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It’s about breaking down 
barriers

Devices, experiments                                                    Atomistic understanding



History: realistic atomistic modeling of materials 



Ingredients: (tongue in 
cheek…)

Single-particle theory 
(density functional) , 
clever computational 
science, and fast 
computers

Big advance over 
analytic theory for many 
problems



Some heroes of the
mathematical 
microscope



The mathematical 
microscope has 
blossomed and matured.

• Computation and prediction 
of structure

• Dynamics of atoms

• Charge and heat transport

• Magnetic properties

• Prediction of spectroscopic 
signatures of matter: optical, 
Raman, UV, NMR, EPR….



Now to a time of 
ordinary men…

• Examples of the development 
and use of quantum 
simulation

• Physically Unclonable 
Function

• Machine Learning for 
interatomic potentials: see a 
fairly exotic phase transition



Physically Unclonable Function (PUF): a silicon suboxide 
realization

• Concept: Find an observable that depends upon some intricate and 
non-reproducible physical feature. Various ideas are afloat. 

• Key application: computer security (unique keys/identifiers)

• We work on PUFs based upon electronic conduction in amorphous 
silicon suboxides (designed and built by M.N.K.) . We show in atomistic 
detail how these devices function.

• Two preliminaries: (1) What’s the structure of these materials and (2) 
what are the microscopic mechanisms of electronic conduction?



Amorphous silicon suboxides: structure

• Start with a-SiO2 (silica glass).

• Now deplete some O: Consider SiOx for 
0<x<2. Of course x=2 is a-SiO2 and x=0 is a-
Si.

• As O is removed from SiO2, we are left with 
Si pining for O.

• Depending on x, we get a menagerie of 
defective Si sites (colored atoms)

a-SiO1.3

K. Subedi, Ohio



Disorder is your friend: electronic conduction in 
amorphous Si suboxides

• Suppose we pick the DC conductivity as the observable. We 
need to compute the conduction path and see how it varies 
among different realizations. 

• Harness the power of entropy – disorder -- to make a 
practical device.



The private life 
of electrons in 
the suboxides



Spatial information about conduction in materials

Q: How to compute the conductivity 
from wavefunctions, electronic 
eigenvalues etc? 

A: The Kubo-Greenwood Formula 
(Kubo, 1957; Mott in the sixties)

• Once we have the computer 
models of material, we have 
everything needed.

• Great: but where did that 
conductivity “come from”? What 
components of the network 
contributed? Subedi, Prasai, Kozicki, DAD PRM 2019



Spatial decomposition:  a few tedious slides

1. Reduce the clutter, define:

2. Rewrite the conductivity:

3. Declutter again. Define:



Tedium (continued)

4. Approximate the integrals as sums on a discrete grid in real space 

(exact as h → 0)

5. Spatially decompose :

 is Hermitian, positive
semi-definite matrix. Sum
on grid points gives .

6. Spatially projected conductivity:

Discrete real-space decomposition of
conductivity 



Spectral decomposition:  is Hermitian, diagonalize in 
position representation:

 has units of conductivity, so diagonalize  and:

We have “eigenmodes of conductivity”: percolation paths 
from a diagonalization.



So what does this say 
about suboxides?

• The undulating pinkish blob is 
the projected conductivity. It 
clearly lies upon defective Si 
sites.

• Top: x=1.3 n-type (left) and p-
type (right). Note the space-
filling conducting paths.

• Bottom x=1.7: Si defects less 
common; disconnected 
localized blobs (and much 
smaller s) “p type”                                “n-type”



Do it all for a different model (x=1.3)

p-type                                                                                                                    n-type



AC conductivity (extracted from VASP)

The AC and DC conductivity are 
model/sample dependent.



Spectral decomposition of : “n-
type”, SiO1.3 and FCC aluminum.

dim()=64000: only ~20 modes (of 64000) 
contribute much to !

 The “diagonalization” result is the same 
as the result for (x).

Interesting things to study: a spectral tail 
forms near =0 for delocalized/metallic 
conduction.

()

 (S/cm)

Aluminum

n-type SiO1.3



Conclusions about PUF
• The detailed conduction paths 

will never be exactly 
reproduced in amorphous 
materials.

• Experimentally (MNK) there is a 
big dispersion in the measured 
conductivities for identically 
prepared devices. Now we see 
why.

• More to be done:
Spectral decomposition of 
conductivity, numerically correct 
conductivity, localized-delocalized 
(Anderson) transitions etc.

PUF(F) the Magic Dragon



Another Kozicki 
device: 
Conducting Bridge 
RAM

• Add Cu, Ag… to an 
amorphous insulator 
or semiconductor.  
Electrochemically 
control the 
conductivity: CBRAM

• At right :conduction 
through amorphous 
alumina with Cu (blue 
atoms) Top: a-Al2O3+10% Cu, bottom 20%

 dark smog is scalar field (x).

Results for 20% Cu, left with
20 eigenvectors, right: all.

PSS RRL 800238 (2018)



Accurate large-scale simulations of Si: representing the 
energy landscape

• Silicon is hard to model well. Well known that liquid and 
disordered phases are well modeled only with DFT.

• Furio Ercolessi had an idea in the early 90’s: why not fit a 
parametrized functional form for an interatomic potemtial 
to ab initio data? “Force-Matching method”. Clever, but 
impossible to find a good fit.

• Nowadays: non-parametric approaches and “Machine 
Learning”. 

• Csanyi, Bartok and Deringer have pioneered a successful 
new approach: “Gaussian Approximation Potential” (GAP).

PRX 8 041048 (2018), PRL 104 136403 (2010); Adv. Mats. 31 1902765; several others.



Atomic-scale materials modelling:
Machine learning as an emerging approach

Quantum-mechanically accessible,
but only at selected points!



Atomic-scale materials modelling:
Machine learning as an emerging approach

Approximate an unknown function
(here: the potential energy surface)

based on data alone



Atomic-scale materials modelling:
Machine learning as an emerging approach

Courtesy Dr. Volker Deringer



A machine-learned potential for silicon

Gaussian approximation potential

• (GAP) framework: a kernel (similarity)
based machine-learning method.

• New approach here: combine
suitable structural descriptors.

• Provides meaningful local (site) energies.
• NB: calculations are not “cheap“, but are

linear scaling. 

V. L. Deringer, G. Csányi, Phys. Rev. B 2017, 95, 094203



Tests (just a few of many)

Bartok et al.
PRX 8 041048
(2018)

liquid



Liquid to amorphous transition

• Fact: Liquid Si is a ~6-fold 
coordinated metal, amorphous 
silicon a tetrahedral semiconductor. 
To my knowledge nobody has made 
a-Si by quench from the melt 
(Angell however has done it for Ge!)

• Train GAP for liquid configurations.
• We show that slow enough 

quenches of the liquid with GAP 
produces models of a-Si consistent 
with experiment.

Bhatt et al., Nature (2007).



Take 4096 atoms, and quench the liquid…. 
Slooooowly…….

N. Bernstein, B. Bhattarai, G. Csanyi, DAD, S. R. Elliott Angew. Chem 131 7131 (2019)



Distribution of local 
energies (a fringe 
benefit of GAP) 

1011K/s system 
slightly below best 
WWW a-Si1 

1. B. R. Djordjevic, M. F. Thorpe, F. Wooten
PRB 52 5685 (1995)



Comparison to 
diffraction 
measurements 
on a-Si (Laaziri et 
al.)



100,000 atoms with 
DFT-like accuracy
• GAP is linearly scaling 

(albeit with big prefactor). 
Linear scaling opens up 
some new realms for 
inquiry.

(1) Track liquid to amorphous 
transition
(2) Squeeze the liquid, 
compare to experiments
(3) Squeeze the solid, track 
the phase transitions. n.b. 
needed to ‘train’ for such 
configurations.

V. L. Deringer, N. Bernstein, G. Csanyi, M. Wilson, DAD,
 S. R. Elliott. Submitted to Nature; arxiv.org/1912.07344



Quench the liquid to 
make a-Si (zero 
pressure)

• Similar S(q) to ideally 
tetrahedral model of 
Thorpe and coworkers.

• Statistically similar to 
4096-atom mode, as 
expected.



Structural evolution 
through the quench 
(500K, 1011 K/s)



High Pressure: 100,000-atom models

• First, we squeeze the liquid (T=1500K). Partly to check GAP, ensure we 
have all the conformations required. Compare to experiments.

• Then we squeeze a-Si (0.1 GPa/ps and T=500K). 



Squeeze the 
liquid: theory and 
experiment.



Squeeze a-Si: Results



Phase change: characterization

coordination

Local energy



Close up of crystallized phase



High pressure: discussion

Proceeds as follows:
(1) Some initial co-existence of High Density Amorphous (HDA) phase 

and low density amorphous: “Polyamorphism”.
(2) Abrupt collapse into highly disordered VHDA phase around 11 GPa. 

VHDA is transient, crystallization (to simple hexagonal phase) occurs 
at 15-16 GPa. 

(3) So we have multistep crystallization originating in a precursor 
transient VHDA phase. Not direct HDA to simple hexagonal as 
previously believed.

(4) The crystallization does not occur in 1000-atom models, even up to 
50 GPa. Small cell too dependent on stochastic effects?



Electronic structure

• Use orthogonal tight binding Hamiltonian (Kwon et al. PRB 1994). Four 
orbitals per site.

• dim(H)=400,000

• Method of DAD and Sankey (PRL 1993) to compute density of states. 
Ingredients:

(1) Sparse matrix methods

(2) Order-N computation of (many) moments of the spectral density of 
states

(3) Maximum-entropy reconstruction of the density of states from 
moments



Results: electrons
• Snapshots of the system through the 

pressurization run: examine the 
electronic density of states.

• Metallicity tracked by  DOS(Ef). 

• System “goes metallic” above 10 GPa, 
drops off some with s-h crystallization.

• Very High Density Amorphous DOS is 
very similar to 1500K liquid at similar 
pressure.

• Caveat emptor: Simple Hamiltonian, fit 
to some high-pressure configurations. 
Conduction states leave something to be 
desired. 

2.1 million-atom 

fragment of diamond

(same method)



Conclusion: GAP/Silicon/Pressure

• Machine Learning techniques are emerging as a meaningful tool in 
simulation. Opens some new doors.

• Squeeze a-Si: Abrupt collapse into a transient high 
density/coordination state. Then rapid crystallization to simple 
hexagonal phase. Does not happen in 1000-atom cell!

• Lots of new frontiers: now we are looking at surfaces. Collaborators 
are working on Carbon, GeSbTe (phase change memory) materials, 
others.  



How does the conduction change with 
fluctuations?

Large gap Small gap

Electronic conductivity contrast of 104

between these two configurations.



GAP: comments from a cheerleader, not an expert 

• Given a very large sampling of accurate (DFT) computations of 
forces for an “adequately diverse and representative” set of 
configurations, GAP estimates the forces by fitting/interpolating 
from its library of configurations.

• If ever the devil is in the details, it is in building ML potentials:

1) How many configurations are enough? 

2) Have we sampled all salient environments?

3) How do we represent a local environment? 

4) Error estimation is built in – if there is nothing close in the 
database, demand a new DFT calculation.

5) When this is done properly, it is not cheap. For less than 200 
atoms, cheaper to use planewave DFT! But, it is order-N.
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