# Can Infinite Repetitions Lead to Irrationality? 

ZIJIAN DIAO<br>Ohio University<br>Saint Clairsville, OH, USA<br>diao@ohio.edu

It is common knowledge that repeating decimals are rational. What happens if we move to a different number system? This property certainly continues to hold in fixedbase systems such as binary, octal, and hexadecimal systems. However, in mixed-base systems where the base varies from digit to digit, we show that the exact opposite is true under a natural assumption on the bases. Central to our argument is a calculusfree technique from a recent elementary proof of the irrationality of $e$ [3]. Our aims here are to highlight the contrasting impacts of repetitions on rationality in different number systems and to showcase how much mileage we can gain without resorting to explicit limit or series analysis.

## Cantor expansions

In mixed-base systems, we generalize the choice of bases from a constant in fixed-base systems to a sequence of natural numbers. For the purpose of rationality analysis, we only need to expand the fraction part of a real number.

Definition. The Cantor expansion of a real number $\alpha$ in a given base sequence $\left\{b_{n}\right\}$ of natural numbers with $b_{n} \geq 2$ is $\alpha=a_{0}+\sum_{n=1}^{\infty} \frac{a_{n}}{b_{1} b_{2} \ldots b_{n}}$, where $a_{0}, a_{1}, a_{2}, \ldots$ are integers with $0 \leq a_{n}<b_{n}$ for $n \geq 1$.

In a Cantor expansion, the sequence $\left\{a_{n}\right\}$ provides the digits in the mixed-base system with base sequence $\left\{b_{n}\right\}$. When $b_{n}=10$ for all $n \geq 1$, the Cantor expansion reduces to the standard decimal expansion. When $b_{n}=n+1$ for $n \geq 1$, the Cantor expansion generates the factorial number system $[\mathbf{8}]$. In this system, $e=2+\sum_{n=2}^{\infty} \frac{1}{n!}$.

Every Cantor expansion is convergent, because the fraction part is bounded from above by the telescoping series $\sum_{n=1}^{\infty} \frac{b_{n}-1}{b_{1} b_{2} \ldots b_{n}}=1$; and every real number takes on a Cantor expansion representation [10]. Furthermore, if $\left\{b_{n}\right\}$ satisfies the condition that

$$
\begin{equation*}
\text { every prime divides infinitely many of the } b_{n} \text { 's, } \tag{1}
\end{equation*}
$$

a Cantor expansion is irrational if and only if it is non-terminating, i.e., $a_{n}>0$ and $a_{n}<b_{n}-1$ hold infinitely often [ $\left.\mathbf{1}\right]$. The base sequence in the factorial number system satisfies (1) clearly, and the irrationality of $e$ follows. However, (1) is a sufficient but not necessary condition for irrationality [4], as we will see in an example later. In subsequent discussions we focus instead on base sequences that are strictly increasing, a characteristic shared by the factorial number system.

## Repetitions lead to irrationality

We now present the following result about repeating Cantor expansions, which is proven by adopting the key technique in [3].

Theorem 1. If $\left\{b_{n}\right\}$ is a sequence of strictly increasing natural numbers and $\left\{a_{n}\right\}$ is a repeating sequence of nonnegative integers which are not all zero, then the number $\alpha=\sum_{n=1}^{\infty} \frac{a_{n}}{b_{1} b_{2} \ldots b_{n}}$ is irrational.
Proof. Define a sequence $\left\{x_{n}\right\}$ by $x_{n}=\frac{a_{n}}{b_{n}}+\frac{a_{n+1}}{b_{n} b_{n+1}}+\frac{a_{n+2}}{b_{n} b_{n+1} b_{n+2}}+\cdots$. Since $\left\{a_{n}\right\}$ is a repeating sequence of nonnegative integers which are not all zero, all $x_{n}$ 's are positive. We observe that

$$
\begin{equation*}
\alpha=x_{1}=\frac{1}{b_{1}}\left(a_{1}+x_{2}\right)=\frac{1}{b_{1}}\left(a_{1}+\frac{1}{b_{2}}\left(a_{2}+x_{3}\right)\right)=\cdots . \tag{2}
\end{equation*}
$$

If $\alpha$ is rational, (2) implies that all $x_{n}$ 's are also rational. Let $\frac{p_{n}}{q_{n}}$ be the irreducible fractional representation of $x_{n}$. Noting that

$$
\begin{equation*}
x_{n}=\frac{1}{b_{n}}\left(a_{n}+x_{n+1}\right), \tag{3}
\end{equation*}
$$

we have $\frac{p_{n}}{q_{n}}=\frac{1}{b_{n}}\left(a_{n}+\frac{p_{n+1}}{q_{n+1}}\right)$, so $\frac{b_{n} p_{n}-a_{n} q_{n}}{q_{n}}=\frac{p_{n+1}}{q_{n+1}}$. Since the irreducible fraction $\frac{p_{n+1}}{q_{n+1}}$ has the smallest denominator possible, $q_{n} \geq q_{n+1}$, or

$$
\begin{equation*}
q_{1} \geq q_{2} \geq q_{3} \geq \cdots . \tag{4}
\end{equation*}
$$

Let's concentrate on the subsequence $\left\{x_{n t+1}\right\}_{n=0}^{\infty}$ where $t$ is the period of $\left\{a_{n}\right\}$.

$$
\begin{equation*}
x_{n t+1}=\frac{a_{n t+1}}{b_{n t+1}}+\cdots+\frac{a_{n t+t}}{b_{n t+1} \ldots b_{n t+t}}+\frac{a_{(n+1) t+1}}{b_{n t+1} \ldots b_{n t+t} b_{(n+1) t+1}}+\cdots . \tag{5}
\end{equation*}
$$

As $n$ increases, the numerators in (5) remain the same repeating sequence of $a_{1}, \ldots$, $a_{t}, a_{1}, \ldots$ because of the repeating pattern of $\left\{a_{n}\right\}$, but the denominators in (5) all increase because of the monotonicity of $\left\{b_{n}\right\}$. Thus,

$$
\begin{equation*}
x_{1}>x_{t+1}>x_{2 t+1}>\cdots>0 . \tag{6}
\end{equation*}
$$

In other words, $\frac{p_{1}}{q_{1}}>\frac{p_{t+1}}{q_{t+1}}>\frac{p_{2 t+1}}{q_{2 t+1}}>\cdots>0$. Combining this with (4), we conclude that $p_{1}>p_{t+1}>p_{2 t+1}>\cdots>0$, i.e., $\left\{p_{n t+1}\right\}_{n=0}^{\infty}$ is a strictly decreasing infinite sequence of positive integers. This is impossible.

Remark. This theorem continues to hold even if the base sequence $\left\{b_{n}\right\}$ is increasing, but not strictly, as long as it does not stay constant after a certain point. Also the monotonicity of $\left\{b_{n}\right\}$ and the periodicity of $\left\{a_{n}\right\}$ only need to happen for all sufficiently large $n$. The proof above prevails with minimal modification.

As examples of Theorem 1, we re-establish the irrationality of the following numbers from [4].

1. $a_{0}=1, a_{n}=1$ and $b_{n}=2 n(2 n+1)$ for $n \geq 1: \quad \sinh 1=1+\sum_{n=1}^{\infty} \frac{1}{(2 n+1)!}$.
2. $a_{0}=1, a_{n}=1$ and $b_{n}=2 n(2 n-1)$ for $n \geq 1: \quad \cosh 1=1+\sum_{n=1}^{\infty} \frac{1}{(2 n)!}$.

The next two examples are generated from the Bessel-Clifford function [6]

$$
C_{k}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!(k+n)!} \text { with integer } k \geq 0
$$

3. $a_{0}=1, a_{n}=1$ and $b_{n}=n(k+n)$ for $n \geq 1$ :

$$
k!\cdot C_{k}(1)=1+\sum_{n=1}^{\infty} \frac{1}{n!\cdot(k+1)(k+2) \ldots(k+n)}
$$

4. $a_{0}=1, a_{n}=1$ and $b_{n}=2 n(k+n)$ for $n \geq 1$ :

$$
k!\cdot C_{k}\left(\frac{1}{2}\right)=1+\sum_{n=1}^{\infty} \frac{1}{2^{n} \cdot n!\cdot(k+1)(k+2) \ldots(k+n)}
$$

5. $a_{0}=0, a_{n}=1$ and $b_{n}=p_{n}$, the $n$th prime, for $n \geq 1: \epsilon=\sum_{n=1}^{\infty} \frac{1}{p_{1} p_{2} \ldots p_{n}}$. Note that the base sequence here does not meet (1).

Remark. [4] uses a recursive formula with arguments tailor-made to each of these numbers. In particular, $\epsilon$ requires some extra effort in analysis.

Now we limit our discussion to Cantor expansions in the same increasing base sequence. If $\alpha$ and $\beta$ are irrationals whose Cantor expansions repeat with periods $s$ and $t$, respectively, so is $\alpha+\beta$ because its Cantor expansion repeats with a period at most st. Thus, the set of irrationals with repeating Cantor expansions is closed under addition. This property is certainly not shared by the set of irrationals in general.

Finally, we establish the irrationality of an alternating version of Cantor expansions known as infinite Pierce expansions [12], where the "digit" sequence $\left\{a_{n}\right\}$ repeats in segments of 1 and -1 . Every real number from $(0,1]$ can be represented as an infinite or finite $\left(\left\{a_{n}\right\}\right.$ consists of finitely many alternating 1 and -1 ) Pierce expansion [5].
Theorem 2. If $\left\{b_{n}\right\}$ is a sequence of strictly increasing natural numbers, then the number $\alpha=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{b_{1} b_{2} \ldots b_{n}}$ is irrational.
Proof. Define a sequence $\left\{x_{n}\right\}$ by

$$
x_{n}=\frac{1}{b_{n}}-\frac{1}{b_{n} b_{n+1}}+\frac{1}{b_{n} b_{n+1} b_{n+2}}-\frac{1}{b_{n} b_{n+1} b_{n+2} b_{n+3}}+\cdots
$$

Since $x_{n}$ is absolutely convergent, we can subtract pairwise and rewrite it as

$$
x_{n}=\frac{b_{n+1}-1}{b_{n} b_{n+1}}+\frac{b_{n+3}-1}{b_{n} b_{n+1} b_{n+2} b_{n+3}}+\frac{b_{n+5}-1}{b_{n} \ldots b_{n+5}}+\cdots=\sum_{j=1,3,5, \ldots} \frac{b_{n+j}-1}{b_{n} \ldots b_{n+j}}
$$

For each $j=1,3,5, \ldots$, because $\left\{b_{n}\right\}$ is strictly increasing, $b_{n+j}-1 \geq b_{n}$. We now have $\frac{b_{n+j}-1}{b_{n} \ldots b_{n+j}} / \frac{b_{n+1+j}-1}{b_{n+1} \ldots b_{n+1+j}}=\frac{b_{n+j}-1}{b_{n}} \cdot \frac{b_{n+1+j}}{b_{n+1+j}-1}>\frac{b_{n}}{b_{n}} \cdot 1=1$,
i.e., every term in $x_{n}$ after pairwise subtraction is greater than its corresponding term in $x_{n+1}$. Thus, $x_{n}>x_{n+1}$, or, $x_{1}>x_{2}>x_{3}>\cdots>0$. This shows that $\left\{x_{n}\right\}$ shares the same strictly decreasing property as $\left\{x_{n t+1}\right\}$ in (6). In addition, $\alpha=x_{1}=\frac{1}{b_{1}}\left(1-x_{2}\right)=\frac{1}{b_{1}}\left(1-\frac{1}{b_{2}}\left(1-x_{3}\right)\right)=\cdots \quad$ and $\quad x_{n}=\frac{1}{b_{n}}\left(1-x_{n+1}\right)$, which are structurally identical to (2) and (3), respectively. If $\alpha$ is rational, we can apply the same argument as the proof of Theorem 1 to generate a punitive strictly decreasing infinite sequence of positive integers.

Theorem 2 yields the irrationality of $e^{-1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$ trivially, as well as those of
$\sin 1=1-\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2 n+1)!}, \cos 1=1-\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2 n)!}$, and the alternating versions of examples after Theorem 1 .

## Further reading

In 1869 Cantor wrote the first in-depth exposition of mixed-base systems in [1]. Subsequent studies on Cantor expansions include [2, 11, 13] and more recently [7, 9, 14]. These works contain results that are stronger, but more challenging to obtain, than what is presented here.

## REFERENCES

1. Cantor, G. (1869). Über die einfachen Zahlensysteme. Z. Math. und Phys. 14: 121-128.
2. Diananda, P.H., Oppenheim, A. (1955). Criteria for irrationality of certain classes of numbers. II. Amer. Math. Monthly. 62(4): 222-225. doi.org/10.1080/00029890.1955.11988618
3. Diao, Z. (2020). An elementary proof of the irrationality of e. Amer. Math. Monthly. 127(1): 84. doi.org/10.1080/00029890.2020.1668706
4. Drobot, S. (1963). The Cantor expansion of real numbers. Amer. Math. Monthly. 70(1): 80-81. doi.org/10.2307/2312797
5. Erdös, P., Shallit, J.O. (1991). New bounds on the length of finite pierce and Engel series. Séminaire de théorie des nombres de Bordeaux. Serie 2, 3(1): 43-53. doi.org/10.5802/jtnb. 41
6. Greenhill, A.G. (1919). LI. The Bassel-Clifford function, and its applications. Philos. Mag. 38(227): 501528. doi.org/10.1080/14786441108635980
7. Hančl, J., Tijdeman, R. (2004). On the irrationality of Cantor series. J. Reine Angew. Math. 2004(571): 145158. doi.org/10.1515/crll.2004.038
8. Laisant, C.-A. (1888). Sur la numération factorielle, application aux permutations. Bulletin de la S. M. F. 16: 176-183. doi.org/10.24033/bsmf. 378
9. Lord, N.J., Sandor, J. (1992). On some irrational series. Math. Mag. 65(1): 53-55. doi.org/10.1080/0025570X.1992.11995978
10. Niven, I. (1956). Irrational Numbers. Carus Mathematical Monograph, Vol. 11. Washington, DC:Mathematical Association of America, pp. 10-11. doi.org/10.5948/9781614440116
11. Oppenheim, A. (1954). Criteria for irrationality of certain classes of numbers. Amer. Math. Monthly. 61(4): 235-241. doi.org/10.1080/00029890.1954.11988450
12. Pierce, T.A. (1929). On an algorithm and its use in approximating roots of algebraic equations. Amer. Math. Monthly. 36(10): 523-525. doi.org/10.1080/00029890.1929.11987017
13. Spiegel, M.R. (1953). On a class of irrational numbers. Amer. Math. Monthly. 60(1): 27-28. doi.org/10.2307/2306475
14. Tijdeman, R., Yuan, P. (2002). On the rationality of Cantor and Ahmes series. Indag. Math. 13(3): 407-418. doi.org/10.1016/S0019-3577(02)80018-0

Summary. Using a calculus-free technique, we prove that repeating "decimals" in mixed-base number systems with an increasing base sequence are irrational.

ZIJIAN DIAO (ORCID 0000-0001-6577-7687) holds a B.S. from the University of Science and Technology of China and a Ph.D. from Texas A\&M University. He has contributed to China's Guo Shoujing Telescope (LAMOST) project, coded the prototype of IBM's speech translation system MASTOR, and secured a US patent for a quantum search circuit. Currently, he teaches mathematics at Ohio University.

