
62
Quantum

Computation

Zijian Diao
Ohio University Eastern

62.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62-2
62.2 Universal Quantum Gates . . . . . . . . . . . . . . . . . . . . . . . . . . 62-7
62.3 Deutsch’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62-8
62.4 Deutsch–Jozsa Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62-9
62.5 Bernstein–Vazirani Problem . . . . . . . . . . . . . . . . . . . . . . . . 62-11
62.6 Simon’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62-13
62.7 Grover’s Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 62-15
62.8 Shor’s Factorization Algorithm . . . . . . . . . . . . . . . . . . . . . 62-17
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62-19

Modern computer science emerged when the eminent British mathematician Alan Turing invented the
concept of Turing machine (TM) in 1936. Though very simple and primitive, TM serves as the universal
model for all known physical computation devices. The principles of quantum mechanics, another revolu-
tionary scientific discovery of the 20th century, had never been incorporated in the theory of computation
until the early 1980s. P. Benioff first coined the concept of quantum Turing machine (QTM). Motivated
by the problem that classical computers cannot simulate quantum systems efficiently, R. Feynman posed
the quantum computer as the solution. The field of quantum computation was born.

Quantum computation mainly studies the construction and analysis of quantum algorithms that out-
perform the classical counterparts. In terms of computability, quantum computers and classical computers
possess exactly the same computational power. But in terms of computational complexity, which measures
the efficiency of computation, there are many examples confirming that quantum computers do solve cer-
tain problems faster. The two most significant ones are Shor’s factorization algorithm and Grover’s search
algorithm, among other examples such as the Deutsch–Jozsa problem, the Bernstein–Vazirani problem,
and Simon’s problem.

Quantum computers share many common features of the classical computers. In a classical computer,
information is encoded in binary states (for example, 0 denotes the low voltage state and 1 denotes the high
voltage state), and processed by various logic gates. In a quantum computer, information is represented
by the states of the microscopic quantum systems, called qubits, and manipulated by various quantum
gates. A qubit could be a two-level atom in the excited/ground states, a photon with horizontal/vertical
polarizations, or a spin- 1

2 particle with up/down spins. The state of a qubit can be controlled via physical
devices such as laser and microwave. The distinctions between quantum and classical computers originate
from the special characteristic of quantum mechanics. In contrast to a classical system, a quantum system
can exist in different states at the same time, an interesting phenomenon called superposition. Superposition
enables quantum computers to process data in parallel. That is why a quantum computer can solve certain

62-1



62-2 Handbook of Linear Algebra

problems faster than a classical computer. But, when we measure a quantum system, it randomly collapses
to one of the basis states. This indeterministic nature makes the design of efficient quantum algorithms
highly nontrivial. Another distinctive feature of the quantum computer is that the operations performed
by quantum gates must be unitary. This is the natural consequence of the unobserved quantum systems
evolving according to the Schrödinger equation.

Throughout this chapter, we will use Dirac’s bra-ket notation (see Section 59.4 for more information).
In quantum mechanics, the state of a quantum system is described by a unit vector in a complex Hilbert
space (a complete inner product vector space). Under Dirac’s bra-ket notation, we use |ψ〉 (“ket”) to
denote a vector in the Hilbert space and 〈ψ | (“bra”) for its dual. The inner product of two vectors |ψ〉
and |φ〉 is denoted 〈ψ |φ〉. We also use |ψ〉|φ〉 and |ψφ〉 interchangeably with the notation for the tensor
product |ψ〉 ⊗ |φ〉.

62.1 Basic Concepts

Definitions:

A (classical) Turing machine (TM) is an abstract computing device consisting of a finite control, a two-way
infinite tape, and a read/write head that moves to the left or right on the tape. It can be described by a
6-tuple (Q, A, B , δ, q0, qa ), where Q is a finite set of control states, A a finite alphabet, B ∈ A the blank
symbol, q0, qa ∈ Q the initial and accepting states, and δ the transition function

δ : Q × A → Q × A × {L , R}.

L and R stand for moving left and right, respectively.
A quantum Turing machine (QTM) is an abstract computing device consisting of a finite control, a

two-way infinite tape, and a read/write head that moves to the left or right of the tape. It can be described
by a 6-tuple (Q, A, B , δ, q0, qa ), where Q is a finite set of control states, A a finite alphabet, B ∈ A the
blank symbol, q0, qa ∈ Q the initial and accepting states, and δ the transition amplitude function

δ : Q × A × Q × A × {L , R} → C.

The transition amplitude function satisfies

∑

(q2,a2,d)∈Q×A×{L ,R}
|δ(q1, a1, q2, a2, d)|2 = 1,

for any (q1, a1) ∈ Q × A. L and R stand for moving left and right, respectively.
A quantum bit (qubit) is a two-level quantum system, modeled by the two-dimensional Hilbert space

H2, with basis {|0〉, |1〉}. For example, for a spin- 1
2 particle, |0〉 and |1〉 denote the spin-down and spin-up

states, respectively. They can be mapped to the standard basis for H2 as |0〉 = [1 0]T and |1〉 = [0 1]T .
A quantum register of length n is an ordered system of n qubits, modeled by the 2n-dimensional

Hilbert space H2n = H2 ⊗ H2 ⊗ . . . ⊗ H2 with basis {|00 . . . 00〉, |00 . . . 01〉, |00 . . . 10〉, |00 . . . 11〉, . . . ,
|11 . . . 11〉}. The basis states are ordered in lexicographic order. We may also write each basis state as |i〉
for 0 ≤ i < 2n, interpreting the n-bit string of 0s and 1s as the binary representation of i .

An one-bit quantum gate is a unitary map U : H2 → H2.
An n-bit quantum gate is a unitary map U : H2 ⊗ H2 ⊗ . . . ⊗ H2 → H2 ⊗ H2 ⊗ . . . ⊗ H2.
A quantum circuit on n bits is a unitary map on H2n , which can be represented by a concatenation of

a finite number of quantum gates.



Quantum Computation 62-3

Facts:

1. [BV93] Any function which is computable by a TM is computable by a QTM.
2. [Fey82] Any function that is computable by a QTM is computable by a TM.
3. [NC00, pp. 13] A general state of a qubit is a unit vector a|0〉+b|1〉, where a , b ∈ C and |a|2+|b|2 =

1. a and b are the probability amplitudes of |0〉 and |1〉, respectively. A measurement of a qubit
yields either |0〉 or |1〉, with probability |a|2 or |b|2, respectively.

4. [BB02] A general state of n-bit quantum register is a unit vector

11...1∑

x=00...0

ψx |x〉,

where ψx ∈ C and
∑11...1

x=00...0 |ψx |2 = 1. ψx is the probability amplitude of |x〉. A measurement of
a quantum register yields |x〉 ∈ {|00 . . . 0〉, |00 . . . 1〉, . . . , |11 . . . 1〉}, with probability |ψx |2.

Examples:

This section contains a list of quantum gates that are frequently used. We provide the description of
their effects on the basis states, matrix representations, and circuit diagrams. In the circuit diagrams, the
horizontal lines stand for the qubits. When there is no gate on the line, no operation is done, which can
be interpreted as the identity operation. When the diagram of a gate shows up on a horizontal line/lines,
the corresponding gate operation is applied to the qubit/qubits, with the input coming from the left and
the output (result) going out to the right. The entire circuit diagram is read from left to right.

1. NOT gate �0: �0|0〉 = |1〉, �0|1〉 = |0〉, or �0 =
[

0 1
1 0

]

.

2. The Walsh–Hadamard gate H : H|0〉 = 1√
2

(|0〉 + |1〉), H|1〉 = 1√
2

(|0〉 − |1〉), or

H = 1√
2

[
1 1

1 −1

]

.

H

3. The x-rotation gate Xθ : Xθ |0〉 = cos θ
2 |0〉 − i sin θ

2 |1〉, Xθ |1〉 = −i sin θ
2 |0〉 + cos θ

2 |1〉, or

Xθ =
[

cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

]

.

Xθ



62-4 Handbook of Linear Algebra

4. The y-rotation gate Yθ : Yθ |0〉 = cos θ
2 |0〉 + sin θ

2 |1〉, Yθ |1〉 = − sin θ
2 |0〉 + cos θ

2 |1〉, or

Yθ =
[

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

]

.

Yθ

5. The z-rotation gate Zθ : Zθ |0〉 = e−iθ/2|0〉, Zθ |1〉 = eiθ/2|1〉, or

Zθ =
[

e−iθ/2 0

0 eiθ/2

]

.

Zθ

6. Controlled-NOT gate �1: �1|00〉 = |00〉, �1|01〉 = |01〉, �1|10〉 = |11〉, �1|11〉 = |10〉, or,

�1 =








1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0








.

The first qubit acts as the control bit; the operation on the second qubit is controlled by it. If the
control bit is |0〉, no operation is done on the second qubit. If the control bit is |1〉, the NOT gate
is applied to the second qubit. There is no change on the control bit in either case. In the diagram
for the Controlled-NOT gate, a black dot denotes the control bit and a vertical line signifies the
control action.

7. Two-bit Controlled-U gate�1(U ), whereU is any arbitrary one-bit unitary transform:�1(U )|00〉 =
|00〉, �1(U )|01〉 = |01〉, �1(U )|10〉 = |1〉U |0〉, �1(U )|11〉 = |1〉U |1〉, or,

�1(U ) =











1 0 0 0

0 1 0 0

0 0

U

0 0











.



Quantum Computation 62-5

The first qubit acts as the control bit; the operation on the second qubit is controlled by it. If the
control bit is |0〉, no operation is done on the second qubit. If the control bit is |1〉, the one-bit
gate U is applied to the second qubit. There is no change on the control bit in either case. In the
diagram for the Controlled-U gate, a black dot denotes the control bit and a vertical line signifies
the control action.

U

8. Function evaluation operator U f : H2n ⊗ H2m → H2n ⊗ H2m , where f : {0, 1}n → {0, 1}m,
|x〉 ∈ H2n , and |y〉 ∈ H2m , is given by

|x〉|y〉 → |x〉|y + f (x)mod2m〉.

Two special cases of this operator will be used in the algorithms discussed later.

� m = 1, U f is given by: |x〉|y〉 → |x〉|y ⊕ f (x)〉, where ⊕ is the addition mod 2.

Uf|x

|y

|x

|y f (x)



62-6 Handbook of Linear Algebra

� y = 0, U f is given by: |x〉|0〉 → |x〉| f (x)〉.

|0 |f (x)

|x|x

Uf

9. Quantum Fourier transform (QFT) (n-bit):

|x〉 → 1

2n−1

2n−1∑

y=0

e2π i xy/2n |y〉,

where x ∈ {0, 1, . . . , 2n − 1}. This operator is a crucial building block of Shor’s Factorization
Algorithm. The following example manifests the power of QFT.

Example: Define a function f : {0, 1, 2, 3} → {0, 1√
2
} by f (1) = f (3) = 1√

2
and f (0) = f (2) = 0.

This function has period 2. Consider a 2-bit quantum system with state 1√
2

(|1〉 + |3〉), where the
probability amplitudes of the basis states |0〉, |1〉, |2〉, and |3〉 are specified by the function values
of f at 0, 1, 2, and 3. Apply QFT to this state.

1√
2

(|1〉 + |3〉)

→ 1

2
√

2
(|0〉 + i |1〉 − |2〉 − i |3〉) + 1

2
√

2
(|0〉 − i |1〉 − |2〉 + i |3〉)

= 1√
2

(|0〉 − |2〉).

Measurement of the result yields 2, the period of f , with probability 1
2 . Thus, QFT provides a tool

for period finding.
In the diagram for QFT, xn−1xn−2 . . . x2x1x0 and yn−1 yn−2 . . . y2 y1 y0 are the binary representa-

tions of x and y, respectively.



Quantum Computation 62-7

x0

x2

xn− 2

xn− 1

x1

yn −1

yn −2

y2

y1

y0

R1H

H R 1 R2

H R 1

H

Rn−1

Rd =
1 0

0 e iπ / 2d
, d = 1 , 2, . . . , n − 1.

62.2 Universal Quantum Gates

Definitions:
A 1-bit gate A is special if det(A) = 1.

A 2-bit gate V is primitive if V is decomposable, i.e., there exist 1-bit gates S and T such that V |xy〉 =
S|x〉 ⊗ T |y〉, or V |xy〉 = S|y〉 ⊗ T |x〉, for any state |xy〉.

A 2-bit gate V is imprimitive if it is not primitive.
A collection of quantum gates G is universal if, for each n ∈ N, every n-bit quantum gate can be

approximated with arbitrary accuracy by a circuit consisting of quantum gates in G .
A collection of quantum gates G is exactly universal if, for each n ∈ N, every n-bit quantum gate can

be obtained exactly by a circuit consisting of quantum gates in G .

Facts:

The following facts can be found in [BB02].

1. The collection of all 1-bit gates and any imprimitive 2-bit gate is universal.
2. The collection of all 1-bit gates and any imprimitive 2-bit gate is exactly universal.
3. The collection of all special 1-bit gates and any imprimitive 2-bit gate V with det(V) not being a

root of unity is universal.

Examples:

1. The Xθ , Yθ , and Zθ gates are special.
2. The NOT gate and Walsh–Hadamard gate are not special.

3. The 2-bit gate V = 1√
2







1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1





 is primitive, V |xy〉 = H|x〉 ⊗ |y〉.



62-8 Handbook of Linear Algebra

4. The Controlled-NOT gate is imprimitive.
5. The collection of all 1-bit gates and Controlled-NOT gate is universal, and exactly universal.

6. The collection of all Xθ , Yθ , and Zθ gates and Controlled-phase gate �1(Qθ ), where Qθ =
[

1 0
0 eiθ

]

and eiθ is not a root of unity, is universal.

62.3 Deutsch’s Problem

Definitions:

A Boolean function is a function with codomain {0, 1}.
A Boolean function f : {0, 1} → {0, 1} is constant if f (0) = f (1).
A Boolean function f : {0, 1} → {0, 1} is balanced if f (0) 	= f (1).

Problem: Deutsch

Given a Boolean function f : {0, 1} → {0, 1}, determine whether it is constant or balanced.

Algorithm: Deutsch

1. Prepare a two-bit quantum register and initialize it to the state |0〉|1〉.
2. Apply the Walsh–Hadamard transform to both qubits.
3. Apply the function evaluation operator U f

U f : |x〉|y〉 → |x〉|y ⊕ f (x)〉.
4. Apply the Walsh–Hadamard transform to the first qubit.
5. Measure the first qubit. If the outcome is |0〉, f is constant. If the outcome is |1〉, f is balanced.

Circuit Diagram: Deutsch

H

H

H|0

|1

Uf

Facts:

The following facts can be found in [CEM98].

1. With the classical computer, we need two evaluations of f to determine whether f is constant or
balanced.

2. With the quantum computer, we need only one evaluation of f to determine whether f is constant
or balanced.



Quantum Computation 62-9

Examples:

1. Let f (0) = 0 and f (1) = 1. The following sequence of quantum states shows the result of
computation utilizing Deutsch’s Algorithm. We start from the initial state |0〉|1〉. Then,

|0〉|1〉

→ |0〉 + |1〉√
2

|0〉 − |1〉√
2

= |0〉√
2

|0〉 − |1〉√
2

+ |1〉√
2

|0〉 − |1〉√
2

→ |0〉√
2

|0〉 − |1〉√
2

+ |1〉√
2

|1〉 − |0〉√
2

= |0〉√
2

|0〉 − |1〉√
2

− |1〉√
2

|0〉 − |1〉√
2

= |0〉 − |1〉√
2

|0〉 − |1〉√
2

→ |1〉 |0〉 − |1〉√
2

.

The outcome of measuring the first qubit is |1〉, hence, f is balanced.
2. Let f (0) = 0 and f (1) = 0. The following sequence of quantum states shows the result of

computation utilizing Deutsch’s Algorithm. We start from the initial state |0〉|1〉. Then,

|0〉|1〉

→ |0〉 + |1〉√
2

|0〉 − |1〉√
2

= |0〉√
2

|0〉 − |1〉√
2

+ |1〉√
2

|0〉 − |1〉√
2

→ |0〉√
2

|0〉 − |1〉√
2

+ |1〉√
2

|0〉 − |1〉√
2

= |0〉 + |1〉√
2

|0〉 − |1〉√
2

→ |0〉 |0〉 − |1〉√
2

.

The outcome of measuring the first qubit is |0〉, hence, f is constant.

62.4 Deutsch–Jozsa Problem

Definitions:

A Boolean function f : {0, 1}n → {0, 1} is constant if f (x) = c , c ∈ {0, 1}, for all x ∈ {0, 1}n.
A Boolean function f : {0, 1}n → {0, 1} is balanced if the function value is 1 (or 0) for exactly half of

the input values, i.e., card
(

f −1 ({1})) = card
(

f −1 ({0})).

Problem: Deutsch--Jozsa

Given a Boolean function f : {0, 1}n → {0, 1}, which is either constant or balanced, determine whether it
is constant or balanced.



62-10 Handbook of Linear Algebra

Algorithm: Deutsch–Jozsa

1. Prepare an (n + 1)-bit quantum register and initialize it to the state (|0〉)n|1〉.
2. Apply the Walsh–Hadamard transform to all the qubits.
3. Apply the function evaluation operator U f :

U f : |x〉|y〉 → |x〉|y ⊕ f (x)〉.
4. Apply the Walsh–Hadamard transform to the first n qubits.
5. Measure the first n qubit. If the outcome is |00 . . . 0〉, f is constant. If the outcome is not

|00 . . . 0〉, f is balanced.

Circuit Diagram: Deutsch–Jozsa

H

H

H

H

H|0

|1

|0

Uf

Facts:

The following facts can be found in [CEM98].

1. With the classical computer, we need at least 2n−1 + 1 evaluations of f to determine with certainty
whether f is constant or balanced.

2. With the quantum computer, we need only one evaluation of f to determine with certainty whether
f is constant or balanced.

Examples:

1. Let n = 2 and f (00) = f (01) = f (10) = f (11) = 1. The following sequence of quantum states
shows the result of computation utilizing Deutsch–Jozsa’s Algorithm. We start from the initial state
|00〉|1〉. Then,



Quantum Computation 62-11

|00〉|1〉
→ |0〉 + |1〉√

2

|0〉 + |1〉√
2

|0〉 − |1〉√
2

= |00〉 + |01〉 + |10〉 + |11〉
2

|0〉 − |1〉√
2

= |00〉
2

|0〉 − |1〉√
2

+ |01〉
2

|0〉 − |1〉√
2

+ |10〉
2

|0〉 − |1〉√
2

+ |11〉
2

|0〉 − |1〉√
2

→ |00〉
2

|1〉 − |0〉√
2

+ |01〉
2

|1〉 − |0〉√
2

+ |10〉
2

|1〉 − |0〉√
2

+ |11〉
2

|1〉 − |0〉√
2

= −|00〉
2

|0〉 − |1〉√
2

− |01〉
2

|0〉 − |1〉√
2

− |10〉
2

|0〉 − |1〉√
2

− |11〉
2

|0〉 − |1〉√
2

= −|00〉 − |01〉 − |10〉 − |11〉
2

|0〉 − |1〉√
2

= −|0〉 + |1〉√
2

|0〉 + |1〉√
2

|0〉 − |1〉√
2

→ −|00〉 |0〉 − |1〉√
2

.

The outcome of measuring the first 2 qubit is |00〉, hence, f is constant.
2. Let n = 2, f (00) = f (01) = 0, and f (10) = f (11) = 1. The following sequence of quantum

states shows the result of computation utilizing Deutsch–Jozsa’s Algorithm. We start from the initial
state |00〉|1〉. Then,

|00〉|1〉
→ |0〉 + |1〉√

2

|0〉 + |1〉√
2

|0〉 − |1〉√
2

= |00〉 + |01〉 + |10〉 + |11〉
2

|0〉 − |1〉√
2

= |00〉
2

|0〉 − |1〉√
2

+ |01〉
2

|0〉 − |1〉√
2

+ |10〉
2

|0〉 − |1〉√
2

+ |11〉
2

|0〉 − |1〉√
2

→ |00〉
2

|0〉 − |1〉√
2

+ |01〉
2

|0〉 − |1〉√
2

+ |10〉
2

|1〉 − |0〉√
2

+ |11〉
2

|1〉 − |0〉√
2

= |00〉
2

|0〉 − |1〉√
2

+ |01〉
2

|0〉 − |1〉√
2

− |10〉
2

|0〉 − |1〉√
2

− |11〉
2

|0〉 − |1〉√
2

= |00〉 + |01〉 − |10〉 − |11〉
2

|0〉 − |1〉√
2

= |0〉 − |1〉√
2

|0〉 + |1〉√
2

|0〉 − |1〉√
2

→ |10〉 |0〉 − |1〉√
2

.

The outcome of measuring the first 2 qubit is |10〉, hence, f is balanced.

62.5 Bernstein–Vazirani Problem

Definitions:

Let x = x1x2 . . . xn and y = y1 y2 . . . yn be two n-bit strings from {0, 1}n. The dot product x · y is the mod
2 sum of the bitwise products:

x · y = x1 y1 ⊕ x2 y2 ⊕ . . . ⊕ xn yn.

Problem: Bernstein–Vazirani
Given a Boolean function fa : {0, 1}n → {0, 1} defined by fa (x) = a · x , where a is an unknown n-bit
string in {0, 1}n, determine the value of a .



62-12 Handbook of Linear Algebra

Algorithm: Bernstein–Vazirani

1. Prepare an (n + 1)-bit quantum register and initialize it to the state (|0〉)n|1〉.
2. Apply the Walsh–Hadamard transform to all the qubits.
3. Apply the function evaluation operator U fa :

U fa : |x〉|y〉 → |x〉|y ⊕ fa (x)〉.
4. Apply the Walsh–Hadamard transform to the first n qubits.
5. Measure the first n qubits. The outcome is |a〉.

Circuit Diagram: Bernstein–Vazirani

H

H

H

H

H|0

|1

|0

Ufa

Facts:

The following facts can be found in [BV93].

1. With the classical computer, we need n evaluations of fa to determine the value of a .
2. With the quantum computer, we need only one evaluation of fa to determine the value of a .

Examples:

Let a = 11, a 2-bit string. The following sequence of quantum states shows the result of computation
utilizing Bernstein–Vazirani’s Algorithm. We start from the initial state |00〉|1〉. Then,

|00〉|1〉

→ |0〉 + |1〉√
2

|0〉 + |1〉√
2

|0〉 − |1〉√
2

= |00〉 + |01〉 + |10〉 + |11〉
2

|0〉 − |1〉√
2

= |00〉
2

|0〉 − |1〉√
2

+ |01〉
2

|0〉 − |1〉√
2

+ |10〉
2

|0〉 − |1〉√
2

+ |11〉
2

|0〉 − |1〉√
2



Quantum Computation 62-13

→ |00〉
2

|0〉 − |1〉√
2

+ |01〉
2

|1〉 − |0〉√
2

+ |10〉
2

|1〉 − |0〉√
2

+ |11〉
2

|0〉 − |1〉√
2

= |00〉
2

|0〉 − |1〉√
2

− |01〉
2

|0〉 − |1〉√
2

− |10〉
2

|0〉 − |1〉√
2

+ |11〉
2

|0〉 − |1〉√
2

= |00〉 − |01〉 − |10〉 + |11〉
2

|0〉 − |1〉√
2

= |0〉 − |1〉√
2

|0〉 − |1〉√
2

|0〉 − |1〉√
2

→ |11〉 |0〉 − |1〉√
2

.

The outcome of measuring the first 2 qubits is |11〉, hence, a = 11.

62.6 Simon’s Problem

Definitions:

A function f : {0, 1}n → {0, 1}n is 2–1 if for each z ∈ range( f ), there are exactly two distinct n-bit strings
x and y such that f (x) = f (y) = z.

A function f : {0, 1}n → {0, 1}n has a period a if f (x) = f (x ⊕ a), ∀x ∈ {0, 1}n.

Problem: Simon

Given a function f : {0, 1}n → {0, 1}n which is 2-1 and has period a , determine the period a .

Algorithm: Simon

1. Repeat the following procedure for n times.

(a) Prepare a 2n-bit quantum register and initialize it to the state (|0〉)n(|0〉)n.

(b) Apply the Walsh–Hadamard transform to the first n qubits.

(c) Apply the function evaluation operator U f :

U f : |x〉|y〉 → |x〉|y ⊕ f (x)〉.

(d) Apply the Walsh–Hadamard transform to the first n qubits.

(e) Measure the first n qubits. Record the outcome |x〉.
2. With the n outcomes x1, x2, . . ., xn, solve the following system of linear equations:






x1 · a = 0
x2 · a = 0

...
xn · a = 0.

The solution a is the period of f .



62-14 Handbook of Linear Algebra

Circuit Diagram: Simon

H

H H

H

|0

|0

|0

|0

Uf

Facts:

The following facts can be found in [Sim94].

1. With the classical computer, we need exponentially many evaluations of f to determine the period
a .

2. With the quantum computer, we need O(n) evaluations (on average) of f to determine the period
a .

Examples:

Let f (00) = 01, f (01) = 11, f (10) = 01, and f (11) = 11. The following sequence of quantum states
shows the result of computation utilizing Simon’s Algorithm. We start from the initial state |00〉|00〉. Then,

|00〉|00〉

→ |0〉 + |1〉√
2

|0〉 + |1〉√
2

|00〉 = |00〉 + |01〉 + |10〉 + |11〉
2

|00〉

= |00〉|00〉
2

+ |01〉|00〉
2

+ |10〉|00〉
2

+ |11〉|00〉
2

→ |00〉|01〉
2

+ |01〉|11〉
2

+ |10〉|01〉
2

+ |11〉|11〉
2



Quantum Computation 62-15

= |00〉 + |10〉
2

|01〉 + |01〉 + |11〉
2

|11〉 = |0〉 + |1〉√
2

|0〉√
2
|01〉 + |0〉 + |1〉√

2

|1〉√
2
|11〉

→ |0〉 |0〉 + |1〉
2

|01〉 + |0〉 |0〉 − |1〉
2

|11〉 = |00〉 + |01〉
2

|01〉 + |00〉 − |01〉
2

|11〉.

The outcome of measuring the first 2 qubits yields either |00〉 or |01〉. Suppose that we have run the
computation above twice and obtained |00〉and |01〉, respectively. We now have a system of linear equations:

{
00 · a = 0

01 · a = 0.

The solution is a = 10, the period of this function.

62.7 Grover’s Search Algorithm

Problem: Grover

Given an unsorted database with N items, find a target item w . This problem can be formulated using an
oracle function f : {0, 1, . . . , N − 1} → {0, 1}, where

f (x) =
{

0, if x 	= w ,

1, if x = w .

Given such an oracle function, find the w such that f (w) = 1.

Algorithm: Grover

Without loss of generality, let N = 2n.

1. Prepare an (n + 1)-bit quantum register and initialize it to the state (|0〉)n|1〉.
2. Apply the Walsh–Hadamard transform to all the n + 1 qubits.

3. Repeat the following procedure for about
π

4

√
N times. Cf. Figure 62.1.

(a) Apply the function evaluation operator U f (selective sign flipping operator):

U f : |x〉|y〉 → |x〉|y ⊕ f (x)〉.
This is equivalent to the unitary operator Iw = I − 2|w〉〈w | on the first n qubits.

(b) Apply unitary operator (inversion about the average operator) Is = 2|s 〉〈s | − I on the
first n qubits. Cf. Figure 62.2.

4. Measure the first n qubits. We obtain the search target with high probability.

Facts:

1. [Gro97] With the classical computer, on average, we need O(N) oracle calls (evaluations of f ) to
find the search target.

2. [Gro97] With the quantum computer, on average, we need O(
√

N) oracle calls to find the search
target.



62-16 Handbook of Linear Algebra

Circuit Diagrams: Grover

H

H

|1

|0

|0

H

Uf Is Uf Is

FIGURE 62.1 Grover’s Algorithm.

HH

FIGURE 62.2 Inversion about the average operator Is .

3. [BBH98] When N = 4, using Grover’s Algorithm, exactly one oracle call suffices to find the search
target with certainty.

Examples:

Let N = 22 = 4 and Item 3 be the search target, which is encoded by the quantum state |11〉 (11 is the
binary representation of 3). The following sequence of quantum states shows the result of computation
utilizing Grover’s Algorithm. We start from the initial state |00〉|1〉. Then,

|00〉|1〉
→ |0〉 + |1〉√

2

|0〉 + |1〉√
2

|0〉 − |1〉√
2

= |00〉 + |01〉 + |10〉 + |11〉
2

|0〉 − |1〉√
2

= |00〉
2

|0〉 − |1〉√
2

+ |01〉
2

|0〉 − |1〉√
2

+ |10〉
2

|0〉 − |1〉√
2

+ |11〉
2

|0〉 − |1〉√
2

→ |00〉
2

|0〉 − |1〉√
2

+ |01〉
2

|0〉 − |1〉√
2

+ |10〉
2

|0〉 − |1〉√
2

+ |11〉
2

|1〉 − |0〉√
2



Quantum Computation 62-17

= |00〉
2

|0〉 − |1〉√
2

+ |01〉
2

|0〉 − |1〉√
2

+ |10〉
2

|0〉 − |1〉√
2

− |11〉
2

|0〉 − |1〉√
2

= |00〉 + |01〉 + |10〉 − |11〉
2

|0〉 − |1〉√
2

→ |11〉 |0〉 − |1〉√
2

.

The outcome of measuring the first 2 qubits yields |11〉, which is the search target w = 3.

Comments:

Grover’s Algorithm was discovered by L.K. Grover of Bell Labs in 1996. This algorithm provides a quadratic
speedup over classical algorithms. Although it is not exponentially fast (as Shor’s Algorithm is), it has a
wide range of applications. It could be used to accelerate any algorithms related to searching an unsorted
database, including quantum database search, finding the solution of NP problems, finding the median
and minimum of a data set, and breaking the Data Encryption Standard (DES) cryptography system.

62.8 Shor’s Factorization Algorithm

Integer Factorization Problem:

Given a composite positive integer N, factor it into the product of its prime factors.

Algorithm: Shor

1. Choose a random number a < N; make sure that a and N are coprime. This can be done by
using a random number generator and Euclidean algorithm on a classical computer.

2. Find the period T of function fa ,N(x) = ax mod N. This step can be further expanded as
follows:

(a) Prepare two L -bit quantum registers in initial state
(

1√
2L

2L −1∑

x=0

|x〉
)

|0〉,

where L is chosen such that N2 ≤ 2L < 2N2.

(b) Apply the function evaluation operator U f : |x〉|0〉 → |x〉| fa ,N(x)〉:

1√
2L

2L −1∑

x=0

|x〉|0〉 → 1√
2L

2L −1∑

x=0

|x〉| fa ,N(x)〉.

(c) Apply QFT to the first register:

1√
2L

2L −1∑

x=0

|x〉| fa ,N(x)〉 → 1

2L

2L −1∑

y=0

(
2L −1∑

x=0

e2π i xy/2L |y〉
)

| f (x)〉.

(d) Make a measurement on the first register, obtaining y.

(e) Find T from y via the continued fraction for y
2L . This step might fail; in that case, repeat

from 2a.

3. If T is odd, repeat from Step 1. If T is even and N | (aT/2 + 1), repeat from Step 1. If T is even
and N /| (aT/2 + 1), compute d = gcd(aT/2 − 1, N), which is a nontrivial factor of N.



62-18 Handbook of Linear Algebra

Circuit Diagrams: Shor

|0

|0

|0

|0

|0

|0

|0

H

H

H

H

|0

QFT

a2n−1
a22

a2a

Facts:

The following facts can be found in [Sho94].

1. The integer factorization problem is classically intractable. The most efficient classical algorithm to
date, a number field sieve, has a time complexity of O(exp (log N)1/3(log log N)2/3).

2. Shor’s quantum factorization algorithm has a time complexity of

O((log N)2 log log N log log log N). Hence, it is a polynomial time algorithm.

Examples:

Let N = 15. Choose L = 8 such that N2 = 225 < 2L < 450 = 2N2. Choose a random integer a = 2,
which is coprime with 15. Thus, fa ,N(x) = 2x mod 15. The following sequence of quantum states shows
the result of computation utilizing Shor’s Algorithm:

|0〉|0〉 → 1

24

28−1∑

x=0

|x〉|0〉

→ 1

24

28−1∑

x=0

|x〉| fa ,N(x)〉

= 1

24
(|0〉|1〉 + |1〉|2〉 + |2〉|4〉 + |3〉|8〉

+ |4〉|1〉 + |5〉|2〉 + |6〉|4〉 + |7〉|8〉 + · · · + |28 − 2〉|4〉 + |28 − 1〉|8〉)

→ 1

24

28−1∑

x=0

1

24

28−1∑

y=0

ωxy |y〉|2x mod 15〉

→ 1

28

28−1∑

y=0

|y〉
28−1∑

x=0

ωxy |2x mod 15〉,



Quantum Computation 62-19

where ω = e2π i/28
. Suppose that the outcome of measuring the first n qubits is |56〉. We can compute the

continued fraction of 56
256 to be [0, 4, . . .]. The second number 4 satisfies 24 = 1 mod 15. So 4 is the period

of fa ,N . 24/2 − 1 = 3 yields a factor of 15 and 15 = 3 × 5.

Comments:

Shor’s Algorithm was discovered by P. Shor of AT&T Labs in 1994. It is the most important breakthrough
in the research of quantum computation so far. It solves the integer factorization problem, an extremely
hard problem for classical computers, in polynomial time. The security of the RSA cryptographic system,
which is widely used nowadays over the Internet, is based on the difficulty of factoring large integers.
Equipped with a quantum computer, one could easily break the RSA codes with Shor’s Algorithm.

References

[BV93] E. Bernstein and U. Vazirani. Quantum complexity theory. Proc. of the 25th Annual ACM Symposium
on the Theory of Computing, San Diego, CA, 11–20, 1993.

[BBH98] M. Boyer, G. Brassard, P. Hoyer, and A. Tapp. Tight bounds on quantum searching. Fortsch. Phys.
46:493–506, 1998.

[BB02] J. L. Brylinski and R. Brylinski. Universal quantum gates. Mathematics of Quantum Computation
(R. Brylinski and G. Chen, Eds.). Chapman & Hall/CRC Press, Boca Raton, FL, 101–116, 2002.

[CEM98] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms revisited. Proc. R. Soc.
London A, 454:339–354, 1998.

[Fey82] R. Feynman. Simulating physics with computers. Int. J. Theor. Phys., 21:467–488, 1982.
[Gro97] L.K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett.,

78:325–328, 1997.
[NC00] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cambridge

University Press, Cambridge, U.K., 2000.
[Sho94] P. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. Proc. of the 35th

Annual IEEE Symposium on the Foundations of Computer Science, Santa Fe, NM, 124–134, 1994.
[Sim94] D. Simon. On the power of quantum computation. Proc. of the 35th Annual IEEE Symposium on

Foundations of Computer Science, Santa Fe, NM, 116–123, 1994.




