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Roadmap

* Introduction
e Simulation: some history

 Example: amorphous graphene

* Machine Learning: a new frontier
* Prospects and outlook



Some important applications/frontiers

 Aid to design (ex: air foils)

https://cfd2012.com/wings.html

* Drug discovery

Traditional drug discovery: costs (on average) about $3 billion and takes 12 years. Computational science is
having helpful impact to improve these numbers, esp. for cancer drugs (Cui et al, Front. Phar, 2020)

* MGI (Pres. Obama, ca. 2011)

https://obamawhitehouse.archives.gov/mgi



Atomistic simulation of materials

* The goal: prediction, understanding, optimization

e Such simulations are based on classical dynamics: F=ma

* Connected to Newtonian determinism: give me the forces and the initial
conditions and | will predict the future!

* nbl: Jurassic Park
* nb2: Quantum mechanics is probabilistic not deterministic

* Big picture
* Input: force laws and initial conditions
e Output: structure, vibrations, electronic, optical, magnetic, transport
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History |

e 17t century: Newton The universe is a big coupled systems of second
order nonlinear differential equations!

 Newton was initially concerned about gravity and dynamics of the
solar system. Easy to write down the equations, impossible to solve
analytically for more than two gravitating bodies.

* The first simulation (without a computer!): Galactic dynamics, Eric
Holmberg and his photocells.



History Il: Statistical Mechanics (good news)

* If we have a macroscopic number of particles (say 1023) in a gas, solid or
liquid, can learn much about the properties of the collective:
* Microscopic understanding of Thermodynamics
 Critical phenomena/phase transitions
e Near equilibrium response (such as fluctuation-dissipation theorem)
* Transport theory
 Classical theory of liquids

 Summary (E. T. Jaynes): Equations of motion are incredibly complex and
impossible to simulate or even store. And we usually don’t care about
irrelevant details (the velocity of atom number 1017). S.M. elegantly
“marginalizes” this cluttering complexity and focuses on the observables
that matter.



History Il: Stat Mech: what it can’t do

* Processes very far from equilibrium (for example: growth)

* Local quantities

 What is the vibrational frequency of an atom in a given configuration
 What is the charge on a defect site
* Where in my material does my electronic defect state come from

 Complicated interaction (I dare you to compute the partition function
of amorphous silicon with energies from quantum chemistry!)

* Not an effective way to predict undiscovered materials, drugs...



History Ill: Atomistic simulations: heroic age

* First atomistic simulations in 50’s and 60’s: Guess an energy function
(given the positions of N atoms, what is the potential energy of the
configuration) — and from this compute forces and carry out a MD
simulation (integrate F=ma). Rahman, Stillinger,...

 Early calculations for example on liquid water.

 Some qualitative resemblance to experiments. Harbinger of better
things to come.

* Consequences:
e Good: broke open a new field of science

e Bad: interactions too crude for most problems of interest or predictive
accuracy



History IlI: Toward realism and prediction

* Interatomic interactions
e Q: Where do interatomic forces “come from”?
* A: Chemistry and chemical bonds.

* The way out
* Q. How do we compute generally applicable and accurate interactions?
* A: Admit the root of your woes: grapple with the quantum mechanics!
 Memorable cocky quote of science: Dirac statement:

The fundamental laws necessary for the mathematical treatment of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty lies only in the fact that application of these laws leads to equations that

are too complex to be solved.



History IV: Quantum Mechanics of Solids

* Looks hopeless at first glance: PiEARIAY t):f +V_+T +V,y y+V _y+H,,

.. kinetic energies

N ZZ
258, R!

potentlal energies

* The epiphany (Dirac, Fermi, Hartree, Slater, Kohn...). The
solid/molecular binding from the “electronic glue” of solids can be
estimated from the electronic charge density. This is well

approximated in a complicated single particle theory: Density
Functional Theory.

e Great recent Review, Bob Jones Rev. Mod. Phys. 87, 897 (2015).






Amorphous Graphene exists. A 2D
amorphous “solid”.

Geim et al,Rings 5/6/7
Purple/blue/red
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We make up a model
and explore it

* He and Thorpe were prescient,
made such models in 1980s.
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* We show that: the models are
realistic, that they pucker
(pentagonal strain) and that
electronic properties are very
different in glassy graphene.
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Low density 3D amorphous carbon is 3D

amorphous graphene!
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Experimental observables: structure

—— schwarzite (792 atom) 3D a-graphene
= 2D a-graphene (800 atom)
= 3D a-graphene (800 atom)
N A
m ol ~f A A
p-graphene 2D a-graphene
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Electrons and phonons

= 3D a-graphene

= 3D a-graphene
—— 2D a-graphene

icipation ratio (IPR)

—— schwarzite
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Vibrational density of states (VDOS) (arb. units)
Electronic density of states (EDOS) (arb. units)
Electronic density of states (EDOS) (arb. units)

Vibrationa
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Example II. Graphite
from Coal

Graphite: a layered form of carbon (graphene “; ’
hexagons separated by a large interplane s o 3:
distance). ¥

Essential material for lithium-ion battery
electrodes

J. Trembly (Ohio) has shown that “graphitization”
occurs if coal based “foam” materials are heated
to about 3000K. What are these materials?

wikicommons



Machine learning for potentials (the idea)

* Pick a material, say a-SiO,. How many millions of computer core hours
have been spent, a paper published and the simulation data deleted?

* Suppose that we try to build a database of the all the atomistic
information we obtained.

e Q: Can we use this data to predict interatomic interactions for new
simulations of the same material?

* A: Conceptually this is possible because the potential is a continuous function
of the coordinates — so it is effectively a hard interpolation problem! Yes (uh,
it is a little more complex than this).



Machine learning for interatomic potentials:
ingredients

* Many different approaches, but more or less all follow a pattern like
this. For a given “new” configuration encountered —-

1) Identify local bonding environment in some compact form including all
effects of “rotation” etc. Note: this can involve tens of atoms....

e 2) Compare current configuration with what is in the database. Need a matrix
on the space of configurations.

* 3) Determine whether existing database is adequate to provide energy, forces
etc.
 |f adequate, take a time step with the “inferred” forces

* If not, “learn on the fly” — do a new quantum calculation on the new configuration and
add it to the database. Use the computed forces to take a time step

* If exploring a new phase, lots of learning steps are required until the database is
sufficiently “complete”.



Accurate large-scale simulations of Si: representing the
energy landscape

e Silicon is hard to model well. Well known that liquid and
disordered phases are well modeled only with DFT.

e Furio Ercolessi had an idea in the early 90’s: why not fit a
parametrized functional form for an interatomic potential
to ab initio data? “Force-Matching method”. Clever, but
impossible to find a good fit.

* Nowadays: non-parametric approaches and “Machine
Learning”.

 Csanyi, Bartok and Deringer have pioneered a successful
new approach: “Gaussian Approximation Potential” (GAP).

PRX 8 041048 (2018), PRL 104 136403 (2010); Adv. Mats. 31 1902765; several others.



Atomic-scale materials modelling:
Machine learning as an emerging approach

Quantum-mechanically accessible,
but only at selected points!




Atomic-scale materials modelling:
Machine learning as an emerging approach

Approximate an unknown function
(here: the potential energy surface)
based on data alone



Atomic-scale materials modelling:
Machine learning as an emerging approach

Energies and forces
HY = EW Energ

e-point)
Regression (“learning”) of

potential-energy surface
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Construction of a X (SN dimensional) q (descriptors)
reference database

9 Representation of
atomic environments

Courtesy Dr. Volker Deringer



A machine-learned potential for silicon

Gaussian approximation potential

e (GAP) framework: a kernel (similarity)
: : ;. 2-body:
based machine-learning method. distance
 New approach here: combine
suitable structural descriptors.
 Provides meaningful local (site) energies.
 NB: calculations are not “cheap®, but are
linear scaling.
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V. L. Deringer, G. Csanyi, Phys. Rev. B 2017, 95, 094203
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Tests (just a few of many

DFT
1 170 —-= GAP
N | - 1 60 EDIP
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FIG. 1. Comparison of percentage errors made by a range of interatomic potentials for selected properties, with respect to our DFT B a rto k e‘t a | . o 0.005 -
reference. Those on the left of the break in the axis are interpolative, i.e., well represented within a training set of the GAP model: elastic :
constants (bulk modulus B, stiffness tensor components C;;), unreconstructed (but relaxed) surface energies [(111), (110), and (100) P RX 8 O 4 10 48
low-index surfaces], point-defect formation energies (vacancy and hexagonal, tetrahedral, and dumbbell interstitials); while the planar
defects to the right are extrapolative: (112) £3 symmetric tilt grain boundary and unstable stacking-fault energies on shuffle plane y&i) (2 O 1 8) 0.000 -
(9) T T T
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Liguid to amorphous transition

e Fact: Liquid Siis a ~6-fold
coordinated metal, amorphous

silicon a tetrahedral semiconductor. - —
To my knowledge nobody has made st wonthe 18
a-Si by quench from the melt

(Angell however has done it for Gel)
* Train GAP for liquid configurations.

* We show that slow enough . -
guenches of the liquid with GAP . R
produces models of a-Si consistent —=Eres D AR Or
with experiment.

Bhatt et al., Nature (2007).



Take 4096 atoms, and quench the liquid....
Slooooowly.......

Quench rate (K/s)
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: DOS(E)>»
N. Bernstein, B. Bhattarai, G. Csanyi, DAD, S. R. Elliott Angew. Chem 131 7131 (2019)



0 5 10 15 20
GP predicted error (meV)

10 15 20
GP predicted error (meV)

. 0.4 0.6
GAP local energy (eV)

Distribution of local
energies (a fringe
benefit of GAP)

1011K/s system
slightly below best
WWW a-Sit

1. B. R. Djordjevic, M. F. Thorpe, F. Wooten
PRB 52 5685 (1995)



104 K/s
mm 103 K/s
mm 10'2K/s
= 10" K/s

Expt. (Laaziri et al.)
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100,000 atoms with

DFT-like accuracy

* GAP is linearly scaling
(albeit with big prefactor).
Linear scaling opens up
some new realms for
Inquiry.

(1) Track liquid to amorphous
transition

(2) Squeeze the liquid,

DFT Pilot GAP

compare to experiments Sk ehites

(3) Squeeze the solid, track .

the phase transitions. n.b. nature

needed to ‘train’ for such moMc

configurations. INSIGHTS . 327
V. Deringer, N. Bernstein, G. Csanyi, M. Wilson, D. A. Drabold and S. R. Elliott, Structural transitions in dense disordered silicon ex,

from quantum-accurate ultra-large-scale simulations, Nature 589 59 (2021),



https://www.nature.com/articles/s41586-020-03072-z

Quench the liquid to
make a-Si (zero
pressure)

e Similar S(qg) to ideally
tetrahedral model of
Thorpe and coworkers.

e Statistically similar to
4096-atom mode, as
expected.
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— Simulation (relaxed; this work)




Progress of quench
HODL ———— > DA

T (K)

Coordination ¢ Similarity to dia-Si d ML atomic energy

AMSD (A2) V/(A3/at)
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History: pressure-induced amorphous to

amorphous transition in silicon

AB INITIO SIMULATIONS OF FIRST-ORDER ...

1.00

#——k compression
&6 decompression

Normalized Volume
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Pressure (GPa)
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5.0 10.0 15.0
Pressure (GPa)

M. Durandurdu, DAD Phys Rev B 64 014101 (2001).

Abrupt collapse from tetrahedral
amorphous phase into dense metallic
disordered phase ca. 16 GPa.

Paltry 216 atoms!



High Pressure: 100,000-atom models

* First, we squeeze the liguid (T=1500K). Partly to check GAP, ensure we
have all the conformations required. Compare to experiments.

* Then we squeeze a-Si (0.1 GPa/ps and T=500K).



Squeeze the o . gxpt. (Funamori & Tsuji)
||C]U|d theory and - Simulation (this work)
experiment.
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Results

SI:

Sgueeze 3

Crystallisation

Transient VHDA

Collapse
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Phase change: characterization

coordination i Transient VHDA Crystallisation Polycrystalline sh
(13 GPa) 5 (16 GPa) (20 GPa)

Local energy ML atomic energy (eV)
BT

=02 04 06 =08



Close up of crystallized phase
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High pressure: discussion

Proceeds as follows:

(1) Some initial co-existence of High Density Amorphous (HDA) phase
and low density amorphous: “Polyamorphism”.

(2) Abrupt collapse into highly disordered VHDA phase around 11 GPa.

VHDA is transient, crystallization (to simple hexagonal phase) occurs
at 15-16 GPa.

(3) So we have multistep crystallization originatin% in a precursor
transient VHDA phase. Not direct HDA to simple hexagonal as
previously believed.

(4) The crystallization does not occur in 1000-atom models, even up to
50 GPa. Small cell too dependent on stochastic effects?



Electronic structure

e Use orthogonal tight binding Hamiltonian (Kwon et al. PRB 1994). Four
orbitals per site.

e dim(H)=400,000

* Method of DAD and Sankey (PRL 1993) to compute density of states.
Ingredients:

(1) Sparse matrix methods

(2) Order-N computation of (many) moments of the spectral density of
states

(3) Maximum-entropy reconstruction of the density of states from
moments



Results: electrons

* Snapshots of the system through the
pressurization run: examine the
electronic density of states.

* Metallicity tracked by DOS(Ey).

e System “goes metallic” above 10 GPg,
drops off some with s-h crystallization. 0 3 10 15 20

Pressure (GPa)
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* Very High Density Amorphous DOS is
very similar to 1500K liquid at similar
pressure.

e Caveat emptor: Simple Hamiltonian, fit
to some high-pressure configurations.
Conduction states leave something to be

desired.

2.1 million-atom
fragment of diamond

(same method)




Conclusion: GAP/Silicon/Pressure

 Machine Learning techniques are emerging as a meaningful tool in
simulation. Opens some new doors.

* Squeeze a-Si: Abrupt collapse into a transient high
density/coordination state. Then rapid crystallization to simple
hexagonal phase. Does not happen in 1000-atom cell!

* Lots of new frontiers: now we are looking at surfaces. Collaborators
are working on Carbon, GeSbTe (phase change memory) materials,
others.



GAP: comments from a cheerleader, not an expert

e Given a very large sampling of accurate (DFT) computations of
forces for an “adequately diverse and representative” set of
configurations, GAP estimates the forces by fitting/interpolating
from its library of configurations.

* |f ever the devil is in the details, it is in building ML potentials:

1) How many configurations are enough?

w N

) Have we sampled all salient environments?
) How do we represent a local environment?

~

Error estimation is built in — if there is nothing close in the
database, demand a new DFT calculation.

5) When this is done properly, it is not cheap. For less than 200

AF~Arvve ~hAAA~AA~Ar FA GtieAN AlAA AR v A DCTI Dt i+ 0 ArdAdAar N
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