Exploring the ANOVA assumption of homoscedasticity and its relationship to Type I Error using MC4G

1. What are the three main assumptions that need to be met when utilizing the ANOVA F test?

A.

Β.

C.

- 2. A. What is the definition of Type I error?
 - B. How is Type I error symbolized?
 - C. Using an example, explain Type I error in your own words.
- 3. For these exercises, we will be focusing on the Assumption of Homoscedasticity. To complete these exercise, you will need to use the MC4G program.

🐺 MC4G: Monte Carlo Analyses for up to 4 Groups 📃 🗆 🔀					
File Analysis Effect Sizes Options Settings Help					
NUMBER OF GROUPS FOR ANALYSIS 2 Groups (Pooled and Separate Variance t-Tests) 3 Groups (Pairwise Contrasts vs. Alpha-adjusted) • 3 Groups (Pairwise and Orthogonal Contrasts) • 3 Groups (All Possible Pairwise Contrasts) • 3 Groups (Tukey & Scheffe Contrasts) • 4 Groups		STATISTICS Group MEAN S.D. S.E. 1 2 MONTE CARLO OPTIONS Random SEED: Do not change seed automatically Run 1 Sample Run 10,000			
GROUP 1	GROUP 3	NUMBER OF REJECTIONS			
0.0 1.0 25	0.0 1.0 25	Hypothesis Being Tested Avg Contrast # Rejections Proportion			
Restrictions	Restrictions	Overall ANOVA F:			
🔲 Integer Data Only	🦳 Integer Data Only	· · · · · · · · · · · · · · · · · · ·			
Minimum Score:	Minimum Score:	ALL PAIRWISE CONTRASTS			
Maximum Score:	Maximum Score:	1v2 t-Test Contrast:			
Normal C Pos Skew	Stabuton: Normal C Pos Skew	2v3 t-Test Contrast:			
O Uniform O Neg Skew	O Uniform O Neg Skew	3v1 t-Test Contrast:			
Reliability: 1.0	Reliability: 1.0	At least 1 Significant Contrast:			
GROUP 2 Pop Mean Pop SD N 0.0 1.0 25 Restrictions Integer Data Only Minimum Score: Maximum Score: Distribution:		ORTHOGONAL CONTRASTS 1v(2+3)/2 t-Test Contrast:			
Normal C Pos Skew		Proce F9 to Bun Analysis or click ->			
Reliability: 1.0		RUN			

Exercise A: ANOVA without Violating the Assumption of Homoscedasticity, Balanced Design

- 1. SETTING THE PARAMETERS FOR THE POPULATION. Set your screen to match the conditions described below.
 - A. Number of Groups: Select "3 Groups (Pairwise and Orthogonal Contrasts)"
 - B. <u>Mean:</u> Because we are examining Type I error, the null hypothesis must be true. Therefore, you may choose any value for the mean; however all means must be equal.
 - C. <u>Standard Deviation</u>: Recall that standard deviation is the square root of variance ($\sqrt{\sigma^2} = \sigma$). In this first example, we will not violate the assumption of homoscedasticity. Therefore, you may choose any value for the standard deviation; however all standard deviations must be equal.
 - D. <u>Sample Size:</u> In this exercise, we will be using a *balanced* design. Therefore, you may choose any value for sample size; however all sample sizes must be equal.
 - E. <u>Number of Samples:</u> To make calculations simple, set the number of samples to 100.

- 3. A. What population mean did you choose for Group 1?
 - B. What population mean did you choose for Group 2?
 - C. What population mean did you choose for Group 3?
 - D. With regard to population, what information do you know about all three of your groups?
 - E. Given this information, is the null hypothesis true or false?

4. RUNNING MC4G

MC4G allows us to simulate data. We have told MC4G that we would like it to create data sets based upon our population parameters. MC4G will create 100 samples of each group. After it creates **each** set of samples (one for each group), MC4G will test the samples using the ANOVA omnibus *F* test. MC4G will record the proportion of times that it **rejects** the **true** null hypothesis.

This process is called Monte Carlo simulation (hence the name of the program: *Monte Carlo Analyses for up to 4 Groups*). In the five exercises that follow, you will perform Monte Carlo simulations and respond to several questions about the results. As you respond to the questions, your focus will be on the ANOVA omnibus *F* test, which is highlighted on screen in yellow.

Note that the screen of newer versions of MC4G varies slightly from the figures in this workbook. You should have no trouble finding the proper information, though.

Recall that Type I error is **<u>not</u>** a measure of the overall probability of rejecting the null hypothesis in an experiment. It is a measure of the probability of rejecting the null hypothesis <u>given that the null hypothesis is true</u>. In our simulations, we have selected **equal** means for our populations; therefore the null hypothesis is **true**.

You will run 10 simulations of this exercise. What is the number of times that you expect MC4G to reject the null hypothesis? Defend your answer by referring to Type I error in your explanation.

B. Run MC4G. To run MC4G, you will click on the "RUN" button on the screen or hit the F9 key. You will run MC4G 10 times. Each time that you run MC4G, record the following information:

Group 1 Mean	Group 2 Mean	Group 3 Mean	# of Rejections	Proportion

- C. What is your *nominal* Type I error rate (also called alpha)? (Hint: what did we arbitrarily set alpha to at the beginning of the exercise?)
- D. What is the average number of times MC4G rejected a *true* null hypothesis (made a Type I error)? To get a better estimate of the actual Type I error rate, we need to average the number of rejections across the 10 Monte Carlo simulations.
- E. What is the average *actual* alpha for the simulations?
- F. Is this average actual Type I error rate what you expected? Why or why not?

G. Given the fact that you know the null hypothesis is true, how can you account for rejections of the null hypothesis?

Exercise B: ANOVA without Violating the Assumption of Homoscedasticity, Unbalanced Design

- 1. SETTING THE PARAMETERS FOR THE POPULATION. Set your screen to match the conditions described below. **Changes from Exercise A will be noted in bold print.**
 - A. Number of Groups: Select "3 Groups (Pairwise and Orthogonal Contrasts)"
 - B. <u>Mean:</u> Because we are examining Type I error, the null hypothesis must be true. Therefore, you may choose any value for the mean; however all means must be equal.
 - C. <u>Standard Deviation</u>: Recall that standard deviation is the square root of variance ($\sqrt{\sigma^2} = \sigma$). In this second example, we will not violate the assumption of homoscedasticity. Therefore, you may choose any value for the standard deviation; however all standard deviations must be equal.
 - D. <u>Sample Size:</u> In this exercise, we will be using an *unbalanced* design. Therefore, choose *one* of the groups on your screen and double the sample size.

🌃 MC4G: Monte Carlo Ar	🌇 MC4G: Monte Carlo Analyses for up to 4 Groups 📃 🗆 🔀					
File Analysis Effect Sizes (File Analysis Effect Sizes Options Settings Help					
NUMBER OF GROUPS FOR ANALYSIS 2 Groups (Pooled and Separate Variance t-Tests) 3 Groups (Pairwise Contrasts vs. Alpha-adjusted) 3 Groups (Pairwise and Orthogonal Contrasts) 3 Groups (All Possible Pairwise Contrasts) 3 Groups (Tukey & Scheffe Contrasts) 4 Groups		STATISTICS Group MEAN S.D. S.E. 1 3 3 2 3 3 MONTE CARLO OPTIONS # SAMPLES: 100 Random SEED: # SAMPLES: 100 Do not change seed automatically Run 1 Sample Run 10,000				
-GROUP 1	GROUP 3	NUMBER OF REJECTIONS				
Pop Mean Pop SD N 0.0 1.0 25 Restrictions Integer Data Only	Pop Mean Pop SD N 0.0 1.0 50 Restrictions Integer Data Only	Hypothesis Being Tested Avg Contrast # Rejections Proportion Overall ANOVA F:				
☐ Minimum Score: ☐ Maximum Score:	Minimum Score: Maximum Score:	ALL PAIRWISE CONTRASTS				
Normal C Pos Skew Uniform C Neg Skew Reliability: 1.0	Normal C Pos Skew Uniform C Neg Skew Reliability: 1.0	2v3 t-Test Contrast: 3v1 t-Test Contrast: t-Test Contrast:				
GROUP 2 Pop Mean Pop SD N 0.0 1.0 25 Restrictions Integer Data Only Minimum Score: Maximum Score: Distribution:	D. Sample Size: For Exerc we will use an UNBALANC design. Choose ONE of the groups and DOUBLE the s size.	art least 1 Significant Contrast: cise B, EED e iv(2+3)/2 t-Test Contrast: 2v3 t-Test Contrast: At least 1 Orthogonal Contrast: Both Orthogonal Contrasts Signif.:				
C Uniform C Neg Skew Reliability: 1.0		Press F9 to Run Analysis or click -> RUN				

- A. You will run 10 simulations of this exercise. What is the number of times that you expect MC4G to reject the null hypothesis? Do you think that an unbalanced design will influence Type I error? Defend your answer.
- B. Run MC4G. You will run MC4G 10 times. Each time that you run MC4G, record the following information:

Group 1 Mean	Group 2 Mean	Group 3 Mean	# of Rejections	Proportion

- C. What is your *nominal* alpha? (What did we arbitrarily set alpha to at the beginning of the exercise?)
- D. What is the average number of times MC4G rejected a *true* null hypothesis (made a Type I error)?
- E. What is the average *actual* alpha for the simulations?
- F. Is this average error rate what you expected? Why or why not?
- G. What effect did having an unbalanced design have on alpha? Why do you think the effect occurred?

Exercise C: ANOVA with a Violation of the Assumption of Homoscedasticity, Balanced Design

- 1. SETTING THE PARAMETERS FOR THE POPULATION. Set your screen to match the conditions described below. **Changes from Exercise B will be noted in bold print.**
 - A. <u>Number of Groups:</u> Select "3 Groups (Pairwise and Orthogonal Contrasts)"
 - B. <u>Mean:</u> Because we are examining Type I error, the null hypothesis must be true. Therefore, you may choose any value for the mean; however all means must be equal.
 - C. <u>Standard Deviation</u>: Recall that standard deviation is the square root of variance ($\sqrt{\sigma^2} = \sigma$). In this third example, we *will* violate the assumption of homoscedasticity. Therefore, choose *one* group on your screen and multiply the standard deviation by 5. (If $\sigma = 2$, change it to $\sigma = 10$.)
 - D. <u>Sample Size:</u> In this exercise, we will be using an *balanced* design. Therefore, return your sample sizes to equal values.

🌃 MC4G: Monte Carlo Ai	🌇 MC4G: Monte Carlo Analyses for up to 4 Groups 📃 🗆 🔀					
analysis Effect Sizes Options Settings Help						
NUMBER OF GROUPS F(2 Groups (Pooled and 3 Groups (Pairwise Con 3 Groups (Pairwise and 3 Groups (All Possible 3 Groups (Tukey & Sch 4 Groups	DR ANALYSIS Separate Variance t-Tests) ntrasts vs. Alpha-adjusted) d Orthogonal Contrasts) Pairwise Contrasts) heffe Contrasts)	STATISTICS Group MEAN S.D. S.E. 1 3 3 2 3 3 MONTE CARLO OPTIONS # SAMPLES: 100 Random SEED: # SAMPLES: 100 Do not change seed automatically Run 1 Sample Run 10,000				
GROUP 1 Pop Mean Pop SD N 0.0 1.0 25 Restrictions Integer Data Only Minimum Score: Maximum Score: Distribution: Normal Pos Skew Uniform Neg Skew Reliability: 1.0 GROUP 2 N Pop Mean Pop SD 0.0 1.0 25 Restrictions Integer Data Only Minimum Score: Maximum Score: Distribution: Maximum Score: Distribution:	GROUP 3 Pop Mean Pop SD N 0.0 5.0 25 Restriction Intege Data Only Minimum Score: Distribution: Normal C Pos Skew C Uniform C Neg Skew Reliability: 1.0 D. Sample S We will use a All sample s C. Standard Deviation: Fo Exercise C, we will violate assumption of equal varia Choose ONE group and	NUMBER OF REJECTIONS Hypothesis Being Tested Avg Contrast # Rejections Proportion Overall ANOVA F:				
C Uniform C Neg Skew Reliability: 1.0	MULTIPLY the standard deviation by 5.	Press F9 to Run Analysis or click -> RUN				

- A. You will run 10 simulations of this exercise. What is the number of times that you expect MC4G to reject the null hypothesis? Do you think that violating the assumption of homoscedasticity, will influence Type I error? Defend your answer.
- B. Run MC4G. You will run MC4G 10 times. Each time that you run MC4G, record the following information:

Group 1 Mean	Group 2 Mean	Group 3 Mean	# of Rejections	Proportion

- C. What is your *nominal* alpha? (What did we arbitrarily set alpha to at the beginning of the exercise?)
- D. What is the average number of times MC4G rejected a *true* null hypothesis (made a Type I error)?
- E. What is the average *actual* alpha for the simulations?
- F. Is this average error rate what you expected? Why or why not?
- G. What effect did violating the assumption of homoscedasticity have on alpha? Why do you think the effect occurred?

Exercise D: ANOVA with a Violation of the Assumption of Homoscedasticity, Unbalanced Design #1

- 1. SETTING THE PARAMETERS FOR THE POPULATION. Set your screen to match the conditions described below. Changes from Exercise C will be noted in bold print.
 - A. Number of Groups: Select "3 Groups (Pairwise and Orthogonal Contrasts)"
 - B. <u>Mean:</u> Because we are examining Type I error, the null hypothesis must be true. Therefore, you may choose any value for the mean; however all means must be equal.
 - C. <u>Standard Deviation</u>: Recall that standard deviation is the square root of variance ($\sqrt{\sigma^2} = \sigma$). In this third example, we *will* violate the assumption of homoscedasticity. Therefore, choose *one* group on your screen and multiply the standard deviation by 5. (If $\sigma = 2$, change it to $\sigma = 10$.)
 - D. <u>Sample Size:</u> In this exercise, we will be using an *unbalanced* design in which we pair the *larger* standard deviation value with a *smaller* sample size. Therefore, you will double the sample size of ONE of the groups with the smaller standard deviation. An example of this is in the screen capture below.

🌃 MC4G: Monte Carlo Ar	🌇 MC4G: Monte Carlo Analyses for up to 4 Groups 🛛 📃 🗆 🔀					
File Analysis Effect Sizes (Options Settings Help					
NUMBER OF GROUPS FC 2 Groups (Pooled and 2 3 Groups (Pairwise Cor 3 Groups (Pairwise and 3 Groups (Pairwise and 3 Groups (All Possible 3 Groups (Tukey & Sch 4 Groups	DR ANALYSIS Separate Variance t-Tests) ntrasts vs. Alpha-adjusted) I Orthogonal Contrasts) Pairwise Contrasts) neffe Contrasts)	STATISTICS Group MEAN S.D. S.E. 1 3 3 2 3 3 MONTE CARLO OPTIONS # SAMPLES: 100 Random SEED: # SAMPLES: 100				
		Do not change seed automatically				
GROUP 1 Pop Mean Pop SD 0.0 1.0 25 Restrictions Integer Data Only	GROUP 3 Pop Mean Pop SD N 0.0 5.0 25 Restrictions Integer Data Ovy	NUMBER OF REJECTIONS Hypothesis Being Tested Avg Contrast Overall ANOVA F:				
Minimum Score:	🔲 🔲 Minimum Score: 🔪	ALL PAIRWISE CONTRASTS				
🔲 Maximum Score:	🔲 🦳 Maximum Score: 🔪	1v2 t Test Contract				
Distribution:						
Normal C Pos Skew C Uniform C Neg Skew	Normal O Pos Skew Normal O Neg Skew					
Reliability: 1.0	Reliability: 1.0	At least 1 Significant Contrast:				
GROUP 2 Pop Mean Pop SD N 0.0 1.0 50 Restrictions Integer Data Only Minimum Score:	Note that Gro largest stand	roup 3 has the dard deviation. 2v3 t-Test Contrast:				
Maximum Score:	D. Sample Size: For Ex	xercise D, we Orthogonal Contrast:				
Distribution:	will use an UNBALANC	CED design. nal Contrasts Signif.:				
Normal C Pos Skew Uniform C Neg Skew Reliability: 1.0	You will DOUBLE the s ONE of the groups with standard deviation.	sample size of n a smaller Press F9 to Run Analysis or click -> RUN				

- A. You will run 10 simulations of this exercise. What is the number of times that you expect MC4G to reject the null hypothesis? Do you think that violating the assumption of homoscedasticity in this *unbalanced* design will influence Type I error? Defend your answer.
- B. Run MC4G. You will run MC4G 10 times. Each time that you run MC4G, record the following information:

Group 1 Mean	Group 2 Mean	Group 3 Mean	# of Rejections	Proportion

- C. What is your *nominal* alpha?
- D. What is the average number of times MC4G rejected a *true* null hypothesis (made a Type I error)?
- E. What is the average *actual* alpha for the simulations?
- F. Is this average error rate what you expected? Why or why not?
- G. Compare your actual alpha to the actual alpha from Exercise C. What does this information tell you about the *robustness* of ANOVA to the Violation of Homoscedasticity?

Exercise E: ANOVA with a Violation of the Assumption of Homoscedasticity, Unbalanced Design #2

- 1. SETTING THE PARAMETERS FOR THE POPULATION. Set your screen to match the conditions described below. Changes from Exercise D will be noted in bold print.
 - A. Number of Groups: Select "3 Groups (Pairwise and Orthogonal Contrasts)"
 - B. <u>Mean:</u> Because we are examining Type I error, the null hypothesis must be true. Therefore, you may choose any value for the mean; however all means must be equal.
 - C. <u>Standard Deviation</u>: Recall that standard deviation is the square root of variance ($\sqrt{\sigma^2} = \sigma$). In this third example, we *will* violate the assumption of homoscedasticity. Therefore, choose *one* group on your screen and multiply the standard deviation by 5. (If $\sigma = 2$, change it to $\sigma = 10$.)
 - D. <u>Sample Size:</u> In this exercise, we will be using an *unbalanced* design in which we pair the *larger* standard deviation value with the *larger* sample size. Therefore, you will assign the larger standard deviation to the group with the larger sample size. An example of this is in the screen capture below.

🌃 🍂 4G: Monte Carlo Ar	nalyses for up to 4 Groups	
File Analysis Effect Sizes (Options Settings Help	
NUMBER OF GROUPS FOR ANALYSIS C 2 Groups (Pooled and Separate Variance t-Tests) C 3 Groups (Pairwise Contrasts vs. Alpha-adjusted) C 3 Groups (Pairwise and Orthogonal Contrasts) C 3 Groups (All Possible Pairwise Contrasts) C 3 Groups (Tukey & Scheffe Contrasts)		STATISTICS Group MEAN S.D. S.E. 1
C 4 Groups		Do not change seed automatically Run 1 Sample Run 10,000
GROUP 1 Pop Mean Pop SD N 0.0 1.0 25 Restrictions Integer Data Only Minimum Score: Maximum Score: Distribution: Normal C Pos Skew C Uniform C Neg Skew Reliability: 1.0 GROUP 2 Pop Mean Pop SD N 0.0 1.0 25	GROUP 3 Pop Mean Pop SD N 0.0 5.0 50 Restriction Integer Data Only Minimum Score: Maxinum Score: Distribution: Normal C Pos Skew C Biniform C Neg Skew Reliability: 1.0 D. Sample Size: For Ex E, we will use an	NUMBER OF REJECTIONS Hypothesis Being Tested Avg Contrast # Rejections Proportion Overall ANOVA F:
Electrictions	UNBALANCED design. will DOUBLE the sample	You 1v(2+3)/2 t-Test Contrast:
Minimum Score:	of the group with the	2v3 t-Test Contrast:
Maximum Score:	LARGÉST standard dev	viation. east 1 Orthogonal Contrast:
Distribution:		Both Orthogonal Contrasts Signif.:
Normal C Pos Skew Uniform C Neg Skew Reliability: 1.0		Press F9 to Run Analysis or click -> RUN

- A. You will run 10 simulations of this exercise. What is the number of times that you expect MC4G to reject the null hypothesis? Do you think that violating the assumption of homoscedasticity in this *unbalanced* design will influence Type I error? Defend your answer.
- B. Run MC4G. You will run MC4G 10 times. Each time that you run MC4G, record the following information:

Group 1 Mean	Group 2 Mean	Group 3 Mean	# of Rejections	Proportion
•	•	•	v v	•

- C. What is your *nominal* alpha?
- D. What is the average number of times MC4G rejected a *true* null hypothesis (made a Type I error)?
- E. What is the average *actual* alpha for the simulations?
- F. Is this average what you expected? Why or why not?
- G. Compare your actual alpha to the actual alpha from Exercise C. What does this information tell you about the *robustness* of ANOVA to the Violation of Homoscedasticity?

Summary and Review (try to answer questions 1-3 without looking them up)

- 1. What is the definition of Type I error?
- 2. How is Type I error symbolized?
- 3. Using an example, explain Type I error in your own words.

4. Compare the actual alpha rate to the nominal alpha in the preceding exercises. In words, describe the consequences of having the actual alpha change from the nominal alpha in such a manner? Would you describe this change as a positive (a qualitative "good") change or a negative (a qualitative "bad") change?

5. Compare your actual Type I error rates from Exercises D and E to those from earlier exercises. The general rule is that ANOVA is robust to violations of homoscedasticity. After completing exercises C, D, and E, do you agree with this statement? Why or why not? (In what situations does this general rule hold true?)

Reference

Howell, D.C. (1999). *Fundamental statistics for the behavioral sciences* (4th ed.). Cincinnati, OH: Duxbury Press.