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Ingredients: (tongue in
cheek...)

Single-particle theory
(density functional)
clever computational
science, and fast
computers

Big advance over
analytic theory for many
problems



Some heroes of the
mathematical
microscope



The mathematical
microscope has
blossomed and matured.

 Computation and prediction
of structure

* Dynamics of atoms
* Charge and heat transport
* Magnetic properties

e Prediction of spectroscopic

signatures of matter: optical,
Raman, UV, NMR, EPR....




Now to a time of
ordinary men...

* Examples of the development
and use of quantum
simulation

* Physically Unclonable
Function

 Machine Learning for
interatomic potentials: see a
fairly exotic phase transition



Physically Unclonable Function (PUF): a silicon suboxide
realization

e Concept: Find an observable that depends upon some intricate and
non-reproducible physical feature. Various ideas are afloat.

* Key application: computer security (unique keys/identifiers)

* We work on PUFs based upon electronic conduction in amorphous
silicon suboxides (designed and built by M.N.K.) . We show in atomistic
detail how these devices function.

* Two preliminaries: (1) What’s the structure of these materials and (2)
what are the microscopic mechanisms of electronic conduction?



Amorphous silicon suboxides: structure

e Start with a-SiO, (silica glass).

* Now deplete some O: Consider SiO, for
O<x<2. Of course x=2 is a-Si0, and x=0 is a-
Si.

* As O is removed from SiO,, we are left with
Si pining for O.

* Depending on x, we get a menagerie of
defective Si sites (colored atoms)

K. Subedi, Ohio



Disorder is your friend: electronic conduction in
amorphous Si suboxides

* Suppose we pick the DC conductivity as the observable. We
need to compute the conduction path and see how it varies
among different realizations.

* Harness the power of entropy — disorder -- to make a
practical device.



The private life
of electrons in
the suboxides
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Figure 2: LEFT: Electronic density of states (EDOS) and the inverse participation ratio (IPR) for a-SiO,,
models. RIGHT: Projected EDOS onto each orbital of each atomic species




Spatial information about conduction in materials

Q: How to compute the conductivity
from wavefunctions, electronic
eigenvalues etc?

A: The Kubo-Greenwood Formula 7 62
(Kubo, 1957; Mott in the sixties) @) = =3 Z [f(eix) — flejp)]

L,
* Once we have the computer

models of material, we have
everything needed.

e Great: but where did that
conductivity “come from”? What

components of the network
contributed? Subedi, Prasai, Kozicki, DAD PRM 2019

X (x| P | Wix) 1°8(€jx — €ix — fiw).



Spatial decomposition: a few tedious slides

1. Reduce the clutter, define:

27 e?
3mlws2

giik,w) =

[f(€ix) — f(€jx)o(€jx — €, x — hw).

2. Rewrite the conductivity:

o =Y [ & [ X P @I 6]

i, j,x

3. Declutter again. Define:

5;;(x) = ¥ (x)p* ¥ (x)




Tedium (continued)

4. Approximate the integrals as sums on a discrete grid in real space

o~ hGZ ng %(ZC)( %(x,))* (exact as h =2 0)

;o
r,r 1,7,

5. Spatially decompose o:

k
Mx,x') =) gi&5()(E5(x)) T

on grid points gives o.

L],

6. Spatially projected conductivity:

2 : / Discrete real-space decomposition of
§ (.X) E— x/ F (x 9 x ) | conductivity




Spectral decomposition: I' is Hermitian, diagonalize in
position representation:

We have “eigenmodes of conductivity”: percolation paths
from a diagonalization.



So what does this say
about suboxides?
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Do it all for a different model (x=1.3)
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AC conductivity (extracted from VASP)

The AC and DC conductivity are
model/sample dependent.

model 1
model 2
model 1
model 2
model 1
model 2




Spectral decomposition of I': “n- ST
type”, SiO, ; and FCC aluminum. i

pP(A)
dim(I')=64000: only ~20 modes (of 64000)
contribute much to c!

» The “diagonalization” result is the same
as the result for C(x).

»Interesting things to study: a spectral tail
forms near A=0 for delocalized/metallic B — oosiwoune
conduction.

l Aluminum
0.1




Conclusions about PUF

* The detailed conduction paths
will never be exactly
reproduced in amorphous
materials.

e Experimentally (MNK) there is a
big dispersion in the measured
conductivities for identically
prepared devices. Now we see
Wig\V2

* More to be done:

Spectral decomposition of

conductivity, numerically correct

conductivity, localized-delocalized
(Anderson) transitions etc.

PUF(F) the Magic Dragon



Another Kozicki
device:

Conducting Bridge
RAM

* Add Cu, Ag... to an
amorphous insulator
or semiconductor.
Electrochemically

control the
conductivity: CBRAM

* At right :conduction
through amorphous
alumina with Cu (blue

atoms) Top: a-Al,0,+10% Cu, bottom 20% PSS RRL 800238 (2018)
dark smog is scalar field {(x).

Results for 20% Cu, left with
20 eigenvectors, right: all.




Accurate large-scale simulations of Si: representing the
energy landscape

e Silicon is hard to model well. Well known that liquid and
disordered phases are well modeled only with DFT.

e Furio Ercolessi had an idea in the early 90’s: why not fit a
parametrized functional form for an interatomic potemtial
to ab initio data? “Force-Matching method”. Clever, but
impossible to find a good fit.

* Nowadays: non-parametric approaches and “Machine
Learning”.

 Csanyi, Bartok and Deringer have pioneered a successful
new approach: “Gaussian Approximation Potential” (GAP).

PRX 8 041048 (2018), PRL 104 136403 (2010); Adv. Mats. 31 1902765; several others.



Atomic-scale materials modelling:
Machine learning as an emerging approach

Quantum-mechanically accessible,
but only at selected points!




Atomic-scale materials modelling:
Machine learning as an emerging approach

Approximate an unknown function
(here: the potential energy surface)
based on data alone



Atomic-scale materials modelling:
Machine learning as an emerging approach

Energies and forces
HY = EW Energ

e-point)
Regression (“learning”) of

potential-energy surface
B
@ s 033“ ¢ o e ]
g & -~ ® ) —
> L) ° )
s . =

Construction of a X (SN dimensional) q (descriptors)
reference database

9 Representation of
atomic environments

Courtesy Dr. Volker Deringer



A machine-learned potential for silicon

Gaussian approximation potential

e (GAP) framework: a kernel (similarity)
: : ;. 2-body:
based machine-learning method. distance
 New approach here: combine
suitable structural descriptors.
 Provides meaningful local (site) energies.
 NB: calculations are not “cheap®, but are
linear scaling.
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V. L. Deringer, G. Csanyi, Phys. Rev. B 2017, 95, 094203
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Many-body:
all neighbours
within a cutoff




Tests (just a few of many

DFT
1 170 —-= GAP
N | - 1 60 EDIP
| = . f | ¢ ---- Tersoff
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40 T ---- Purja Pun
~30 2 ---- MEAM
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10 ReaxFF
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Model Elastic props. / GPa| Surfaces / J/m? Point defects / eV Planar defects / J/m?
B e ez ca|(111) (110) (100)| vac hex. int. tetr. int. db int.|(112) 33 v 4
DET reference|88.6 153.3 56.3 72.2| 1.57 1.52 2.17|3.67 3.72 3.91  3.66 0.93 1.61 1.74
Relative error [%)]
GAP 0 -3 4 -8 -2 -1 =20 -2 -3 -7 -2 3 -16 13
EDIP 14 1216 -4 -34 -14 -3| -12 14 6 -4 5 -14 -2
Tersoff 10 -7 34 -10| 24 -0 4| 13 27 T 32 -1 -23 10 v 0.0151
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MEAM T -11 31 -26| -22 -1 4| -8 -14 -23 -14 25 -26 45 S
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ReaxFF 26 7 51 -11| -5 19 -23| 28 24 34 8 55 5 75 5 0.0101
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)
FIG. 1. Comparison of percentage errors made by a range of interatomic potentials for selected properties, with respect to our DFT B a rto k e‘t a | . o 0.005 -
reference. Those on the left of the break in the axis are interpolative, i.e., well represented within a training set of the GAP model: elastic :
constants (bulk modulus B, stiffness tensor components C;;), unreconstructed (but relaxed) surface energies [(111), (110), and (100) P RX 8 O 4 10 48
low-index surfaces], point-defect formation energies (vacancy and hexagonal, tetrahedral, and dumbbell interstitials); while the planar
defects to the right are extrapolative: (112) £3 symmetric tilt grain boundary and unstable stacking-fault energies on shuffle plane y&i) (2 O 1 8) 0.000 -
(9) T T T

and glide plane yys
header row).

. The first row in the corresponding table shows reference quantities computed with the DFT (units indicated in the
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Liguid to amorphous transition

e Fact: Liquid Siis a ~6-fold
coordinated metal, amorphous

silicon a tetrahedral semiconductor. - —
To my knowledge nobody has made st wonthe 18
a-Si by quench from the melt

(Angell however has done it for Gel)
* Train GAP for liquid configurations.

* We show that slow enough . -
guenches of the liquid with GAP . R
produces models of a-Si consistent —=Eres D AR Or
with experiment.

Bhatt et al., Nature (2007).



Take 4096 atoms, and quench the liquid....
Slooooowly.......

Quench rate (K/s)
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Quench rate (K/s)

Quench rate (K/s)

: DOS(E)>»
N. Bernstein, B. Bhattarai, G. Csanyi, DAD, S. R. Elliott Angew. Chem 131 7131 (2019)



0 5 10 15 20
GP predicted error (meV)

10 15 20
GP predicted error (meV)

. 0.4 0.6
GAP local energy (eV)

Distribution of local
energies (a fringe
benefit of GAP)

1011K/s system
slightly below best
WWW a-Sit

1. B. R. Djordjevic, M. F. Thorpe, F. Wooten
PRB 52 5685 (1995)



104 K/s
mm 103 K/s
mm 10'2K/s
= 10" K/s

Expt. (Laaziri et al.)
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Static structure factor, S(Q)




100,000 atoms with

DFT-like accuracy

* GAP is linearly scaling
(albeit with big prefactor).
Linear scaling opens up
some new realms for
Inquiry.

(1) Track liquid to amorphous
transition

(2) Squeeze the liquid,
compare to experiments

I DFT  Pilot GAP Thi
(3) Squeeze the solid, track RET | Phot oA THs
the phase transitions. n.b.
needed to ‘train’ for such
configurations.

V. L. Deringer, N. Bernstein, G. Csanyi, M. Wilson, DAD,
S.R. Elliott. Submitted to Nature; arxiv.org/1912.07344



Quench the liquid to
make a-Si (zero
pressure)

e Similar S(qg) to ideally
tetrahedral model of
Thorpe and coworkers.

e Statistically similar to
4096-atom mode, as
expected.

S
7]
B
O
©
S
()
—
=
e
O
-
-
w

1.04
e
E 1.00

10 12 14 16 18 20
r(A)

= Expt. (Laaziri et al.)
— Simulation (relaxed; this work)




Progress of quench
HODL ———— > DA

T (K)

Coordination ¢ Similarity to dia-Si d ML atomic energy

AMSD (A2) V/(A3/at)
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Structural evolution
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High Pressure: 100,000-atom models

* First, we squeeze the liguid (T=1500K). Partly to check GAP, ensure we
have all the conformations required. Compare to experiments.

* Then we squeeze a-Si (0.1 GPa/ps and T=500K).



Squeeze the o . gxpt. (Funamori & Tsuji)
||C]U|d theory and - Simulation (this work)
experiment.
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Si: Results

Squeeze 3

Crystallisation

Transient VHDA

Collapse
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Phase change: characterization

coordination i Transient VHDA Crystallisation Polycrystalline sh
(13 GPa) 5 (16 GPa) (20 GPa)

Local energy ML atomic energy (eV)
BT

=02 04 06 =08



Close up of crystallized phase
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High pressure: discussion

Proceeds as follows:

(1) Some initial co-existence of High Density Amorphous (HDA) phase
and low density amorphous: “Polyamorphism”.

(2) Abrupt collapse into highly disordered VHDA phase around 11 GPa.

VHDA is transient, crystallization (to simple hexagonal phase) occurs
at 15-16 GPa.

(3) So we have multistep crystallization originatin% in a precursor
transient VHDA phase. Not direct HDA to simple hexagonal as
previously believed.

(4) The crystallization does not occur in 1000-atom models, even up to
50 GPa. Small cell too dependent on stochastic effects?



Electronic structure

e Use orthogonal tight binding Hamiltonian (Kwon et al. PRB 1994). Four
orbitals per site.

e dim(H)=400,000

* Method of DAD and Sankey (PRL 1993) to compute density of states.
Ingredients:

(1) Sparse matrix methods

(2) Order-N computation of (many) moments of the spectral density of
states

(3) Maximum-entropy reconstruction of the density of states from
moments



Results: electrons

* Snapshots of the system through the
pressurization run: examine the
electronic density of states.

* Metallicity tracked by DOS(Ey).

e System “goes metallic” above 10 GPg,
drops off some with s-h crystallization. 0 3 10 15 20

Pressure (GPa)

-
S
7))
0
(]
o
C
o
B
g
(N1

* Very High Density Amorphous DOS is
very similar to 1500K liquid at similar
pressure.

e Caveat emptor: Simple Hamiltonian, fit
to some high-pressure configurations.
Conduction states leave something to be

desired.

2.1 million-atom
fragment of diamond

(same method)




Conclusion: GAP/Silicon/Pressure

 Machine Learning techniques are emerging as a meaningful tool in
simulation. Opens some new doors.

* Squeeze a-Si: Abrupt collapse into a transient high
density/coordination state. Then rapid crystallization to simple
hexagonal phase. Does not happen in 1000-atom cell!

* Lots of new frontiers: now we are looking at surfaces. Collaborators
are working on Carbon, GeSbTe (phase change memory) materials,
others.



How does the conduction change with
fluctuations?

Small gap

Large gap

Electronic conductivity contrast of 10*
between these two configurations.



GAP: comments from a cheerleader, not an expert

e Given a very large sampling of accurate (DFT) computations of
forces for an “adequately diverse and representative” set of
configurations, GAP estimates the forces by fitting/interpolating
from its library of configurations.

* |f ever the devil is in the details, it is in building ML potentials:

1) How many configurations are enough?

w N

) Have we sampled all salient environments?
) How do we represent a local environment?

~

Error estimation is built in — if there is nothing close in the
database, demand a new DFT calculation.

5) When this is done properly, it is not cheap. For less than 200

AF~Arvve ~hAAA~AA~Ar FA GtieAN AlAA AR v A DCTI Dt i+ 0 ArdAdAar N
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