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It is common knowledge that repeating decimals are rational. What happens if we
move to a different number system? This property certainly continues to hold in fixed-
base systems such as binary, octal, and hexadecimal systems. However, in mixed-base
systems where the base varies from digit to digit, we show that the exact opposite is
true under a natural assumption on the bases. Central to our argument is a calculus-
free technique from a recent elementary proof of the irrationality of e [3]. Our aims
here are to highlight the contrasting impacts of repetitions on rationality in different
number systems and to showcase how much mileage we can gain without resorting to
explicit limit or series analysis.

Cantor expansions

In mixed-base systems, we generalize the choice of bases from a constant in fixed-base
systems to a sequence of natural numbers. For the purpose of rationality analysis, we
only need to expand the fraction part of a real number.

Definition. The Cantor expansion of a real number α in a given base sequence {bn}

of natural numbers with bn ≥ 2 is α = a0 +
∞∑

n=1

an
b1b2 . . . bn

, where a0, a1, a2, . . . are

integers with 0 ≤ an < bn for n ≥ 1.

In a Cantor expansion, the sequence {an} provides the digits in the mixed-base
system with base sequence {bn}. When bn = 10 for all n ≥ 1, the Cantor expansion
reduces to the standard decimal expansion. When bn = n+ 1 for n ≥ 1, the Cantor

expansion generates the factorial number system [8]. In this system, e = 2 +
∞∑

n=2

1

n!
.

Every Cantor expansion is convergent, because the fraction part is bounded from

above by the telescoping series
∞∑

n=1

bn − 1

b1b2 . . . bn
= 1; and every real number takes on a

Cantor expansion representation [10]. Furthermore, if {bn} satisfies the condition that

every prime divides infinitely many of the bn’s, (1)

a Cantor expansion is irrational if and only if it is non-terminating, i.e., an > 0 and
an < bn − 1 hold infinitely often [1]. The base sequence in the factorial number sys-
tem satisfies (1) clearly, and the irrationality of e follows. However, (1) is a sufficient
but not necessary condition for irrationality [4], as we will see in an example later. In
subsequent discussions we focus instead on base sequences that are strictly increasing,
a characteristic shared by the factorial number system.
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Repetitions lead to irrationality

We now present the following result about repeating Cantor expansions, which is
proven by adopting the key technique in [3].

Theorem 1. If {bn} is a sequence of strictly increasing natural numbers and {an} is
a repeating sequence of nonnegative integers which are not all zero, then the number

α =
∞∑

n=1

an
b1b2 . . . bn

is irrational.

Proof. Define a sequence {xn} by xn =
an
bn

+
an+1

bnbn+1

+
an+2

bnbn+1bn+2

+ · · ·. Since

{an} is a repeating sequence of nonnegative integers which are not all zero, all xn’s
are positive. We observe that

α = x1 =
1

b1
(a1 + x2) =

1

b1

(
a1 +

1

b2
(a2 + x3)

)
= · · · . (2)

If α is rational, (2) implies that all xn’s are also rational. Let
pn
qn

be the irreducible

fractional representation of xn. Noting that

xn =
1

bn
(an + xn+1), (3)

we have
pn
qn

=
1

bn

(
an +

pn+1

qn+1

)
, so

bnpn − anqn
qn

=
pn+1

qn+1

. Since the irreducible

fraction
pn+1

qn+1

has the smallest denominator possible, qn ≥ qn+1, or

q1 ≥ q2 ≥ q3 ≥ · · · . (4)

Let’s concentrate on the subsequence {xnt+1}∞n=0 where t is the period of {an}.

xnt+1 =
ant+1

bnt+1

+ · · ·+ ant+t

bnt+1 . . . bnt+t

+
a(n+1)t+1

bnt+1 . . . bnt+tb(n+1)t+1

+ · · · . (5)

As n increases, the numerators in (5) remain the same repeating sequence of a1, . . . ,
at, a1, . . . because of the repeating pattern of {an}, but the denominators in (5) all
increase because of the monotonicity of {bn}. Thus,

x1 > xt+1 > x2t+1 > · · · > 0. (6)

In other words,
p1
q1
>
pt+1

qt+1

>
p2t+1

q2t+1

> · · · > 0. Combining this with (4), we con-

clude that p1 > pt+1 > p2t+1 > · · · > 0, i.e., {pnt+1}∞n=0 is a strictly decreasing
infinite sequence of positive integers. This is impossible.

Remark. This theorem continues to hold even if the base sequence {bn} is increasing,
but not strictly, as long as it does not stay constant after a certain point. Also the mono-
tonicity of {bn} and the periodicity of {an} only need to happen for all sufficiently
large n. The proof above prevails with minimal modification.

As examples of Theorem 1, we re-establish the irrationality of the following num-
bers from [4].
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1. a0 = 1, an = 1 and bn = 2n(2n+ 1) for n ≥ 1: sinh 1 = 1 +
∞∑

n=1

1

(2n+ 1)!
.

2. a0 = 1, an = 1 and bn = 2n(2n− 1) for n ≥ 1: cosh 1 = 1 +
∞∑

n=1

1

(2n)!
.

The next two examples are generated from the Bessel-Clifford function [6]

Ck(z) =
∞∑

n=0

zn

n!(k + n)!
with integer k ≥ 0.

3. a0 = 1, an = 1 and bn = n(k + n) for n ≥ 1:

k! · Ck(1) = 1 +
∞∑

n=1

1

n! · (k + 1)(k + 2) . . . (k + n)
.

4. a0 = 1, an = 1 and bn = 2n(k + n) for n ≥ 1:

k! · Ck

(
1

2

)
= 1 +

∞∑
n=1

1

2n · n! · (k + 1)(k + 2) . . . (k + n)
.

5. a0 = 0, an = 1 and bn = pn, the nth prime, for n ≥ 1: ε =
∞∑

n=1

1

p1p2 . . . pn
. Note

that the base sequence here does not meet (1).

Remark. [4] uses a recursive formula with arguments tailor-made to each of these
numbers. In particular, ε requires some extra effort in analysis.

Now we limit our discussion to Cantor expansions in the same increasing base
sequence. If α and β are irrationals whose Cantor expansions repeat with periods s
and t, respectively, so is α+ β because its Cantor expansion repeats with a period at
most st. Thus, the set of irrationals with repeating Cantor expansions is closed under
addition. This property is certainly not shared by the set of irrationals in general.

Finally, we establish the irrationality of an alternating version of Cantor expansions
known as infinite Pierce expansions [12], where the “digit” sequence {an} repeats in
segments of 1 and−1. Every real number from (0, 1] can be represented as an infinite
or finite ({an} consists of finitely many alternating 1 and −1) Pierce expansion [5].

Theorem 2. If {bn} is a sequence of strictly increasing natural numbers, then the

number α =
∞∑

n=1

(−1)n−1

b1b2 . . . bn
is irrational.

Proof. Define a sequence {xn} by

xn =
1

bn
− 1

bnbn+1

+
1

bnbn+1bn+2

− 1

bnbn+1bn+2bn+3

+ · · · .

Since xn is absolutely convergent, we can subtract pairwise and rewrite it as

xn =
bn+1 − 1

bnbn+1

+
bn+3 − 1

bnbn+1bn+2bn+3

+
bn+5 − 1

bn . . . bn+5

+ · · · =
∑

j=1,3,5,...

bn+j − 1

bn . . . bn+j

.

For each j = 1, 3, 5, . . . , because {bn} is strictly increasing, bn+j − 1 ≥ bn. We

now have
bn+j − 1

bn . . . bn+j

/
bn+1+j − 1

bn+1 . . . bn+1+j

=
bn+j − 1

bn
· bn+1+j

bn+1+j − 1
>
bn
bn
· 1 = 1,
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i.e., every term in xn after pairwise subtraction is greater than its corresponding
term in xn+1. Thus, xn > xn+1, or, x1 > x2 > x3 > · · · > 0. This shows that
{xn} shares the same strictly decreasing property as {xnt+1} in (6). In addition,

α = x1 =
1

b1
(1− x2) =

1

b1

(
1− 1

b2
(1− x3)

)
= · · · and xn =

1

bn
(1− xn+1),

which are structurally identical to (2) and (3), respectively. If α is rational, we can
apply the same argument as the proof of Theorem 1 to generate a punitive strictly
decreasing infinite sequence of positive integers.

Theorem 2 yields the irrationality of e−1 =
∞∑

n=0

(−1)n

n!
trivially, as well as those of

sin 1 = 1−
∞∑

n=1

(−1)n−1

(2n+ 1)!
, cos 1 = 1−

∞∑
n=1

(−1)n−1

(2n)!
, and the alternating versions

of examples after Theorem 1.

Further reading

In 1869 Cantor wrote the first in-depth exposition of mixed-base systems in [1]. Sub-
sequent studies on Cantor expansions include [2, 11, 13] and more recently [7, 9, 14].
These works contain results that are stronger, but more challenging to obtain, than
what is presented here.
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Summary. Using a calculus-free technique, we prove that repeating “decimals” in mixed-base number systems
with an increasing base sequence are irrational.
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