scores \\
\hline Group & Teaching_Method \\
\hline 1 & 1_Case \\
\hline 2 & 2_Formula \\
\hline 3 & 3_Equation \\
\hline 4 & 4_Unitary_Analysis \\
\hline
\end{tabular}
- Family \(12-34\) is \(2^{\text {nd }}\) most explanatory after being "Humanized"

MISSOURI STATE UNIVERSITY
Test_Scores
- One

Barcikowski comparison is more explanatory than the Scheffé "family"
- Pairwise \(3^{\text {rd }}\) from Sparks (1963)

Barcikowski's Most Explanatory Human-Friendly Comparisons (with Scheffe tests assuming equal variances)

Chick


Barcikowski's Most Explanatory Human-Friendly Comparisons (with Scheffe tests assuming equal variances)
Stevens
(2007)
Sesame
Street
Data
(p. 100)
i Information
Total number of Comparisons tested:
[1] 25


\section*{Scheffe Tests of Maximum Comparisons assuming equal Variances}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline i Information & Coef1 \({ }^{\text {\% }}\) & Coef2 & Coef3 \({ }^{\text {- }}\) & Coef4 \({ }^{\text {- }}\) & Family & Diff \({ }_{\text {- }}\) & Iwr.ci \({ }_{\text {- }}\) & upr.ci \\
\hline ScheffeMAX & -5.4001 & -1.7459 & 3.2799 & 3.8661 & 3,4-1,2 & 82.7663 & 54.9992 & 110.5333 \\
\hline ScaledMAX & -0.7557 & -0.2443 & 0.4590 & 0.5410 & 3,4-1,2 & 11.5821 & 7.6965 & 15.4678 \\
\hline HollingsworthMAX & -0.7308 & -0.1918 & 0.4191 & 0.5035 & 3,4-1,2 & 10.8868 & 7.2308 & 14.5429 \\
\hline BarcikowskiMAX & 1.0000 & 0.0000 & -0.5000 & -0.5000 & 1-3,4 & -12.9782 & -17.4947 & -8.4617 \\
\hline
\end{tabular}
- Another example where the "Family" changes But...
- An example of Violation of
Homogeneity of Variances (see next slide)

From Educational Testing Service

Omnibus Test \& Assumptions

\section*{i Information}

Omnibus ANOVA
Homoscedasticity Assumption
Normality Assumption
Stevens
(2007)

Sesame
Street
Data
(p. 100)


\section*{Brown-Forsythe Adjustments of Scheffe Tests for Unequal Variances}

NORTHWEST
i Information
\begin{tabular}{lllllll}
1 & 0.10 & 2.126232 & 6.378695 & 91.3293 & TRUE & 12.9782
\end{tabular}
8.022056 91.3293 TRUE 12.978
```

COMPARISON 1 HAS COEFFICIENTS 1 0 -0.5 -0.5
COMPARISON 1 HAS COEFFICIENTS 1 0 -0.5 -0.5
BROWN-FORSYTHE SCHEFFE (UNEQUAL VARIANCES, BALANCED OR UNBALANCED GROUP SIZES))
BROWN-FORSYTHE SCHEFFE (UNEQUAL VARIANCES, BALANCED OR UNBALANCED GROUP SIZES))
COMPARISON IS STATISTICALLY SIGNIFICANT WHEN_BROWN-FORSYTHE F (BF_F_Stat) IS LARGER THAN CONTRAST_BFCRIT
COMPARISON IS STATISTICALLY SIGNIFICANT WHEN_BROWN-FORSYTHE F (BF_F_Stat) IS LARGER THAN CONTRAST_BFCRIT
ALPHA BF_Critical Contrast_BFcrit BF_F_Sta| F_Sig Estimate
ALPHA BF_Critical Contrast_BFcrit BF_F_Sta| F_Sig Estimate

Brown-Forsythe Adjustments of Scheffe Tests for Unequal Variances
BROWN-FORSYTHE SCHEFFE (UNEQUAL VARIANCES, BALANCED OR UNBALANCED GROUP SIZES))
COMPARISON IS STATISTICALLY SIGNIFICANT WHEN BROWN-FORSYTHE F (BF_F_Stat) IS LARGER THAN CONTRAST_BFCRIT

	ALPHA	BF_Critical	Contrast_BFcrit	BF_F_Stat	BF_Sig	stimate
1	0.10	2.126232	6.378695	85.53974	TRUE	1.58214
2	0.05	2.674019	8.022056	85.53974	TRUE	1.58214

```
```

i Information

```
i Information
Barcikowski MAX Barcikowski 2nd Barcikowski 3rd Barcikowski 4th Scaled Scheffe MAX Hollingsworth MAX
Barcikowski MAX Barcikowski 2nd Barcikowski 3rd Barcikowski 4th Scaled Scheffe MAX Hollingsworth MAX
Original Scheffe comparison coefficients were: -5.4 -1.746 3.28 3.866
```

Original Scheffe comparison coefficients were: -5.4 -1.746 3.28 3.866

```

From Educational Testing Service

Barcikowski's Most Explanatory Human-Friendly Comparisons (with Scheffe tests assuming
NORTHWEST equal variances)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{chickwts} & \multicolumn{2}{|l|}{i Information} & & & & & & \\
\hline & \multicolumn{8}{|l|}{\begin{tabular}{l}
Total number of Comparisons tested: \\
[1] 196
\end{tabular}} \\
\hline & \multicolumn{2}{|r|}{SSQ} & Coef1 \({ }^{\text {¢ }}\) & Coef2 \({ }^{\text {- }}\) & Coef3 \({ }^{\text {¢ }}\) & Coef4 & Coef5 \({ }^{\text {¢ }}\) & Coef6 \({ }^{\text {¢ }}\) \\
\hline 1 R & 193 & 155.804 & -0.3333 & 0.3333 & 0.3333 & -0.3333 & 0.3333 & -0.3333 \\
\hline \multirow{4}{*}{dataset)} & 67 & 151.602 & 1.0000 & -0.5000 & -0.5000 & 0.0000 & 0.0000 & 0.0000 \\
\hline & 66 & 150.215 & -0.5000 & 1.0000 & 0.0000 & -0.5000 & 0.0000 & 0.0000 \\
\hline & 174 & 138.806 & -0.2500 & 0.5000 & 0.5000 & -0.2500 & -0.2500 & -0.2500 \\
\hline & 19 & 137.809 & 1.0000 & -1.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline
\end{tabular}

Showing 1 to 5 of 181 entries
            i Information
\begin{tabular}{|c|c|c|c|c|}
\hline diff \(\stackrel{\text { ® }}{ }\) & Iwr.ci \({ }^{\text {¢ }}\) & upr.ci \({ }^{\text {¢ }}\) & pval \({ }^{\text {¢ }}\) & Cohens.d \({ }^{\text {\% }}\) \\
\hline -36.8333 & -39.7929 & -33.8738 & 0.0000 & 10.1916 \\
\hline 54.5000 & 50.0419 & 58.9581 & 0.0000 & 15.0799 \\
\hline -54.2500 & -58.9499 & -49.5501 & 0.0000 & 15.0108 \\
\hline -36.8750 & -40.0713 & -33.6787 & 0.0000 & 10.2032 \\
\hline 60.0000 & 54.6888 & 65.3112 & 0.0000 & 16.6018 \\
\hline Previous & 12 & 34 & 5 & 37 Next \\
\hline
\end{tabular}


\section*{Scheffe Tests of Maximum Comparisons assuming equal Variances}


Barcikowski's Most Explanatory Human-Friendly Comparisons (with Scheffe tests assuming equal variances)

MISSOURI STATE UNIVERSITY


Barcikowski's Most Explanatory Human-Friendly Comparisons (with Scheffe tests assuming equal variances)

MISSOURI STATE UNIVERSITY


\section*{Data References and websites}
- Adjanin, N., \& Brooks, G. P. (2023). Witnessing the Last Tropical Glaciers: Student Use of Virtual Reality Technology to Learn about Climate Change and Protecting Endangered Environments. TOJET: Turkish Online Journal of Educational Technology, 22(4), 248-257. http://www.tojet.net/articles/v22i4/22424.pdf
- Bruning, J. L., \& Kintz, B. L. (1997). Computational handbook of statistics (4 \(4^{\text {th }}\) ed.). Addison Wesley Longman.
- ChickWeight: https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/ChickWeight.html
- Chickwts: https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/chickwts.html
- Howell, D. C. (2004). Fundamental statistics for the behavioral sciences (5th ed.). Thomson Brooks/Cole.
- InsectSprays: https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/InsectSprays.html
- Keselman, H. J., Cribbie, R. A., \& Holland, B. (2004). Pairwise multiple comparison test procedures: An update for clinical child and adolescent psychologists. Journal of Clinical Child and Adolescent Psychology, 33(3), 623-645.
- Maxwell, S. E., \& Delaney, H. D. (2004). Designing experiments and analyzing data: A model comparison perspective (2nd ed.). Lawrence Erlbaum Associates.
- Pituch, K. A., \& Stevens, J. P. (2016). Applied multivariate statistics for the social sciences ( \(6^{\text {th }}\) ed.). Routledge.
- Smiles \& Leniency: https://onlinestatbook.com/case studies rvls/smiles/index.html
- Stevens, J. P. (2007). Intermediate statistics: A modern approach (3rd ed.). Lawrence Erlbaum Associates.
- Toothaker, L. E. (1991). Multiple comparisons for researchers. Sage.

\section*{References}
- Brooks, G. P., \& Adjanin, N. (2023, April). Back to the Future: Human-friendly Scheffé Contrasts, or, the Art of Multiple Comparisons. Paper presented at the 2023 annual meeting of the American Educational Research Association, Chicago.
- Brooks, G. P., Adjanin, N., Oppong, F., \& Liu, Y. (accepted for publication). Human-friendly Scheffé comparisons, or, the art of complex multiple comparisons. General Linear Model Journal. \{glmj.org\}
- Hollingsworth, H. (1978). The coefficients of the normalized maximum contrast as statistics for posttest ANOVA data interpretations. Journal of Experimental Education, 46(4), 4-6.
- Hollingsworth, H. (1980/1981). Maximized posttest comparisons: A clarification. Journal of Experimental Education, 49(2), 92-93.
- Keppel, G., \& Wickens, T. D. (2004). Design and analysis: A researcher's handbook (4th ed.). Pearson Prentice Hall.
- Kirk, R. E. (2013). Experimental design: Procedures for the behavioral sciences (4th ed.). SAGE.
- Maxwell, S. E., Delaney, H. D., \& Kelley, K. (2018). Designing experiments and analyzing data: A model comparison perspective (3rd ed.). Routledge.
- Oppong, F. A., Liu, Y., Adanin, N., \& Brooks, G. P. (2023, October). "Everything Old Is New Again": Human-friendly Scheffé contrasts and "All That Jazz." Paper presented at the 2023 annual meeting of the Mid-Western Educational Research Association, Cincinnati.
- \(\quad\) Scheffé, H. (1953). A Method for Judging all Comparisons in the Analysis of Variance. Biometrika, 40, 87-104.
- Schmid, J. (1977). Editor's commentary: Meaningless complex posttest comparisons. Journal of Experimental Education, 46(1), 4-5.
- Williams, J. D. (1979/1980). A note on maximized posttest comparisons. Journal of Experimental Education, 48(2), 116-118.

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/
https://tinyurl.com/35bkmk5u

\section*{Thank you!}


SCAN ME```

