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ROADMAP

. A simple picture of the Anderson transition.

1. The Urbach problem: where do exponential band tails
come from?

lll.  Non-locality of quantum mechanics in the solid state --
with disorder.

V. The coupling to phonons.
Implement this for real materials using credible models.

V.  Materials by Design: an attempt at engineering the
optical gap.

VI.  Space-projected conductivity




Q. How does disorder in atomic coordinates affect the
electron states?

Crystalline Si (diamond) Amorphous Silicon
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Short-range order, no L.R.O.
Bloch states k nota “good” quantum number



DISORDER + WAVES =
LOCALIZATION

Water waves with obstacles; left periodic obstacles, commensurate

frequency to yield “Bragg reflection”, note that pattern is extended
in space. Right: disordered obstacles, standing waves — localization!

If its true for water, why not electrons too?!
Lindelof et al. 1996



Models of disorder

77

E, are random, “diagonal

Anderson Model (1958) disorder. Fact -- enough
H=,[I><I|E +>,|><] Sy variation in E, -- all states
localized!

Topological (bond length/angle) disorder 5;: Computed from
H=,|I><I|E +>,|I>] S, realistic model.

Anderson model: disorder uncorrelated site-to-site; our case —
spatial correlations induce correlations in matrix elements.



ANDERSON MODEL
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Left: A localized eigenstate in ID (Kramer/MacKinnon)
Right: 3D critical eigenstate (|15.6M sites; Roemer)



APPROACH FOR A REAL
MATERIAL

* Compute electronic states around the gap
for big and realistic models of a-Si', and
study the nature of the localized (midgap)
to extended (in the band) transition. [4096
atoms model, periodic BC]

* Employ amalgam of tight-binding, maximum
entropy, shift and invert Lanczos techniques.

IB. Djordjevic, M. EThorpe and FWooten, PRB 52 5685 (1995)
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INTERPRETATION

Structural irregularities or defects beyond the mean exist.
If bad enough these induce localized wave functions.

If two such defects are spatially near and have similar
energies, system eigenstates will be mixtures (states b and
c). [clue: Symmetric and anti-symmetric linear
combinations of b and c yield single islands]

If many such resonant defects overlap, one has electronic
connectivity. This is Mott's mobility edge.

Resonant Cluster Proliferation Model




UNIVERSALITY OF ISLAND
PROLIFERATION

Vitreous silica vibrations

Anderson model, note white centers

W/N=16.5 (all states
localized). s
\ )_- . R

Vibrational evecs
for 10K atom model
of a-Si.

FCC lattice with force N -—

constants selected
from uniform dist of width

(WIV=2)
JPCM 17 L321 (2005)




“UNIVERSALITY” AND
STRUCTURE OF EIGENSTATES

* Disorder comes in many shapes and sizes.

* electrons,Anderson models (diagonal and off-
diagonal); “real” disorder from topologically
disordered network.

e vibrations “Substitutional” ; Force constant
disorder on a FCC lattice; Topological disorder (a-
silica) with long-range (Coulomb) interactions; (a-
Si) 10,000 atom

The qualitative nature of the localized-extended transition is similar for
all these systems.

Ludlam, Taraskin, Elliott, DAD — JPCM 17 L321 (2005).



DO THE CORRELATIONS IN
MATRIX ELEMENTS MATTER?

* The Anderson model gets all the qualitative
features right: islands, resonant mixing etc.
around spectral gaps.

* But not the fine but important details
around the band edges.

Yes — the correlations matter.




. THE URBACH TAIL PROBLEM

 Urbach'! noted exponential (not Gaussian) tails in optical
absorption for impure crystals in 1953:

a(w) o exp|(hw — hwo)/ Eo
w: photon frequency, w, and E, fitting parameters
* It is ubiquitous (particularly in systems with disorder).

* Venerable problem — various ideas: Halperin-Lax, Morrell
Cohen et al, Dow-Redfield... Very different models.

* This has been carefully studied in amorphous Si. Exponential
tails measured separately for each band edge’.

'E Urbach, PR 92 1324 (1953)
2S.Aljishi et al., PRL 64 2811 (1990)



PRELIMINARY: DEFECTIVE XTAL AND
ION-BOMBARDED DIAMOND SI

| ! I ! I

— —

* Experiment': ion-damaged ; -Si
diamond exhibits an - e ¢-Si with vacancy:
exponential tail. 3 3

e Simulation?: SIESTA relaxed

di-vacancy in 512-atom cell
forms exponential tail.

* Relaxing di-vacancy yields — /\ ¢ —

strain field involving many :
atoms. The beginning of the g o
Urbach tail? - (a) :

p (E)

' J

-0.9 -0.6 -0.3

IS. Sundari, Nuc. Inst. Meth. B 215 157 (2004)
2Y, Pan, . Inam, M. Zhang, DAD, PRL 100 206403 (2008) E (eV)



DENSITY OF STATES: LARGE
AMORPHOUS SI MODEL

* Model: Barkema and Mousseau WWW-type:
100,000 atoms. Excellent RDF fourfold,

tetrahedral with little strain.

* Hamiltonian: Kwon et al. orthogonal tight-
binding model, maximum entropy tricks to
compute the DOS (ask me...)

G. Barkema and N Mousseau, PRB 62 4985 (2000)
DAD and O. F. Sankey, PRL 70 3631 (1993); DAD EPJB 68 | (2009); K. Bandypoadhyay et al, PRE 71 057701 (2005)

I. Kwon et al, PRB 49 7242 (1994)



DENSITY OF STATES:
RECONSTRUCTION FROM MOMENTS

Maxent form:

o0
—— 100k atoms with 107 moments ] f|nd Ai to matCh moments
3 —— 100k atoms with 150 moments
= 0.08 - A
%) ]
©
S 0.06- | .
S p(E) = exp(— Y AE")
2 0.04- |
5 1=0
o
3 0.02- |
m I
0004w s/ ) .
20 -5 -0 -5 0 5 10

Energy (eV)

E.T. Jaynes, Probability Theory:The Logic of Science, CUP (2003); DAD and O. F. Sankey, PRL 70 3631 (1993).



RESULT: EXPONENTIAL TAILS IN
A-Si

0.03

—— EDOS 100k-atom 107 moments
Valence tail fitting
Conduction tail fitting

0.02 -

0.01 ~

Electronic Density of States

O-OO T T T T T T T I T T T
-0.3 0.0 0.3 0.6 0.9 1.2
Energy (eV)

B o exn(—|E — Ev|/E:)Eu=200 meV (valence)
p(E) p(—| ol/ Ev) E,=96 meV (conduction)



DISCUSSION

* The models include whatever structures
“cause” the exponential tails.

o conduction tail: due to |-D filaments of
long bonds.

o valence tail: due to 3-D clusters of short

bonds ‘nucleated’ by a particularly
short bond.

Y. Pan, F. Inam, M. Zhang and DAD, PRL 100 206403 (2008).



Tail states
Bondlength decomposition as function of energy

Ef
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25 -5 0 5 -5 0 5 6 7
ettt A bamn e Phys. Rev. B 58 15624 (1998)
s ; : . Non. Cryst. Sol. 354 3480 (2008)
Energy (eV)

Messages: |) valence tail from short; 2) conduction from long;
3) Defects add ‘noise’ — but the pattern is evident nevertheless; 4)
Note the symmetry in B(E) about E;, especially for M,.



BLOBS AND FILAMENTS:
VALENCE STATES

Valence tail: connected blobs and filaments

A .l &
Y g
o[}
» I'.‘ (eV) V
o« aSis;,
1

Other blobs and filaments: Lyman
o emisson from a giant galaxy
‘string’ . Paul Francis, ANU, 2004

Blobs and filaments in solids, not space:
J. Dong & DAD PRL 80 1928 (1998)

J. Ludlam, S. R. Elliott, S. N.Taraskin &
DAD JPCM 17 L321 (2005)



AMORPHOUS SILICA

Short Roo cluster

* Silica tails: small 8o_.0 (valence), large B;.0.s;
(conduction).

Long R, . cluster

F Inam, J. Lewis, DAD PSS(a) 207 599 (2010)



CONCLUSION: URBACH TAILS

e Shorter bond ‘nuclei’ create clusters of connected
short bonds; local densification. Long bonds, wispy
filaments.

* Short bonds: valence tail, long bonds: conduction tail.

* Our models are too small to accurately compute fractal
dimension D but we surely have:

Filaments: D near | on the conduction side

Clusters: D significantly higher than for the valence
side

We link such electronic information to the connectivity/structure
of the network. D is unknown for a real material — and varies
asymmetrically about E. [D~1.3 for Anderson model.]

Some indication of greater generality: silica



1. LOCALITY OF QM IN
DISORDERED SOLID STATE

Even for disordered system: almost all eigenstates fill space. Looks like
the force on atom at R requires information from everywhere!

Fl}:s{ = 2 Z (Yn| — VRH |9hy)

n occ

[Here, y,, is a Kohn-Sham orbital.]

Can perturbing the solid Im away from R really change the force on at
R??? (No! Boys, Kohn,Vanderbilt, Daw...)

DAD Europ. Phys.]. B 68 | (2009) 23



DENSITY MATRIX: GAUGE OF
ELECTRONIC NONLOCALITY

eigenstates

p(xx)=2 S YEx) P (X')

n OCC

W. Kohn: Density matrix p is localized by destructive wave-mechanical
interference. Principle of Nearsightedness

One might suppose that destructive wave-mechanical interference
should be influenced by structural disorder. Is it?

The decay of the density matrix is fundamental attribute of the material
(and structure).



p(x7xl) (I/AS)

EXAMPLE: ALUMINUM

p(x’x1)=2(2,n_)—3f d3ke—ik-(x—x!)

k<kp
| | 7 T3nlsin0—feos0Ve,
{=kdx-x |
n: density of electron gas
0.05 |

-0.05 : : :
0.0 25 5.0 7.5 10.0
x/-x(A) /

N Kohn-Sham

FIG. 4. Contour plot of the real-space density matrix for Al
calculated in the {100} plane for the conventional cubic unit cell
(the x-y axes are parallel to the bonds).

S. N. Taraskin et al., PRB 66 233101 (2002)

Metal: power law decay. Free electron gas gives similar DM
to DFT! Gibbs’ ringing™ from cutoff at Fermi surface.

*Published by Henry Wilbraham (1848), On a certain periodic function,The Cambridge and Dublin Mathematical Journal 3: 198201,
Trinity College, when 22 years old, 50 years before Gibbs!



DECAY OF DENSITY MATRIX IN
INSULATORS: ANALYTIC APPROACH

Start with centrosymmetric n.n. tight-binding Hamiltonian

Two orbitals per

Zsﬂlt‘u)(tlﬂ + Z ##,|j#)(j‘w’|_ site, bonding and
P jli)u antibonding, SC
lattice.

Density matrix is integral over Brillouin zone:

2(27T)D f f (Ak ]:rsi

S(k) is structure factor,A(k) depends on S and tight
binding parameters.

rlj) =




D.M.ASYMPTOTICS (CONT’D)

_ S ) T
P = Garrt 2V G| &+ D%

2 is a (known) sum, depending on dimensionality D=1,2,3

Sum the series, use Stirling approximation, in 3D get (for
example):

= V4 V_
v, = (—1)” —vi(1 + — In(wy
py, = (=1) \/ZWXVY CXP[ V+( 2, /Vy)):|

<55 I [ Grzal 7
a Vol pa ) (M)

2d, 3d: S.Taraskin, DAD, Elliott PRL 88 196405 (2002); also 1d: L. He and D.Vanderbilt, PRL 86, 5341 (2001).
27



REALISTIC CALCULATIONS (C-SI
AND A-SI): DFT

r (&) r(A)
The same exponential decay, crystal or amorphous!

X. Zhang and DAD, PRB 63 233109 (2001).



WANNIER FUNCTIONS

* Wannier functions: unitary transformations of

eigenstates localized in real space.

* Not unique, but Vanderbilt showed how to

compute maximally-localized Wannier

functions!'.

* Long range decay of these is similar for c-Si and
a-Si, and similar to decay of density matrix.

* We compute with an O(N) projection method,

results much like MLWFs.

Scanned at the American

Institute of Physics

'D.Vanderbilt and coworkers “Maximally-localized WF”, N. Marzari et al, RMP 84 1419 (2012)



Diamond

WANNIER FUNCTIONS FOR
DISORDERED SYSTEMS

DAD Eur. Phys.] B 68 | (2009)




CONCLUSION: LOCALITY

We quantify Kohn’s Principle:
Analytically for two-band insulator

By direct calculation of p with Kohn-Sham
orbitals for metals, crystalline and amorphous
semiconductors.Also Wannier functions from
projection.

Topological disorder makes little qualitative
difference, at least for a-Si (and SiO,).

31



V. BUT WHAT OF LOCALIZED
ELECTRONS + PHONONS

* The electron-phonon coupling gauges how
the electron energies/states change with
atomic deformation.

* Phonon effects near the Fermi level: key
to transport, device applications, theory
of localization.

* We begin with a simple simulation....




THERMAL FLUCTUATIONS OF
THE KOHN-SHAM EIGENVALUES

Amorphous Si 216 Crystal Si 216

Energy eigenvalue (eV)

1 M | 1 1t r 1 r T °* 1T
0 500 1000 1500 2000 O 500 1000 1500 2000
Time (fs) Time (fs)

States near gap fluctuate by tenths of eV >> kT'!

T=300K, 216
atoms, [ point



SENSITIVITY OF ELECTRON ENERGY
TO PARTICULAR PHONON

* Hellmann-Feynman theorem and harmonic approximation
with classical lattice dynamics leads easily to fluctuations in
electron energy eigenvalue <6A>>:

N2\ 1 1 ! -\ 2 - 31\13(]- ‘—‘11 ' )
(OA) = Tlil}l)lc - /” dt O (t) ~ ( N > Z R

3N -
_ N oH ,
Zp(w) = Z(‘*”Thh n) Xalw).

a—1

We call E the electron-phonon coupling




E-P COUPLING: A-SI, A-SE

\ \%\J / K\,

l

Se

En(®) = 2 o<W, |0H/OR | P> Xo(w)
Couple electron n (energy E) and phonon w

R. Atta-Fynn, P. Biswas, DAD Electron-phonon
coupling is large for localized states, PRB 69 245204 35
(2004); K. Prasai et al., Sem. Sci. Tech. 31 073002 (2016)



CORRELATION BETWEEN
LOCALIZATION AND THERMAL
FLUCTUATION FROM MD

<OA> __,

(T>0 property)

0.004 -

0.002 -

0.000

0.004 |-

0.000

0.000

Mean square fluctuation (eV )

0.004
0.002 |

0.000

Localization (T=0 property)

0.002 |-

0.004 [

0.002 |-

llllllllll

-0y 1 rr T r T *« 1T T*T 7

0.008 0012 0.016 0.020 0.024
IPR

700K

500K

300K

| 50K

/ Fits analytic result for low T



INTERPRETATION

|. Large e-p coupling for localized states near
the gap. Localization amplifies e-p coupling.

2. For localized states, simple algebra' leads
to the conclusion that:

a) 2 (w)? [for eigenvalue n] ~ IPR [n]

b) <6A°> ~ IPR

IPR = inverse participation ration; measure of localization

' K. Prasai, P. Biswas & DAD Sem. Sci.Tech. 31 073002 (2016)



MATERIALS BY DESIGN
ENGINEERING THE GAP

ldea: We want a spectral region to include no electron states —
we seek a model with a specified optical gap, or we want to
impose a priori electronic information that an ideal model
should have a particular gap...

Examples: band gap engineering for PV applications
: seeking conducting phases of semiconductors
: means to impose a priori optical info. in modeling

K. Prasai, P. Biswas and DAD, Sci. Rept. 5 15522 (2015)
ibid., Phys Stat Sol A 213 1653 (2016)
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PRACTICAL IMPLEMENTATION

Consider a Lagrangian L=T-® in which T is the usual
kinetic energy, and

®(R1,R;...,Rsn) = Zfz-(qjimmjz-) +U, usual forces

“gap clearing” force =~ — + ng (U, |H|V,) — &f)

g(A,) is picked to move valence (conduction)
defect states into valence (conduction) tail.

Designed to push defect levels below E; into the
valence band, levels above E;into conduction band.



GAP ENGINEERING:
CONTINUED

Biased dynamics (with forces added to open gap) at
diffusive temperatures leads to relaxed structures with
engineered gap.

In practice we carry out the melt-quench segment of the
simulation with biased forces. After dynamical arrest, we
anneal and relax with physical forces and produce
models with the desired optical gap.

Implemented with ab initio code (VASP) and tight-binding.



EXAMPLE |: CLEAN UP THE GAP
IN A-SI

TBMD “gap force” WWW Density of states

EDOS

-10 0 10
Energy [eV]
8
© ——TBMD
04 ——— Biased TBMD
b — WWW
T M 1 M

0 1

Red — coordination defects 97% fourfold (~87% tbmd)



Defects: structural

RESULTS: A-SI and electronic!

— TBMD
— biased TBMD
/
é / \r ’ l é
m | V \\ 2
)
}J | M | h
! ALY ,\M . |, "'fﬁm
2 2.4 2.8 60 90 120 150 180

r[A] | 0 [deg.]

Note: STRUCTURAL features of “gap force” model is much
better than TBMD, close to WWWV. Electronic a priori information
improves the structure.



Example ll: close the gap in
a-(GeSe;), , Ag, Materials

— Solid Electrolyte (incredibly mobile Ag in glassy host)

- Conducting bridge (FLASH) memory materials: insulating phase
and conducting phase (real devices you can buy!)

- Unclear identity of electronically conducting phase (little Ag
wires or something else possible?)

- Possible application for multilevel memory and neuromorphic
computing applications.

- This Work: Determination of electronically conducting phase at
x=0.15 and 0.25, about 0.04 eV/atom above best semiconducting
glass models.



Black: Insulating, Red: Metallic
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Optical Conductivity

Kubo-Greenwood Formula

6000
Black: Insulating

Red: Metallic

4000 DC Conductivity:

Insulating ~10°S/cm

2000
Metallic ~102 S/cm

Optical Conductivity [Q'lcm'l]

1 1 I 1
0 5 10 15
Energy [eV] K. Prasai and DAD
Phys. Rev. Mater. | 015603 2017

Mechanism: impurity band hopping at Fermi-level, conduction
Through Se p-orbitals not silver!



Pair Correlations

(GeSej) | Ag,.: Ag,Se and GeSe |,

Black: Insulating, Red: Metallic

4 ; | ; |
—P1 =
3F ’AqP2 v%
I ofF
%02— t > P3
1_
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GAP ENGINEERING:
CONCLUSION

* We give a practical recipe to impose a desired gap.
(potentially useful for applications).

* Constraining the electronic structure has

structural consequences.VVe offer means

to include complex but important information in

making a model that agrees with our full knowledge base

Can determine new phases of useful materials with desired
electronic properties



ADDITIONAL TOPICS (AS TIME
ALLOWS): REAL-SPACE
PROJECTION OF THE ELECTRICAL
CONDUCTIVITY AND NOVEL
MODELING SCHEMES




ELECTRICAL CONDUCTIVITY

Electronic conduction is key in applications.

Emerging computer memory technology is all
about conducting and insulating “paths” in
materials.

High Temperature Coefficient of Resistance (TCR)

makes a-Si:H an ideal material for IR imaging (night
vision) applications.

We compute the conductivity using linear response
theory: Kubo-Greenwood formula'.

R. Kubo, J. Phys. Soc. Jpn. 12 570 (1957); D. A. Greenwood, Proc. Phys. Soc. 71 585 (1958) g&g



ESTIMATING THE CONDUCTIVITY

Thus, DC conductivity may be computed as the zero
frequency limit. To include the motion of the lattice (thus

temperature dependence), we average over the motion
of the atoms from a simulation.

DC omlimwmiz(ﬁ—fk)kwilplwk >*8(E, - E - nw)
conductivity: Wi

w : frequency

 : wavefunction We compute all this for credible

E :energy _eigenvalue structural models. Main T-dependence is

p : momentum _operator in the thermal (trajectory) average!

bar : thermal _average



CONDUCTING PATHS:
DECONSTRUCTING THE KUBO

GREENWOOD FORMULA K. PRASALI, K.
SUBEDI,

Kubo-Greenwood formula: standard tool to compute
electronic conductivity. From the atomistics (wave functions,
energy eigenvalues) provides AC conductivity. Most physical
derivation: Mott and Davis, first linear response theory
(Kubo, Greenwood, Chester).

The diagonal elements of conductivity tensor may be written
in several equivalent ways, one. Is:

we’h 5 i
Faalw) = TEL S [(alpalys)p LI

X 0(en — € — hw) (1




EXTRACTING REAL-SPACE
INFORMATION ABOUT
CONDUCTIVITY

Usually we make a model, want to know (say) DC
conductivity. So compute Kohn-Sham eigenvalues and
vectors, momentum matrix element and hey presto,
R=7.2 k2. Can we extract more information?

Here, | show how to get a Space Projected
Conductivity (SPC) — what parts of the cell are active
in conduction, which are not?

Strategy is simple: write out Kubo-Greenwood
formula as a sum involving Kohn-Sham orbitals in real
space, leaving an expression of the form: conductivity

=2, [SPC(x)] = X, {(x) — find the SPC function that
achieves this

For @ > 0, tells us which parts of the network absorb
energy for external radiation field (light!) at that
frequency.




= gi(k,w) > p5I* (1)
] o
So by direct substitution:

o =3 [ @ [ @ gy s N () 5 ()
. 2)

OK, so now imagine a real-space grid, call the points {x} — we can discretize the integrals as a double
sum (on x,x’), compute the operation of p from finite differences. Then define complex-valued functions
on the grid points:

62 (%) = ¥} (30)peh;(x)



Then we have expressed the conductivity as a discrete spatial double sum (suppose uniform
grid spacing in 3D, call it h), so....

° S: S: gz'jf% (X)f?j(x,)-

x,X' 17

Define the Hermitian, positive semidefinite matrix
I'(x,x") =h° Z gijﬁﬁ(x)f?j(xl)» (4)
1]

Then:

O'—ZFXX+ Z I'(x,x") (5)

' &% U & = o



SPATIALLY PROJECTED
CONDUCTIVITY (SPC)

Take: SPC = C{(x)=2, I'(x,a)|. In practice,
the positive, diagonal approximation ((x)=I"(x,x) is
qualitatively similar.

In this case we then have: c(®w)=%, I'(x,x)=Tr(I").



SPECTRAL DECOMPOSITION: T

IS HERMITIAN, SO DIAGONALIZE IT.

F‘Xu> :.A,LL|‘X;L>

A has units of conductivity, so diagonalize [" and:

U:Sj LA X (x) x)[* + Z ZAMXM
X p

X,X’ , x£x’

We have “eigenmodes of conductivity”



TRY IT OUT:

We've tried this on FCC Aluminum,
diamond Si, doped a-Si etc.

We reproduce the usual KG results from
VASP, and recent paper of Trickey et al.

Details: typically ~45x45x45 points is
enough: dim(G)=91000]




CBRAM I:AL,0;+CU MODELS
(~200 ATOMS, VASP)

. — 0% Cu
—e— Experiment 3k 10% C
3F y =  QOur model s
20% Cu
S2t I
> /\-
b - . oo
\
0 1 1 1 1 1 1
0 1 2 4 5 6 0 1 2 3 4 5 6

3
r[A] r[A]
Left: alumina: model and experiment!' Right: g(r) for 0, 10%, 20% Cu

'P. Lamparter, R. Kneip, Physica B 234-6 405 (1997).



CBRAM II: CU CLUSTERS IN

FIG. 2. Cu atoms (blue), O (red) and Al (grey) in (a-
Al20O3) 9Cu ;1 (top) and (a-Al2O3) sCu.2 (bottom). Note that
the Cu clusters in the oxide matrix. Periodic boundary con-
ditions are employed throughout.

Note |:space-filling
Cu cluster for 20%
Broken link in 10%.

Note 2: clustering in
Alumina, not in chalcs.



PROPERTIES OF I
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FIG. 3. Properties of I'(x, x) for 10% Cu-doped model. Left:
Decay of I' matrix; Right: Spectrum of I' and localization[23]

of its eigenvectors (x)

0% Cu-doped ALUMINA
Left: I" decay, right spectral
properties of I'

-2

1 —— DOS[Arb.units] ® IPR 107
b4 Jo.6
J0.5
[
Jo0.4
Jo0.3
| L] Aqo2
0.1
0.0 0.5 1.0 15 20 00
(o[S'cm]
ALUMINUM

Note: only a few A are
nonzero out of ~100,000.
All the “big” A vectors are
very extended, others very
localized. Note the “tail”

for metallic system.



[I' PROPERTIES:
CONTINUED

['(x,y) falls off nicely as function of |x-y|.
Much like Kohn’s Principle of Nearsightedness.

If one adopts the “diagonal approximation”
SPC=(C(x)=I"(x,x) and compare attempts to
include some off-diagonal information the

details vary, the qualitative pictures do not.

The spectral properties of " are very
interesting, just starting to understand them.




BADER PROJECTION ONTO ATOMIC SITES

FIG. 4. Bader projection of SPC ((x) of oxides. Left:
Al;03:Cu,10%. Right: Al2O3:Cu, 20%. The atoms with color
represent the atoms with 95% of SPC[20]. Color nomencla-
ture is green:Cu, yellow:O, blue:Al




SPECTRAL REPRESENTATION:
ISOSURFACES FROM 20 EVECS OF T
(LEFT), ALL (RIGHT)

Very similar to {(x),
but decomposed into
“conduction modes”

FIG. 5. Isosurfaces of SPC from weighted sum of eigenvectors
for 20% Cu-doped alumina. Left: Top 20 eigenvectors, Right:
All eigenvectors. Eigenvalues are used as weights. The blob
volumes indicate the value of the weighted sum at the point.
Left and right figures use the same isosurface cutoff. Cu atoms
are shown in blue for reference.



GREY SCALE MAPPING
OF SPC

TOP:
SEMICONDUCTING
GESE;AG
MIDDLE: 10% CU
BOTTOM, 20% CU

FIG. 6. Space-projected conductivity ((x) for a-
(GeSes).75Ag.25 (top) (a-Al2O3)9Cu; (middle) and (a-
Al;03).8Cu.2 (bottom). O and Ge atoms are shown in red,
Cu and Se atoms in blue, and Al and Ag atoms in green.
The SPC at each grid point is shown in grayscale which is
scaled by either the mean (Al—203:Cu) or the maximum (
a-(GeSes).75Ag.25 ) value of ((x).



CONCLUSIONS ON
CONDUCTIVITY

This seems to actually work. If you look at electronic
DOS near E; delocalized states banding through Cu
are notable at 20%, more localized and with some
spectral gap for 10% Cu, and for GeSeAg,Ag is
completely uninvolved in gap/tail states, its all Se 3p.

Lots of interesting things to try like phase-change
memory materials.

Interesting “basic physics” asymptotics of I', new
dynamical effects (electron-phonon coupling etc)

Could we adapt the same idea to the KGF for
thermal transport?

The dimensionality of the grid is a problem if we
diagonalize, and even then the problem is ideal for
Lanczos.




MODELING PARADIGMS AND
IMPOSING A PRIORI INFORMATION

Simulation: Implement your best calculation (big cell,
fancy interactions, long time evolution, etc). Hope that
the results look like experimental ones.

Information: Try to invert the experimental data.

Merge the two: carry out simulation but impose the a
priori (possibly experimental) information as part of the
simulation.




INFORMATION PARADIGM: REVERSE

MONTE CARLO
KAPLOW, MCGREEVY ET AL.

Information paradigm. What does experiment imply about
the structure?

11 ”» .
Reverse Monte Carlo™ : put atoms in a supercell, move
at random with Monte Carlo, keep moves if closer to
experiment, accept with Metropolis probability if worse.

Result: matches experiment by construction, but diffraction
data alone is insufficient to produce a chemically realistic
model. Still, it is a clever idea - use the information you
have!




RMC: DISCUSSION

Promising if additional information (constraints) are

employed. Has sort of worked for a-Si (but still only 88%
fourfold).

Has special flexibility to build in a priori information.

Constraints are dangerous: we are imposing information,
but we are potentially imposing errors — the model is only as
good as the information employed!




FORCE ENHANCED ATOMIC
REFINEMENT (FEAR): TEACH RMC
CHEMISTRY

Start with random model (assume density is known)
Repeat to these two steps convergence:

-- Obtain N accepted moves from RMC [drives model
toward experiment]

-- Take M conjugate gradients steps with energy functional
[enforce chemistry]

Typically N~100, M~1-5. Always N>>M.




FORCE ENHANCE ATOMIC REFINEMENT (FEAR)

Total energy

Experimental data

functional

Start
(Cy)

End

Partial Structural 5 Partial Energy
L. ) oor Convergence L. .
minimization minimization

Pandey et. al, Phys.RevB 94, 235208 (2016)



EXAMPLE: FEAR FOR
AMORPHOUS SIO,

Adopt 648-atom, |536-atom models.

Use the van Beest (BKS) potential (PRL, 1990). Start with
random coordinates.

After 100 successful RMC moves, move all the atoms along
van Beest gradient — only one step, not a full minimization.

Repeat previous until convergence (fit and force) is achieved.

Need about 30,000 force calls

A. Pandey, P. Biswas, DAD Phys Rev B 92 155205 (2015)




FEAR OF SILICA

'14 ] ;_I,_ I I | I | 3
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FEAR: minimization of error vs. experiment and total energy.
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RESULTS: SILICA
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AB INITIO FEAR — USE DFT (VASP
OR SIESTA) AS ENERGY
FUNCTIONAL

First example: silicon and SIESTA




RMC MELT QUENCH FEAR

Blue: 4-fold
Green, Red
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Pandey et. al, Scientific reports 6, 33731(2016), JNCS J. Non-Cryst. Sol 492 27 (2018). !



FEAR: A-SI

ANIMATION AND

DETAILS

Force-enhanced Atomic Refinement:

Evolution of 216-atom model amorphous Si starting from random

initial configuration with beige sphere representing (correctly coordinated)
four-fold atoms, green over-coordinated and red under-coordinated.

RED : Si (<4)
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o e X f
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EXAMPLE: LETS TRY AMORPHOUS
CARBON ACROSS DENSITIES

Hard: Carbon happily sp3, sp? or even sp bonds. Need a
good potential.

Wealth of experiments to check against.

We carry this out with largish models (up to 800 atoms),
SIESTA as energy functional. Then relax final models with
VASP (little change).




AMORPHOUS CARBON ACROSS DENSITIES

648 atoms

p =299 gfem’ p=3.50g/cm?

Bhattarai, Pandey & DAD, Carbon, 131 168 (2018); PCCP 20 19546 (2018)

Purple
(sp%),

(sp?),
Green

(sP)



Structure Factor:

AMORPHOUS CARBON

1 - 1
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Bhattarai et. al, Carbon (2018)

Radial Distribution Function: g(r)



LOW DENSITY (0.95 GM/CC) FEAR CARBON (800-, 648-
ATOM MODELS)

Purple (sp’), (sp?), Green (sp)




0.95GM/CC A-C. FAIRLY SMALL

A PREDICTION: EXAFS OF

o
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DIFFERENCES...
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COMMENT

This computation provides evidence that
amorphous C with density near | gm/cc is a form
of three-dimensional graphene: warped, wrapped
sp? sheets including ring disorder (pentagons,
hexagons, heptagons) and also with sp and sp?
defects.




Radial distribution function: g(r) (arb. units)

STRUCTURAL COMPARISON

schwarzite (792 atom)
= 2D a-graphene (800 atom)
= 3D a-graphene (800 atom)
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Bhattarai et. al, PRL submitted (2018)

Bond Angle Distribution (BAD)



Vibrational density of states (VDOS) (arb. units)

‘ELECTRONIC AND VIBRATIONAL
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FEAR: AG-DOPED CHALCOGENIDES,
[(GESE;),.xAGyx X=0.05,0.077] DATA:
ZEIDLER AND SALMON (BATH) VASP, A.
PRADEL GROUP (MONTPELLIER)
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A. Pandey, P. Biswas and D.A. Drabold, [nversion of diffraction data for amorphous materials, Scientific Reports, 6 33731 (2016).



http://www.nature.com/articles/srep33731

CONCLUSION (FEAR)

* Efficient Fewer calls to force code.

* Robust convergence: Really works [a-Si, a-C (0.95-3.5 gm/cc), GeSeAg
materials].VVe're trying a metallic glass, fiddling with EXAFS too --
Pd,,NisP, (nothing to report yet!). Used empirical pots, tight-binding,
SIESTA and VASP. Routinely produces (slightly) lower total energies than a
reasonable melt quench.

* Dead Easy: if you know RMC andVASR this is essentially a shell script.



