

Using Human-Friendly Scheffé Comparisons to Explore Group Differences in One-way ANOVA

Gordon Brooks, Ph.D. Ohio University (Athens, Ohio) Nina Adjanin, Ph.D. Northwest Missouri State University

Presented at The Athens Institute for Education and Research (ATINER) 18th Annual International Conference on Statistics: Teaching, Theory & Applications 1-4 July 2024, Athens, Greece

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/

Multiple Comparison Procedures (Post Hoc)

- Researchers commonly use MCPs following statistically significant ANOVA and main effects from Factorial ANOVA
- Most commonly these are post hoc pairwise comparisons (e.g., Tukey-Kramer or Games-Howell), but researchers do sometimes use a priori contrasts that include non-pairwise (complex) comparisons
- Very few use the Scheffé post hoc method because it is well-known to lack the statistical power of other MCPs for the pairwise post hoc comparisons that most researchers use—and most statistics programs provide only pairwise Scheffé
- The Scheffé MCP has lower power because it **adjusts for all possible comparisons**: all pairwise and non-pairwise comparisons—but researchers often don't know where to start with non-pairwise post hoc comparisons

https://people.ohio.edu/brooksg/

https://www.ninaadjanin.com/

First... a little joke...

One of the Most Embarrassing Outcomes for a Statistician...

- **Result:** The F-test for a One-Way ANOVA with five treatment groups is significant at the .05 level but **NONE of the pairwise comparisons** between the five means is statistically significant.
- Solution: Cry hard... then work hard... to find some obscure, meaningless complex (i.e., Scheffé) comparison that <u>IS</u> significant, such as: the average of the first three treatment means is significantly different from the average of the last two treatment means!

(from Gary Ramseyer's First Internet Gallery Of Statistics Jokes: <u>https://about.illinoisstate.edu/gcramsey/other/</u>)

https://people.ohio.edu/brooksg/

Congruence of Scheffé with Omnibus ANOVA

- However, only Scheffé MCP guarantees <u>congruence</u> to find a statistically significant comparison when the omnibus ANOVA is statistically significant—and conversely, NOT find one when ANOVA is not significant
 - As the joke said... ANOVA can be significant, but no pairwise comparison is
 - See Kirk (2013), Maxwell, Delaney, & Kelley (2018), Keppel & Wickens (2004)
- A maximum Scheffé contrast/comparison can be calculated that provides the set of contrast coefficients for the means that maximally differentiates some combination of groups on the dependent variable
 - And there is a formula... so it is **not a lot of hard work** to calculate the **MAX**
 - This *maximum* comparison has the same statistical significance as the omnibus Fisher F ANOVA and is usually a **non-pairwise**, complex comparison
 - Unfortunately, the hard work can be in the interpretation

Scheffé Maximum Contrast/Comparison

Scheffé (see Keppel & Wickens, 2004; Williams, 1979)

 $c_i' = \frac{N_i(\bar{X}_i - \bar{T})}{\sqrt{SSB}}$

Hollingsworth (1978, see also Williams, 1979)

$$c_i = \frac{\sqrt{\widetilde{N}}(\overline{X}_i - \overline{T})}{\sqrt{SSB}}$$

Where:

 c_i is the contrast/comparison coefficient for group *i* N_i is the sample size in each group \overline{T} is the dependent variable grand mean for the total sample $\overline{X_i}$ is the dependent variable mean for group *i SSB* is the sum of squares between groups from ANOVA \widetilde{N} is the harmonic mean group sample size

ATINER – July 202

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/

Maximum Contrast/Comparisons (continued)For example: $N_i = 10$ for all groups $\overline{T} = 49.3$ SSB = 698.4 $\overline{X_i} = \{54.9, 45.9, 51.7, 44.7\}$

Therefore, the *unscaled* contrast coefficients, *c*_{*i*}, are calculated as follows:

/ 26.43 = 2.119	c ₁ = 10(54.9-49.3) / 26.43 = 5
/ 26.43 = -1.286	c ₂ = 10(45.9-49.3) / 26.43 = -
/ 26.43 = 0.908	c ₃ = 10(51.7-49.3) / 26.43 = 2
/ 26.43 = <mark>-1.742</mark>	c ₄ = 10(44.7-49.3) / 26.43 = -

ATINER – July 2024

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/

Scheffé and Non-pairwise Complex Comparisons

- Unfortunately, coefficient weights from this maximum Scheffé comparison are often uninterpretable or meaningless from a practical or theoretical perspective (*see introductory joke*... also see Schmid, 1977).
- For example, it is hard to make sense of the maximum Scheffé coefficients from the previous slide

https://people.ohio.edu/brooksg/

https://www.ninaadjanin.com/

Robert Barcikowski & Rationale for "Human Contrasts"

```
This program computes one-way analysis of variance with
  both Scheffe and Brown-Forsythe-Scheffe post hoc tests.
С
  It was pieced together by Robert S. Barcikowski during
  the last week in April, 1993 and revised April, 2000.
DO 14 I = 1, JN
  ZMEAN(I) = (XBAR(I) - GM) / DMS
14 CONTINUE
  CALL HOLLY (LEVELS, SSB, GM, XBAR, BARCOE, RN)
  PRINT 12, (BARCOE(I), I = 1, LEVELS)
12 FORMAT (1H0, 'MAXIMUM CONTRAST HAS FOLLOWING COEFFICIENTS'
       ,//,10F8.3,//)
 <
  CALL HELMRT (HELM, LEVELS, ALLCON, HELNUM)
  CALL SCHEFE (BARCOE, XBAR, LEVELS, MSE, . . , ITEST)
  CALL BFS (SDE, BARCOE, RN, LEVELS, DFB, ALPHA, APSI)
  IF (NC .EO. 0) GO TO 23
23 STOP
  END
```

Barcikowski originally wrote the program in FORTRAN and Brooks & Adjanin converted it to R and R Shiny. The purpose is to provide a relatively easy way (unlike in the joke) to find statistically significant – and **INTERPRETABLE** – Scheffé comparisons (and Brown-Forsythe adjustments for unequal variances, like Games-Howell)

https://people.ohio.edu/brooksg/

OHIO

Barcikowski "Human-Friendly" Complex Comparisons

- Barcikowski suggested a method to identify the maximum "humanfriendly" comparison that approximates the maximum Scheffé comparison—but with coefficients that are reasonably interpretable
- Barcikowski approach tests all possible comparisons that use "reasonable" (i.e., human-friendly) ways to compare complex combinations of groups, for example:
 - Comparison of a control (or combination of treatments) group with the average of multiple treatment groups (i.e., **something versus nothing**)
 - Comparison of a low-dose treatment group with the average of higher-dose groups (i.e., **some versus more**)
 - Comparison of the average of 2 control groups with average of 3 treatment groups (*we disagree with the joke here...*)

"Human-friendly" contrasts ("*Helmert-plus*" complex comparisons)

Helmert:

$$\begin{cases} 1\mu_1 - \frac{1}{4}\mu_2 - \frac{1}{4}\mu_3 - \frac{1}{4}\mu_4 - \frac{1}{4}\mu_5 \\ \mathbf{0}\mu_1 + 1\mu_2 - \frac{1}{3}\mu_3 - \frac{1}{3}\mu_4 - \frac{1}{3}\mu_5 \\ \mathbf{0}\mu_1 + \mathbf{0}\mu_2 + 1\mu_3 - \frac{1}{2}\mu_4 - \frac{1}{2}\mu_5 \\ \mathbf{0}\mu_1 + \mathbf{0}\mu_2 + \mathbf{0}\mu_3 + 1\mu_4 - 1\mu_5 \\ (\frac{1}{2}\mu_1 + \frac{1}{2}\mu_2 - \frac{1}{3}\mu_3 - \frac{1}{3}\mu_4 - \frac{1}{3}\mu_5 \end{cases}$$

PIUS (for example): $\begin{cases} 2^{\prime} + 2^{\prime} + 2^{\prime} + 2^{\prime} + 2^{\prime} + 3^{\prime} + 3^{\prime$

FOREVER OHIO

ATINER - July 2024

https://people.ohio.edu/brooksg/

https://www.ninaadjanin.com/

			Со	mparison (Coefficient				-	
Comparison	1	2	3	4	5	6	7	8		
1	0.25	0.25	0.25	0.25	-0.25	-0.25	-0.25	-0.25		
2	0.33	0.33	0.33	-0.20	-0.20	-0.20	-0.20	-0.20		
3	0.33	0.33	0.33	0	-0.25	-0.25	-0.25	-0.25	Groups	Comparisons
4	0.33	0.33	0.33	0	0	-0.33	-0.33	-0.33	2	
5	0.50	0.50	-0.17	-0.17	-0.17	-0.17	-0.17	-0.17	3	6
6	0.50	0.50	0	-0.20	-0.20	-0.20	-0.20	-0.20	4	25
7	0.50	0.50	0	0	-0.25	-0.25	-0.25	-0.25		
8	0.50	0.50	0	0	0	-0.33	-0.33	-0.33	5	75
9	0.50	0.50	0	0	0	0	-0.50	-0.50	6	301
10	1.00	-0.14	-0.14	-0.14	-0.14	-0.14	-0.14	-0.14		
11	1.00	0	-0.17	-0.17	-0.17	-0.17	-0.17	-0.17	7	476
12	1.00	0	0	-0.20	-0.20	-0.20	-0.20	-0.20	8	3025
13	1.00	0	0	0	-0.25	-0.25	-0.25	-0.25	Ū	0010
14	1.00	0	0	0	0	-0.33	-0.33	-0.33		
15	1.00	0	0	0	0	0	-0.50	-0.50		
16	1.00	0	0	0	0	0	0	-1.00		

And then all permutations of these sets of coefficients... resulting in 3025 unique comparisons (in the case of 8 groups)

https://people.ohio.edu/brooksg/

https://www.ninaadjanin.com/

Barcikowski Human-Friendly Complex Comparisons

- Barcikowski's method identifies the maximum comparisons (based on contrast sum of squares explained) from among all possible reasonably interpretable Scheffé-like, Human-friendly contrasts/comparisons
 - This will include any statistically significant pairwise comparisons
 - We call them "comparisons" because they are intended for Post Hoc (even though Scheffé are typically called "contrasts")
- We have created an R Shiny web app to obtain
 - the Scheffé, Scaled Scheffé, and Hollingsworth maximum comparisons
 - the maximum **Barcikowski human-friendly comparison**, and all other statistically significant human-friendly comparisons
 - the relatively unknown Brown-Forsythe adjustment to the Scheffé MCP for when the equal variances assumption is not met

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/

Purpose of Presentation

- To share results from recent research (especially, congruence) that supports the use of Barcikowski's Human-friendly comparisons method
- Further, we will share information about using the R Shiny App
- Finally, we share some examples of datasets from among several well-known design and analysis textbooks that might have benefited from using Scheffé maximum comparisons and Barcikowski human-friendly comparisons instead of focusing only on Pairwise comparisons

OHIO UNIVERSITY

Congruence for Non-significance (robustness)

					1 st most	2 nd most	
			Scheffé	Hollingsworth	explanatory	explanatory	
			maximum	maximum	Human-friendly	Human-friendly	
			comparison	comparison	comparison	comparison	
N	SD	Shape					
40,40,40,40	10,10,10,10	Normal	100.00%	100.00%	99.29%	98.13%	
28,36,44,52	10,10,10,10	Normal	100.00%	99.70%	99.01%	97.94%	
40,40,40,40	13,11,9,7	Normal	100.00%	100.00%	99.36%	98.32%	
28,36,44,52	13,11,9,7	Normal	100.00%	99.64%	98.82%	97.40%	
28,36,44,52	7,9,11,13	Normal	100.00%	99.76%	99.23%	98.35%	
40,40,40,40	10,10,10,10	Skewed	100.00%	100.00%	99.25%	98.03%	
28,36,44,52	10,10,10,10	Skewed	100.00%	99.61%	99.03%	97.95%	
40,40,40,40	13,11,9,7	Skewed	100.00%	100.00%	99.34%	98.03%	
28,36,44,52	13,11,9,7	Skewed	100.00%	99.69%	98.84%	97.53%	
28,36,44,52	7,9,11,13	Skewed	100.00%	99.77%	99.28%	98.52%	
40,40,40,40	10,10,10,10	Kurtotic	100.00%	100.00%	99.16%	98.02%	
28,36,44,52	10,10,10,10	Kurtotic	100.00%	99.64%	99.01%	98.02%	
40,40,40,40	13,11,9,7	Kurtotic	100.00%	100.00%	99.22%	98.01%	Lowest
28,36,44,52	13,11,9,7	Kurtotic	100.00%	99.66%	98.80%	97.36%	congruence
28,36,44,52	7,9,11,13	Kurtotic	100.00%	99.74%	99.23%	98.39%	
							FOREV

https://people.ohio.edu/brooksg/

https://www.ninaadjanin.com/

Congruence for Significance (statistical power)

1st most2nd mostScheffé maximum comparisonHollingsworth maximum comparisonexplanatory Human-friendly comparisonHuman-friendly comparisonMeans50, 50, 54 1100.00%100.00%97.52%93.31%50, 50, 50, 58 1100.00%100.00%98.98%96.62%	
Means 97.52% 93.31% 50, 50, 50, 54 ¹ 100.00% 100.00% 98.98% 96.62%	
50, 50, 54 1100.00%100.00%97.52%93.31%50, 50, 50, 58 1100.00%100.00%98.98%96.62%	
50, 50, 58 ¹ 100.00% 100.00% 98.98% 96.62%	
50, 50, 54, 54 ¹ 100.00% 100.00% 96.95% 91.03% Lowest	
50, 50, 54, 54 ² 100.00% 99.11% 96.17% 90.56% congrue	ence
50, 50, 54, 54 ³ 100.00% 96.94% 91.18%	
50, 50, 54, 58 ⁻¹ 100.00% 100.00% 98.15% 94.37%	
50, 50, 58, 58 ⁻¹ 100.00% 100.00% 99.24% 97.04%	
50, 54, 54, 58 ¹ 100.00% 97.53% 92.35%	

4-group results were presented at American Educational Research Association (AERA) in April 2023 and 5-group results were presented at Mid-Western Educational Research Association (MWERA) in October 2023, and all results have been accepted for publication in the General Linear Model Journal (glmj.org).

2-unequal sample sizes, equal variances; 3-equal sample sizes, unequal variances

Value of Complex versus Pairwise Comparisons

- We reviewed many datasets used as examples for ANOVA in well-known textbooks and also many datasets provided by R datasets package
 - Most of these example datasets were also used to illustrate Pairwise Multiple Comparison Procedures
- We identified numerous examples from among these well-known datasets where the pairwise comparisons were not the most explanatory—we will share several such examples
- We believe there can be **value** in identifying, and making sense of, the **maximum Scheffé comparison** (which is frequently a complex comparison), or similarly, a *Barcikowski Human-friendly comparison*

https://people.ohio.edu/brooksg/

https://www.ninaadjanin.com/

Example: All 25 sets of coefficients for 4 groups

	Contr	ast/Compa	rison Coeff	icient		Contr	ast/Compa	rison Coeff	icient
Comparison	1	2	3	4	Comparison	1	2	3	4
1	1.00	-0.50	-0.50	0	13	1.00	-0.33	-0.33	-0.33
2	1.00	-0.50	0	-0.50	14	-0.33	1.00	-0.33	-0.33
3	1.00	0	-0.50	-0.50	15	-0.33	-0.33	1.00	-0.33
4	0	1.00	-0.50	-0.50	16	-0.33	-0.33	-0.33	1.00
5	-0.50	1.00	-0.50	0	17	1.00	-1.00	0	0
6	-0.50	1.00	0	-0.50	18	1.00	0	-1.00	0
7	-0.50	0	1.00	-0.50	19	1.00	0	0	-1.00
8	0	-0.50	1.00	-0.50	20	0	1.00	-1.00	0
9	-0.50	-0.50	1.00	0	21	0	1.00	0	-1.00
10	-0.50	-0.50	0	1.00	22	0	0	1.00	-1.00
11	-0.50	0	-0.50	1.00	23	0.50	0.50	-0.50	-0.50
12	0	-0.50	-0.50	1.00	24	0.50	-0.50	0.50	-0.50
					25	0.50	-0.50	-0.50	0.50

https://people.ohio.edu/brooksg/

https://www.ninaadjanin.com/

OHIO UNIVERSITY

Barcikowski's Most Explanatory Human-Friendly Comparisons (with Scheffe tests assuming equal variances)

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/

OHIO UNIVERSITY

Barcikowski's Most Explanatory Human-Friendly Comparisons (with Scheffe tests assuming equal variances)

i Information

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/

Additional Results

	Descriptive	e Statis	tics are	from psych::c	describeBy()	and psych::des	cribe()						Group	Pseudo-Experimental VR Group
	Descript	tive Sta	atistics	BoxPlots									1	Computer
	Group		n 🔺	mean 🔺	sd 🔺	median 🔺	min 🔺	max 🔺	range	skew 🔺	kurtosis	50	2	Oculus
Adjanin	eroup			moun	54	moulun			runge	SACH	Kurtoolo	 30	3	SmartPhone
	1		31	4.2016	0.7428	4.2500	2.7500	5.0000	2.2500	-0.5854	-0.9511	0.1334		
and	2		62	3.9637	0.3837	4.0000	3.0000	5.0000	2.0000	-0.0546	0.4522	0.0487		
Brooks	3		131	4.2615	0.7077	4.5000	1.5000	5.0000	3.5000	-1.1203	1.1978	0.0618	•	Contains all
DIOOKS	TOTAL		224	4.1708	0.6506	1.5000	5.0000	3.5000	0.0435		224.0000	4.1708		information
(2023) continued	Omnil	bus ation	Test	& Assu	mption	S								complete One-way
	Omnibu	s ANO	VA	Homoscedasti	city Assumpt	ion Normality	Assumption							analysis.
		Test				A V	Statistic	A.	df1 🍦		df2 🍦	Pval 🍦	i	including
	1	Fisher	r's F				4.589)7	2.0000	2	21.0000	0.0111		descriptive
	2	Welch	ı's F				7.484	8	2.0000		76.8525	0.0011		statistics and
	3	Brown	n-Forsyth	ne F			4.766	9	2.0000		77.4731	0.0112		assumptions
	4	Kruska	al-Wallis	X2			17.196	64	2.0000			0.0002	,	

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/

One-way ANOVA results from jmv package with pairwise comparisons

jmv::anovaOn	W with Game	es-Howell & Assur	nptions jmv:	::ANOVA with	Helmert, Tukey,	Scheffe, and Ef	fect Sizes			
								J		
ANOVA									Group	Pseudo-Expe
ΔΝΟΥΔ - DV									1	Co
	Sum of Sa	uares df	Mean Square	E					3	Sm
				F	P	l				011
Group Residuals	3.70 90.6	64880 2 41091 221	1.8824402 0.4101407	4.589743	0.0111426	0.0398797				
CONTRACTS									•	Includes
CONTRASTS										from the
Contrasts - 	roup									package
	Estimate	SE	t	р						both Ga
1 - 2, 3	0.0890328	7 0.12516728	0.7113111	0.4776416	i					Howell a
2 - 3	-0.29774070	0 0.09872192	-3.0159534	0.0028616					•	
										Helmert
POST HOC TES	S									contrasts
Post Hoc Com	arisons - G	roup								informat
	Group	Mean Difference	s SE	df	t	p-tukey	p-scheffe	Cohen's d		these are
Group	di dup									
Group 1 -	2	0.23790323	0.14087412	2 221.0000	1.6887646	0.2117589	0.2424789	0.37147869		values

Note. Comparisons are based on estimated marginal means

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/

Barcikowski's Most Explanatory Human-Friendly Comparisons (with Scheffe tests assuming equal variances)

Scheffé Family . 345-12 not most explanatory after "humanized" (two coefficients very close to 0)

- 345-12 Family ٠ appears as 6th
 - contrast on page 2 of results
- Barcikowski MAX • does not include them (they are 0)
- Could simplify the ٠ SchefféMAX and test it specifically, but there could be multiple ways to simplify it
- The Barcikowski comparisons do this automatically

Based on Miller (1981)

lwr.ci 🍦	upr.ci 🍦	pval 🍦	Cohens
4.9738	14.9262	0.0001	3.
3.8750	13.2583	0.0002	3.1
16 1461	4 6539	0.0002	3 1

Toothaker (1991)Table 3.3 (p. 72)

i Information

[1] 75

Total number of Comparisons tested:

	SSQ ≑	Coef1 🝦	Coef2	Coef3 🔶	Coef4 🔶	Coef5	diff 🔶	lwr.ci 🔶	upr.ci 🍦	pval 🍦	Cohens.d 🗍
40	9.1669	-0.5000	-0.5000	0.0000	0.0000	1.0000	9.9500	4.9738	14.9262	0.0001	3.7081
60	7.6445	-0.3333	-0.3333	-0.3333	0.0000	1.0000	8.5667	3.8750	13.2583	0.0002	3.1926
7	7.5111	1.0000	0.0000	0.0000	0.0000	-1.0000	-10.4000	-16.1461	-4.6539	0.0002	3.8758
58	7.4084	-0.3333	-0.3333	0.0000	-0.3333	1.0000	8.4333	3.7417	13.1250	0.0002	3.1429
65	6.7167	-0.2500	-0.2500	-0.2500	-0.2500	1.0000	7.7750	3.2323	12.3177	0.0004	2.8976
Showir	ng 1 to 5 of 3	2 entries					Previous	1 2	3 4	56	7 Next

Scheffe Tests of Maximum Comparisons assuming equal Variances

i Information											
	Coef1	Coef2	Coef3 🝦	Coef4 🍦	Coef5 🝦	Family 🗍	Diff	lwr.ci 🍦	upr.ci 🍦	pval 🍦	Cohens.d 🝦
ScheffeMAX	-1.1354	-0.8909	0.1141	0.2227	1.6895	3,4,5-1,2	18.4076	9.3223	27.4929	0.0000	6.8601
ScaledMAX	-0.5603	-0.4397	0.0563	0.1099	0.8338	3,4,5-1,2	9.0842	4.6006	13.5678	0.0000	3.3855
HollingsworthMAX	-0.5078	-0.3984	0.0510	0.0996	0.7556	3,4,5-1,2	8.2321	4.1690	12.2952	0.0000	3.0679
BarcikowskiMAX	-0.5000	-0.5000	0.0000	0.0000	1.0000	5-1,2	9.9500	4.9738	14.9262	0.0001	3.7081

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/

Barcikowski's Most Explanatory Human-Friendly Comparisons (with Scheffe tests assuming equal variances)

			•	· · · · ·										
	i Infor	rmation											DV	Test_Scores
	Total	number of Co	omparisons tes	sted:									Group	Teaching_Method
Tambano		2											1	1_Case
laillialle		SSQ 🔶	Coef1 🍦	Coef2	Coef3 🍦	Coef4	dif	fr≑ lva	/r.ci 🗍	upr.ci 🍦	pval 🍦	Cohens.d 🍦	3	3 Equation
and	18	6.0495	-0.5000	-0.5000	0.0000	1.000	0 12.5	529	6.7574	18.3484	0.0000	3.0123	4	4_Unitary_Analysis
_	23	6.0098	0.5000	0.5000	-0.5000	-0.500	-10.2	157 -14	4.9477	-5.4837	0.0000	2.4515	• [iamily 12 24 is 2nd
Dunlop	5	5.5153	1.0000	0.0000	0.0000	-1.000	-13.84	400 -20	0.5321	-7.1479	0.0000	3.3212	• r	nost explanatory
(2000)	9	5.0798	1.0000	0.0000	-0.5000	-0.500	00 -11.50	029 -17	7.2984	-5.7074	0.0001	2.7604	a	Ifter being
(2000)	22	4.2559	-0.3333	-0.3333	-0.3333	1.000	9.92	267 4	4.4626	15.3907	0.0002	2.3821	• (Dne
Table	Showing	g 1 to 5 of 16 e	entries						F	Previous	1 2	3 4 Next	E	Barcikowski
12 5	Sch	effe Test	ts of Max	kimum (Compari	isons a	ssumin	a equa	al Varia	ances			C	comparison is
12.5	i Infor	mation						.					· E	explanatory
(p. 479)			Coef1 🍦	Coef2 🝦	Coef3 🍦	Coef4 🍦	Family 🕴	Diff 🛓	lwr.ci	upr.ci	pval 🍦	Cohens.d 🍦	t	han the Scheffé
	Schef	feMAX	-1.5536	-0.9282	0.6731	1.8087	3,4-1,2	28.8130	16.293	33 41.33	27 0.0000	6.9143	4	'family"
	Scale	XAM	-0.6260	-0.3740	0.2712	0.7288	3,4-1,2	11.6094	6.565	50 16.65	39 0.0000	2.7860	• F	Pairwise 3 rd
	Holling	gsworthMAX	-0.5872	-0.3508	0.2544	0.6836	3,4-1,2	10.8903	6.158	33 15.62	23 0.0000	2.6134		from Sparks
	Barcil	kowskiMAX	-0.5000	-0.5000	0.0000	1.0000	4-1,2	12.5529	6.757	4 18.34	84 0.0000	3.0123		(1963)

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/

OHIO UNIVERSITY

Chick

(R

Weight

Day 21

only)

Barcikowski's Most Explanatory Human-Friendly Comparisons (with Scheffe tests assuming equal variances)

	Coef1 🍦	Coef2 🝦	Coef3 🝦	Coef4 🍦	Family	Diff 🝦	lwr.ci 🍦	upr.ci 🍦	pval 🍦	Cohens.d 🍦
ScheffeMAX	-2.7396	-0.1668	2.1586	0.7478	3,4-1,2	239.0904	52.5729	425.6079	0.0069	3.7369
ScaledMAX	-0.9426	-0.0574	0.7427	0.2573	3,4-1,2	82.2612	18.0882	146.4342	0.0069	1.2857
HollingsworthMAX	-0.7035	-0.1571	0.6650	0.1956	3,4-1,2	67.6319	14.2644	120.9993	0.0077	1.0571
BarcikowskiMAX	1.0000	0.0000	-1.0000	0.0000	1-3	-92.5500	-167.7376	-17.3624	0.0101	1.4465

4 protein diets

- Family 12-34 for • SchefféMAX is 4th most explanatory after being "Humanized"
- 2 coefficients closer to 0 so BarcikowskiMAX is a different "family"
- Sometimes • **PAIRWISE** is the most explanatory

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/

(2007)

Street

Data

Barcikowski's Most Explanatory Human-Friendly Comparisons (with Scheffe tests assuming equal variances)

i Information Total number of Comparisons tested: [1] 25 **Stevens** SSQ Coef2 Coef3 Coef4 diff 🖕 pval Cohens.d Coef1 upr.ci lwr.ci 🔶 9 0.0000 -0.5000 -12.9782.0000 1.3161 1.1547 1.0000 -0.5000-17.4947-8.4617 23 1.0374 0.5000 0.5000 -0.5000 -10.0439 -13.6360 -6.4519 000 1.0185 Another example -0.5000Sesame where the -1.0000 10 5 0.9285 1.0000 0.0000 0.0000 -13.4379 -18.6064 -8.2694 0. 1.3627 "Family" changes -0.3333 -10.6083 1 0.8679 1.0000 -0.3333 -0.3333 -14.9009 -6.3157 0.00 1.0758 But... 0.0000 -12.5185 -7.3877 0.00 7 0.8058 1.0000 0.0000 -1.0000 -17.6493 1.2695 An example • of Violation Showing 1 to 5 of 19 entries Previous 3 Next 1 2 of (p. 100) Scheffe Tests of Maximum Comparisons assuming equal Variances Homogeneity i Information of Variances Family oval Cohens.d 🖕 (see next Coef2 Diff 💧 upr.ci Coef1 Coef3 Coef4 lwr.ci 🌢 slide) -5.4001 3.2799 3.8661 3,4-1,2 82.7663 110.5333 0000 8.3931 ScheffeMAX -1.7459 54.9992 -0.7557 15.4678 00 -0.2443 0.4590 0.5410 3,4-1,2 11.5821 7.6965 1.1745 ScaledMAX 0. HollingsworthMAX -0.7308 -0.1918 0.4191 0.5035 3,4-1,2 10.8868 7.2308 14.5429 0.0 1.1040 From Educational **Testing Service** 1.0000 0.0000 -0.5000 -0.5000 1-3,4 -12.9782 -17.4947 -8.4617 0.00 1.3161 **BarcikowskiMAX**

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/

Omnibus Test & Assumptions

	i Info	ormation		_		
	Om	nibus ANOVA	Homoscedasticity Assumption	Normality Assumption		
Stevens		Test		♣ Statistic ♣	df1 👙	
	1	Breusch-Pag	gan	10.7778	3.0000	
(2007)	2	Levene (mea	an)	8.1381	3.0000	
Socomo	3	Levene (med	dian)	7.3416	3.0000	
Jesaine	4	Levene (zer	o correction)	7.5196		
Street	5	Levene (zero	o removal)	7.4444		
Data	Om	nibus Tes	st & Assumptions			
	i Info	ormation				
(p. 100)	Omr	hibus ANOVA	Homoscedasticity Assumption	Normality Assumption		
		Test	Å	Statistic 🍦	df1 🍦	
	1	Fisher's F		23.4812	3.0000	
	2	Welch's F		30.2588	3.0000	

24.1719

64.6661

3.0000

3.0000

But... ٠

٠

Pval

0.0130

0.0000

0.0001

0.0001

0.0001

Pval 4

0.0000

0.0000

0.0000

0.0000

df2 🖕

236.0000

236.0000

df2 🔶

236.0000

130.4942

218.1689

An example of **Violation of Homogeneity of** Variances Welch is statistically significant (as well as Brown-Forsythe omnibus test)

From Educational **Testing Service**

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/

Brown-Forsythe F

Kruskal-Wallis X2

3

4

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/

OHIO UNIVERSITY

i Information

Barcikowski's Most Explanatory Human-Friendly Comparisons (with Scheffe tests assuming equal variances)

feed

casein

horsebean

linseed

meatmeal

soybean

sunflower

Group

2

6

Four Human contrasts more

explanatory than

Cohens.d

10.1916

15.0799

15.0108

10.2032

16.6018

37

Next

Total number of Comparisons tested: [1] 196 chickwts Coef6 diff 🗄 upr.ci SSQ Coef1 Coef2 Coef3 Coef4 Coef5 lwr.ci pval **(R** 155.804 -0.3333 0.3333 0.3333 -0.3333 0.3333 -0.3333 -36.8333 -39.7929 -33.8738 0.0000 193 67 54.5000 50.0419 58.9581 0.0000 151.602 1.0000 -0.5000 -0.5000 0.0000 0.0000 0.0000 dataset) 66 150.215 -58.9499 0.0000 -54.2500 -49.5501 -0.5000 1.0000 0.0000 -0.5000 0.0000 0.0000 174 -36.8750 -40.0713 -33.6787 0.0000 138.806 -0.2500 0.5000 0.5000 -0.2500 -0.2500 -0.2500 -1.0000 19 137.809 1.0000 0.0000 0.0000 0.0000 0.0000 60.0000 54.6888 65.3112 0.0000 Showing 1 to 5 of 181 entries Previous 2 3 5 1 4

Scheffe Tests of Maximum Comparisons assuming equal Variances

i Information													first Pairwise
	Coef1 🝦	Coef2 🍦	Coef3 🍦	Coef4 🍦	Coef5 🍦	Coef6 🍦	Family 🍦	Diff 🍦	lwr.ci 🍦	upr.ci 🍦	pval 🍦	Cohens.d 🔶	Maybe something useful
ScheffeMAX	2.0798	-1.7919	-1.3748	1.1633	-0.5346	0.4583	1,4,6-2,3,5	170.2087	157.8044	182.6130	0.0000	47.0961	theoretically from
ScaledMAX	0.5619	-0.4841	-0.3714	0.3143	-0.1444	0.1238	1,4,6-2,3,5	45.9857	42.6344	49.3370	0.0000	12.7241	combining 2,3,5
HollingsworthMAX	0.5880	-0.5913	-0.3751	0.3620	-0.1196	0.1360	1,4,6-2,3,5	50.8744	47.1535	54.5954	0.0000	14.0768	Or 1 vs 23
BarcikowskiMAX	-0.3333	0.3333	0.3333	-0.3333	0.3333	-0.3333	2,3,5-1,4,6	-36.8333	-39.7929	-33.8738	0.0000	10.1916 •	Or 2 vs 14
												•	Or 23 vs 1456

ATINER – July 2024

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/

Barcikowski's Most Explanatory Human-Friendly Comparisons (with Scheffe tests assuming equal variances)

	i Info	rmation													
	Total	number of C	omparisons	tested:										DV	Y
eselman	[1] 7	5												Group	Level
vibbio		SSQ 🔶	Coef1	Coef2	Coef3	Coef4	Coef	5 dif	ff≑ lw	/r.ci ∳ u	ıpr.ci 🍦	pval 🍦	Cohens.d 🝦	1	1_TwoBelow
eladi	15	2.1272	1.0000	0.0000	0.0000	-0.500)0 -0.5	000 -1.4	772 -2	2.1888	-0.7657	0.0000	1.7863	2	2_Onebelow
Holland	66	2.0849	0.5000	0.5000	-0.3333	-0.333	33 -0.3	333 -1.0	901 -1	1.6204	-0.5597	0.0000	1.3181	3	3_Same
·····	7	2.0036	1.0000	0.0000	0.0000	0.000)0 -1.0	000 -1.6	555 -2	2.4771	-0.8339	0.0000	2.0018	4	5 Two Above
2004)	40	2.0010	-0.5000	-0.5000	0.0000	0.000	00 1.0	000 1.4	327 ().7212	2.1443	0.0000	1.7325	5	5_TWOADOVE
	43	1.8900	1.0000	0.0000	-0.3333	-0.333	33 -0.3	333 -1.3	128 -1	.9837	-0.6420	0.0000	1.5875	Family	345-12 but
airwise	Showin	ig 1 to 5 of 38	entries					Pre	vious	1 2	3 4	5	8 Next	two coe	efficients
nultiple omparison est	Sch i Info	effe Tes	ts of M	aximun	n Comp	parisor	าร ลรรเ	uming e	equal	Variand	es		•	Barciko not incl TwoBel	wski does ude them ow vs
rocedures:			Coef1 🝦	Coef2 🝦	Coef3 🝦	Coef4 🍦	Coef5	Family 🝦	Diff 👙	lwr.ci 🍦	upr.ci	pval 🗍	Cohens.d 🝦	(OneAb	ove &
n update	Schet	feMAX	-2.9633	- 1.4577	0.3623	1.4269	2.6318	3,4,5-1,2	5.9176	3.3195	8.5158	8 0.0000	7.1556	Below	ve) vs (Same 8
or clinical	Scale	dMAX	-0.6703	-0.3297	0.0820	0.3228	0.5953	3,4,5-1,2	1.3385	0.7508	1.9262	2 0.0000	1.6185	Above)	-
hild and	Hollin	gsworthMAX	-0.6626	-0.3259	0.0810	0.3191	0.5885	3,4,5-1,2	1.3232	0.7423	1.9042	2 0.0000	1.6000	TwoBel	ow vs ove
sychologists	Barci	kowskiMAX	1.0000	0.0000	0.0000	-0.5000	-0.5000	1-4,5	-1.4772	-2.1888	-0.7657	7 0.0000	1.7863		

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/

Barcikowski's Most Explanatory Human-Friendly Comparisons (with Scheffe tests assuming equal variances)

	i Infor	mation														
	Total number of Comparisons tested: [1] 25											New_Value	Original_Value SystolicBP			
Maxwell													Group	Treatment		
		SSQ 🔶	Coef1 🍦	Coef2 🍦	Coef3 🍦	Coef4	d	iff 🍦 🛛 Iwi	r.ci 🍦	upr.ci 🍦	pval 🍦	Cohens.d 🍦	1	Biofeedback		
and	2 1.8134 0.0000		1.0000	1.0000 -0.5000		0 -13.3	3333 -25	.6573	-1.0094	0.0308	1.6493	2	Combination			
and	4	1.7213	0.0000	1.0000	0.0000	-1.000	0 -15.0	-29	.2304	-0.7696	0.0363	1.8554	3	Diet		
Delaney	20	1.6372	-0.3333	1.0000	-0.3333	-0.333	3 -11.9	9444 -23	.5636	-0.3253	0.0424	1.4775	4	Drug		
(2004)	13	1.4893	-0.5000	1.0000	0.0000	-0.500	0 -12.0	0833 -24	.4073	0.2406	0.0560	1.4946	Their example was			
(2004)	Showing	Showing 1 to 4 of 4 entries Previous 1 Next										1 Next	priori contrasts:			
Table	Sche	effe Test	s of May	amum (Compar	isons a	ssumii	na eana	l Varia	nces			DrugDrug	vs Bio vs Diet		
5 /	i Infor	mation		, in the second s	Jompar		Joann	ig equu	i vana	need			Bio vs	Diet		
J. T			Coef1	Coef2	Coef3 ≜	Coef4	Family 💧	Diff 💧	lwr.ci≜	upr.ci 🛔	pval ≜	Cohens.d 💧	 Comb Comb 	o vs Avg o vs Drug		
(p. 206)	Scheff	eMAX	0.0458	-1.9695	0.5954	1.3283	1,3,4-2	27.2909	2.6430	51.9387	0.0264	3.3757	was o signifi	nly cant Tukey		
	Scaled	IMAX	0.0233	-1.0000	0.3023	0.6744	1,3,4-2	13.8566	1.3420	26.3712	0.0264	1.7140	JEIIII			
	Holling	gsworthMAX	0.0187	-0.8041	0.2431	0.5423	1,3,4-2	11.1415	1.0790	21.2039	0.0264	1.3781	Нv	voothetical		
	Barcik	owskiMAX	0.0000	1.0000	-0.5000	-0.5000	2-3,4	-13.3333	-25.6573	-1.0094	0.0308	1.6493	da	ta		

72x6cr-gordon-brooks.shinyapps.io/Human Friendly Contrasts/

Data References and websites

- Adjanin, N., & Brooks, G. P. (2023). Witnessing the Last Tropical Glaciers: Student Use of Virtual Reality Technology to Learn about Climate Change and Protecting Endangered Environments. *TOJET: Turkish Online Journal of Educational Technology,* 22(4), 248-257. <u>http://www.tojet.net/articles/v22i4/22424.pdf</u>
- Bruning, J. L., & Kintz, B. L. (1997). Computational handbook of statistics (4th ed.). Addison Wesley Longman.
- ChickWeight: <u>https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/ChickWeight.html</u>
- Chickwts: <u>https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/chickwts.html</u>
- Howell, D. C. (2004). Fundamental statistics for the behavioral sciences (5th ed.). Thomson Brooks/Cole.
- InsectSprays: <u>https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/InsectSprays.html</u>
- Keselman, H. J., Cribbie, R. A., & Holland, B. (2004). Pairwise multiple comparison test procedures: An update for clinical child and adolescent psychologists. *Journal of Clinical Child and Adolescent Psychology, 33*(3), 623-645.
- Maxwell, S. E., & Delaney, H. D. (2004). Designing experiments and analyzing data: A model comparison perspective (2nd ed.). Lawrence Erlbaum Associates.
- Pituch, K. A., & Stevens, J. P. (2016). Applied multivariate statistics for the social sciences (6th ed.). Routledge.
- Smiles & Leniency: <u>https://onlinestatbook.com/case_studies_rvls/smiles/index.html</u>
- Stevens, J. P. (2007). Intermediate statistics: A modern approach (3rd ed.). Lawrence Erlbaum Associates.
- Toothaker, L. E. (1991). Multiple comparisons for researchers. Sage.

https://people.ohio.edu/brooksg/

References

- Brooks, G. P., & Adjanin, N. (2023, April). Back to the Future: Human-friendly Scheffé Contrasts, or, the Art of Multiple Comparisons. Paper presented at the 2023 annual meeting of the American Educational Research Association, Chicago.
- Brooks, G. P., Adjanin, N., Oppong, F., & Liu, Y. (accepted for publication). Human-friendly Scheffé comparisons, or, the art of complex multiple comparisons. *General Linear Model Journal.* {glmj.org}
- Hollingsworth, H. (1978). The coefficients of the normalized maximum contrast as statistics for posttest ANOVA data interpretations. *Journal of Experimental Education, 46*(4), 4-6.
- Hollingsworth, H. (1980/1981). Maximized posttest comparisons: A clarification. *Journal of Experimental Education, 49*(2), 92-93.
- Keppel, G., & Wickens, T. D. (2004). *Design and analysis: A researcher's handbook* (4th ed.). Pearson Prentice Hall.
- Kirk, R. E. (2013). *Experimental design: Procedures for the behavioral sciences* (4th ed.). SAGE.
- Maxwell, S. E., Delaney, H. D., & Kelley, K. (2018). *Designing experiments and analyzing data: A model comparison perspective* (3rd ed.). Routledge.
- Oppong, F. A., Liu, Y., Adanin, N., & Brooks, G. P. (2023, October). "Everything Old Is New Again": Human-friendly Scheffé contrasts and "All That Jazz." Paper presented at the 2023 annual meeting of the Mid-Western Educational Research Association, Cincinnati.
- Scheffé, H. (1953). A Method for Judging all Comparisons in the Analysis of Variance. *Biometrika, 40,* 87-104.
- Schmid, J. (1977). Editor's commentary: Meaningless complex posttest comparisons. *Journal of Experimental Education,* 46(1), 4-5.
- Williams, J. D. (1979/1980). A note on maximized posttest comparisons. *Journal of Experimental Education, 48*(2), 116-118.

https://people.ohio.edu/brooksg/

https://www.ninaadjanin.com/

72x6cr-gordon-brooks.shinyapps.io/Human_Friendly_Contrasts/

https://tinyurl.com/35bkmk5u

Thank you!

https://people.ohio.edu/brooksg/

https://www.ninaadjanin.com/