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Some important applications/frontiers

• Aid to design (ex: air foils)

• Drug discovery 

• MGI (Pres. Obama, ca. 2011)

https://cfd2012.com/wings.html

https://obamawhitehouse.archives.gov/mgi

Traditional drug discovery: costs (on average) about $3 billion and takes 12 years. Computational science is
having  helpful impact to improve these numbers, esp. for cancer drugs (Cui et al, Front. Phar, 2020)



Atomistic simulation of materials

• The goal: prediction, understanding, optimization

• Such simulations are based on classical dynamics: F=ma 
• Connected to Newtonian determinism: give me the forces and the initial 

conditions and I will predict the future!

• nb1: Jurassic Park

• nb2: Quantum mechanics is probabilistic not deterministic

• Big picture 
• Input: force laws and initial conditions

• Output: structure, vibrations, electronic, optical, magnetic, transport 



History: realistic atomistic modeling of materials 



History I

• 17th century: Newton The universe is a big coupled systems of second 
order nonlinear differential equations! 

• Newton was initially concerned about gravity and dynamics of the 
solar system. Easy to write down the equations, impossible to solve 
analytically for more than two gravitating bodies. 

• The first simulation (without a computer!): Galactic dynamics, Eric 
Holmberg and his photocells.



History II: Statistical Mechanics (good news)

• If we have a macroscopic number of particles (say 1023) in a gas, solid or 
liquid, can learn much about the properties of the collective:
• Microscopic understanding of Thermodynamics
• Critical phenomena/phase transitions
• Near equilibrium response (such as fluctuation-dissipation theorem)
• Transport theory
• Classical theory of liquids

• Summary (E. T. Jaynes): Equations of motion are incredibly complex and 
impossible to simulate or even store. And we usually don’t care about 
irrelevant details (the velocity of atom number 1017). S.M. elegantly 
“marginalizes” this cluttering complexity and focuses on the observables 
that matter. 



History II: Stat Mech: what it can’t do

• Processes very far from equilibrium (for example: growth)

• Local quantities
• What is the vibrational frequency of an atom in a given configuration

• What is the charge on a defect site

• Where in my material does my electronic defect state come from

• Complicated interaction (I dare you to compute the partition function 
of amorphous silicon with energies from quantum chemistry!)

• Not an effective way to predict undiscovered materials, drugs…



History III: Atomistic simulations: heroic age

• First atomistic simulations in 50’s and 60’s: Guess an energy function 
(given the positions of N atoms, what is the potential energy of the 
configuration) – and from this compute forces and carry out a MD 
simulation (integrate F=ma). Rahman, Stillinger,…

• Early calculations for example on liquid water. 

• Some qualitative resemblance to experiments. Harbinger of better 
things to come.

• Consequences:
• Good: broke open a new field of science
• Bad:  interactions too crude for most problems of interest or predictive 

accuracy



History III: Toward realism and prediction

• Interatomic interactions
• Q: Where do interatomic forces “come from”?

• A: Chemistry and chemical bonds.

• The way out
• Q. How do we compute generally applicable and accurate interactions?

• A: Admit the root of your woes: grapple with the quantum mechanics!

• Memorable cocky quote of science: Dirac statement:
The fundamental laws necessary for the mathematical treatment of a large part of physics and the whole of chemistry 
are thus completely known, and the difficulty lies only in the fact that application of these laws leads to equations that 
are too complex to be solved.



History IV: Quantum Mechanics of Solids

• Looks hopeless at first glance:

• The epiphany (Dirac, Fermi, Hartree, Slater, Kohn…). The 
solid/molecular binding from the “electronic glue” of solids can be 
estimated from the electronic charge density. This is well 
approximated in a complicated single particle theory: Density 
Functional Theory.

• Great recent Review, Bob Jones Rev. Mod. Phys. 87, 897 (2015).



Example I: Amorphous 
graphene

Graphene is a two-dimensional carbon material of great current 
interest. Are there amorphous forms (a ‘graphene glass’)?!



Amorphous Graphene exists. A 2D 
amorphous “solid”.

Geim et al,Rings 5/6/7
Purple/blue/red



We make up a model 
and explore it

• He and Thorpe were prescient, 
made such models in 1980s. 

• We show that: the models are 
realistic, that they pucker 
(pentagonal strain) and that 
electronic properties are very 
different in glassy graphene.



Low density 3D amorphous carbon is 3D 
amorphous graphene!

Colors: gold, sp2; 
Green sp, purple sp3.



Experimental observables: structure



Electrons and phonons

Vibrations                                                                                                                   Electrons



Example II. Graphite 
from Coal

Graphite: a layered form of carbon (graphene 
hexagons separated by a large interplane 
distance). 

Essential material for lithium-ion battery 
electrodes

J. Trembly (Ohio) has shown that “graphitization” 
occurs if coal based “foam” materials are heated 
to about 3000K. What are these materials?

wikicommons



Machine learning for potentials (the idea)
• Pick a material, say a-SiO2. How many millions of computer core hours 

have been spent, a paper published and the simulation data deleted?

• Suppose that we try to build a database of the all the atomistic 
information we obtained. 
• Q: Can we use this data to predict interatomic interactions for new 

simulations of the same material? 

• A: Conceptually this is possible because the potential is a continuous function 
of the coordinates — so it is effectively a hard interpolation problem! Yes (uh, 
it is a little more complex than this).



Machine learning for interatomic potentials: 
ingredients
• Many different approaches, but more or less all follow a pattern like 

this. For a given “new” configuration encountered —-
• 1) Identify local bonding environment in some compact form including all 

effects of “rotation” etc. Note: this can involve tens of atoms….
• 2) Compare current configuration with what is in the database. Need a matrix 

on the space of configurations.
• 3) Determine whether existing database is adequate to provide energy, forces 

etc. 
• If adequate, take a time step with the “inferred” forces
• If not, “learn on the fly” – do a new quantum calculation on the new configuration and 

add it to the database. Use the computed forces to take a time step
• If exploring a new phase, lots of learning steps are required until the database is 

sufficiently “complete”.



Accurate large-scale simulations of Si: representing the 
energy landscape

• Silicon is hard to model well. Well known that liquid and 
disordered phases are well modeled only with DFT.

• Furio Ercolessi had an idea in the early 90’s: why not fit a 
parametrized functional form for an interatomic potential 
to ab initio data? “Force-Matching method”. Clever, but 
impossible to find a good fit.

• Nowadays: non-parametric approaches and “Machine 
Learning”. 

• Csanyi, Bartok and Deringer have pioneered a successful 
new approach: “Gaussian Approximation Potential” (GAP).

PRX 8 041048 (2018), PRL 104 136403 (2010); Adv. Mats. 31 1902765; several others.



Atomic-scale materials modelling:
Machine learning as an emerging approach

Quantum-mechanically accessible,
but only at selected points!



Atomic-scale materials modelling:
Machine learning as an emerging approach

Approximate an unknown function
(here: the potential energy surface)

based on data alone



Atomic-scale materials modelling:
Machine learning as an emerging approach

Courtesy Dr. Volker Deringer



A machine-learned potential for silicon

Gaussian approximation potential

• (GAP) framework: a kernel (similarity)
based machine-learning method.

• New approach here: combine
suitable structural descriptors.

• Provides meaningful local (site) energies.
• NB: calculations are not “cheap“, but are

linear scaling. 

V. L. Deringer, G. Csányi, Phys. Rev. B 2017, 95, 094203



Tests (just a few of many)

Bartok et al.
PRX 8 041048
(2018)

liquid



Liquid to amorphous transition

• Fact: Liquid Si is a ~6-fold 
coordinated metal, amorphous 
silicon a tetrahedral semiconductor. 
To my knowledge nobody has made 
a-Si by quench from the melt 
(Angell however has done it for Ge!)

• Train GAP for liquid configurations.
• We show that slow enough 

quenches of the liquid with GAP 
produces models of a-Si consistent 
with experiment.

Bhatt et al., Nature (2007).



Take 4096 atoms, and quench the liquid…. 
Slooooowly…….

N. Bernstein, B. Bhattarai, G. Csanyi, DAD, S. R. Elliott Angew. Chem 131 7131 (2019)



Distribution of local 
energies (a fringe 
benefit of GAP) 

1011K/s system 
slightly below best 
WWW a-Si1 

1. B. R. Djordjevic, M. F. Thorpe, F. Wooten
PRB 52 5685 (1995)



Comparison to 
diffraction 
measurements 
on a-Si (Laaziri et 
al.)



100,000 atoms with 
DFT-like accuracy
• GAP is linearly scaling 

(albeit with big prefactor). 
Linear scaling opens up 
some new realms for 
inquiry.

(1) Track liquid to amorphous 
transition
(2) Squeeze the liquid, 
compare to experiments
(3) Squeeze the solid, track 
the phase transitions. n.b. 
needed to ‘train’ for such 
configurations.

V. Deringer, N. Bernstein, G. Csanyi, M. Wilson, D. A. Drabold and S. R. Elliott, Structural transitions in dense disordered silicon 

from quantum-accurate ultra-large-scale simulations, Nature 589 59 (2021),

https://www.nature.com/articles/s41586-020-03072-z


Quench the liquid to 
make a-Si (zero 
pressure)

• Similar S(q) to ideally 
tetrahedral model of 
Thorpe and coworkers.

• Statistically similar to 
4096-atom mode, as 
expected.



Structural evolution 
through the quench 
(500K, 1011 K/s)



History: pressure-induced amorphous to 
amorphous transition in silicon

M. Durandurdu, DAD  Phys Rev B 64 014101 (2001).

Abrupt collapse from tetrahedral
amorphous phase into dense metallic
disordered phase ca. 16 GPa.

Paltry 216 atoms!



High Pressure: 100,000-atom models

• First, we squeeze the liquid (T=1500K). Partly to check GAP, ensure we 
have all the conformations required. Compare to experiments.

• Then we squeeze a-Si (0.1 GPa/ps and T=500K). 



Squeeze the 
liquid: theory and 
experiment.



Squeeze a-Si: Results



Phase change: characterization

coordination

Local energy



Close up of crystallized phase



High pressure: discussion

Proceeds as follows:
(1) Some initial co-existence of High Density Amorphous (HDA) phase 

and low density amorphous: “Polyamorphism”.
(2) Abrupt collapse into highly disordered VHDA phase around 11 GPa. 

VHDA is transient, crystallization (to simple hexagonal phase) occurs 
at 15-16 GPa. 

(3) So we have multistep crystallization originating in a precursor 
transient VHDA phase. Not direct HDA to simple hexagonal as 
previously believed.

(4) The crystallization does not occur in 1000-atom models, even up to 
50 GPa. Small cell too dependent on stochastic effects?



Electronic structure

• Use orthogonal tight binding Hamiltonian (Kwon et al. PRB 1994). Four 
orbitals per site.

• dim(H)=400,000

• Method of DAD and Sankey (PRL 1993) to compute density of states. 
Ingredients:

(1) Sparse matrix methods

(2) Order-N computation of (many) moments of the spectral density of 
states

(3) Maximum-entropy reconstruction of the density of states from 
moments



Results: electrons
• Snapshots of the system through the 

pressurization run: examine the 
electronic density of states.

• Metallicity tracked by  DOS(Ef). 

• System “goes metallic” above 10 GPa, 
drops off some with s-h crystallization.

• Very High Density Amorphous DOS is 
very similar to 1500K liquid at similar 
pressure.

• Caveat emptor: Simple Hamiltonian, fit 
to some high-pressure configurations. 
Conduction states leave something to be 
desired. 

2.1 million-atom 

fragment of diamond

(same method)



Conclusion: GAP/Silicon/Pressure

• Machine Learning techniques are emerging as a meaningful tool in 
simulation. Opens some new doors.

• Squeeze a-Si: Abrupt collapse into a transient high 
density/coordination state. Then rapid crystallization to simple 
hexagonal phase. Does not happen in 1000-atom cell!

• Lots of new frontiers: now we are looking at surfaces. Collaborators 
are working on Carbon, GeSbTe (phase change memory) materials, 
others.  



GAP: comments from a cheerleader, not an expert 

• Given a very large sampling of accurate (DFT) computations of 
forces for an “adequately diverse and representative” set of 
configurations, GAP estimates the forces by fitting/interpolating 
from its library of configurations.

• If ever the devil is in the details, it is in building ML potentials:

1) How many configurations are enough? 

2) Have we sampled all salient environments?

3) How do we represent a local environment? 

4) Error estimation is built in – if there is nothing close in the 
database, demand a new DFT calculation.

5) When this is done properly, it is not cheap. For less than 200 
atoms, cheaper to use planewave DFT! But, it is order-N.
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