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Pertinent questions 

•  How does the disorder affect electron 
states? 

•  What microstructures give rise to 
exponential “Urbach” tails observed in 
defective crystals and disordered systems? 

•  How useful is the linear response theory 
(Kubo-Greenwood formula) in amorphous 
materials? 



        We know about electron states in this (diamond): 



But what are electron states like in this (a-Si)? 



History: Electron Localization 
from disorder 

  P. W. Anderson                 Sir N. F.  Mott  

         “There is an extensive literature calculating the position of the mobility edge with 
various simple models, but it has not yet proved possible to do this for a“continuous 
random network” such as that postulated for SiO2, As2Se3, amorphous Si or any 
amorphous material where the coordination number remains the same as in the crystal. 
This problem is going to be quite a challenge for the theoreticians - but up till now we 
depend on experiments for the answer...” [From Mott’s Nobel lecture, 1977] 



The classic view 

                                            from R. Zallen 



Tight-binding model of disorder 
                        Anderson model (1958) 

Here, εi are random. The 
disorder is diagonal only. 
Sufficient variation in εi 
makes all states localized! 

In what follows, we have disorder in VVij, not εi (just s or p 
atomic energies). Topological disorder modulates V; we compute 
the electronic consequences of this disorder. 



 Computing the electronic 
consequences of static disorder 

•  We compute electronic eigenstates around 
the gap for realistic models1 of a-Si, and 
study the nature of the localized (midgap) to 
extended (in the band) transition. 

How: Use 4,096 and 10,000 atom models of 
a-Si, tight-binding Hamiltonian, maximum 
entropy and shift&invert Lanczos to 
compute the states. 

1 Djordjevic, Thorpe and Wooten “DTW” hereafter; Barkema and Mousseau 



Ex 

Evolution of electron states 
In a-Si.  PRL 80 1928 1998 



Interpretation  
•  Structural irregularities exist in the network. (Example: 

a dangling bond site, a strained site, a strained 
complex, a crystallite etc) 

•  If “bad enough” these induce localized wave functions. 
•  If two such defects are spatially near and have similar 

energies, system eigenstates will be mixtures. “States b 
and c” [clue: Symmetric and anti-symmetric linear 
combinations of b and c yield single “islands” 
connected by filaments] 

•  If many such resonant defects overlap, one has 
“electronic connectivity”. This is Mott’s mobility edge. 



“Resonant cluster proliferation” 
In midgap-band tail region (where states are localized), write 
the Hamiltonian in “island representation”: 
H = ∑ εζ |ζ><ζ| + ∑ |ζ> ξζϑ <ϑ|  

Here, |ζ> is localized “island state” as above, with energy 
 εζ, ξζϑ  is  intercluster coupling from embedding islands in  
amorphous environment. 

Hückel Ansatz: ξζϑ ~ <ζ|ϑ>(εζ+εθ)/2 

“Add network topology in perturbation 
theory” 
|Ψζ> =  |ζ> + ∑ϕ≠ζ   ξζϕ/(εζ-εϕ)   |ϕ> 

Small denominator -- resonance - strong mixing 



Island representation: direct 
construction 

•  Start with most local states (midgap) 
•  Moving toward L-D threshold, extract the 

most localized objects from which the states 
could be built (maximize the IPR). 

•  We “decomposed” about 100 eigenstates for 
a-Si model with 10,000 atoms. 

€ 

ψloc = ai
i( islands)
∑ σ i

€ 

σ i = bE
E( loc.states)
∑ ψE

eigenvectors islands 



Island properties 

•   Islands decay exponentially. 
•  From midgap until LD transition, 

localization length increases modestly from 
~0.6 Å to about 1.2 Å.  

Thus, island decay length does not diverge at 
LD transition, but number of islands 
becomes large (resonant cluster 
proliferation) 



Extension to other forms of 
disorder 

•  Disorder comes in many shapes and sizes.  
•  For electrons, we look at: 
  Anderson models (diagonal and off-

diagonal),  “real” disorder from 
topologically disordered network. 



Other disorder (continued) 

•  Vibrations 
 “Substitutional” Force constant disorder on a FCC 

lattice 
 Topological disorder (a-silica) with long-range 

(Coulomb) interactions. 
 Topological disorder: 10,000 atom a-Si model 
Bottom line: the qualitative nature of the localized-

extended transition is similar for all these 
systems. 

Ludlam, Taraskin, Elliott, DD -- JPCM 17 L321 2005 



Universality: three adjacent-
energy eigenstates 

Anderson model,

W/V=16.5 (all states

localized). 


Vitreous silica vibes

note white centers


FCC lattice with force

constants selected

from uniform dist of width

(W/V=2)


Vibrational evecs

for 10K atom model

of a-Si.




The Urbach tail problem 
•  Urbach1 noted exponential (not Gaussian) tails for impure 

crystals in 1953. Rather ubiquitous (particularly in systems 
with disorder). Question is: why exponential?  Interesting 
because nearly universal. 

•  Old important problem -- various models: Halperin-Lax, 
Cohen et al, Dow-Redfield. Very different models. 

•  This has been carefully studied in amorphous Si. Aljishi et 
al, PRL 1990. Find: exponential tails at valence and 
conduction edges, conduction tail far more T-dependent than 
valence tail. 

1F. Urbach, Phys. Rev. 92 1324 (1953)  



Simulations 

•  We employ SIESTA for these calculations 
(local basis ab initio DFT code). Large 
systems and extensive k-sampling required. 

•  We relax point defects in 512-atom 
supercell model of c-Si; compute electronic 
DOS. 

•  We do the same for 512-atom DTW model 
of a-Si. 



Ion-bombarded diamond Si 

•  Experiment1: ion-damaged 
diamond exhibits an 
exponential tail for 
energies well below that 
required to amorphize. 

•  Simulation2: relaxed di-
vacancy in 512-atom cell 
yields exponential tail. 

1S. Sundari Nuc. Inst. Meth. B 215 157 (2004) 
2Y. Pan et al, PRL 100 206403 (2008)




We find exponential tails in good 
models of a-Si 

•  Using 512-atom DTW 
models, obtain 
exponential valence tail: 

EU ~110meV (theory) 
EU ~170-240meV (expt) 

€ 

ρ(E)∝exp(− | E − Eb | /EU )



So what does it mean? 

•  Obviously, the structures giving rise to the
 exponential tails are present.  

•  We can look at the topology of the band tail states. 
     In a nutshell, we find that tail eigenstates in the

 most realistic models are on 1-D filaments of long
 and short bonds we name electron filaments (long
 bonds, conduction; short bonds, valence). There
 are also structural filaments of long and short
 bonds present in the models. 



Spectral consequences of long
 and short bonds 

valence           gap       conduction 



Two filament systems 

•  Electron filaments •  Structural filaments 

PRL 100 206403 (2008) JNCS 354 3480 (2008) 



Comments on Urbach 
•  Electron filaments strongly overlap the structural

 filaments 
•  Destroy the filaments and the tail is no longer

 exponential 
•  Have extended the calculations to 100,000 atoms

 and tight binding, still exponential. 
•  Filaments appear as consequence of structural

 relaxation. 
•  Generality uncertain, certainly relevant to more

 than a-Si. 



Conclusion: qualitative nature of
 the localized to extended

 transition 

islands 
filaments 

mid-gap (very localized)  Extended states 

A cartoon depicting the 
character of the states 
near the gap 



Conclusion: T=0 

•  Mid-gap states: highly localized. 
•  Moving toward bands from midgap, eigenstates 

are composed initially of filaments, then islands. 
•  Islands arise from network defects and energy 

eigenfunctions are mixtures of the cluster states  if 
clusters are resonant and overlapping. 

•  Urbach edges, at least nearest mid-gap, arise from 
filaments of long and short bonds in a-Si. 



 Localized Electrons + Phonons 

•  Move an atom (phonon) – the electron-phonon 
coupling gauges how the electron energies/states 
change with this deformation. 

•  Importance: Key to transport, device applications, 
theory of localization. 

•  Large coupling in amorphous systems: localized 
electron states and a floppier network; crystals are 
dull because all states are extended! 

PRB 69 254204 (2005); JNCS 266 156 (2000). 



Sensitivity of electron energy to 
particular phonon 

•  Hellmann-Feynman theorem and harmonic 
approximation with classical lattice 
dynamics leads easily to fluctuations in 
electron energy eigenvalue <δλ2>: 

We call Ξ the electron-phonon coupling 



How sensitive is electron (energy 
E) to phonon (frequency ω)? 

Ξn(ω) = ∑α<ψn|∂H/∂Rα|ψn> χα(ω) 
Couple electron n (energy E) and phonon ω 

Phonons

Electrons 

E-P coupling


E-Fermi




Interpretation 

1.  Large electron-phonon coupling for localized states near  
the gap. 

2. For localized states, simple algebra leads  
to the conclusion that: 
 a) Ξ2  [electron eigenvalue n] ~ IPR [n] 
 b) <δλ2> ∼ IPR


IPR = inverse participation ration; measure of localization 

Why this is interesting: direct correlation between a static property 
(IPR) and dynamic property – adiabatic variance of the electron 
eigenvalues near Ef. 



Now add thermal disorder 
directly! (track jiggling Kohn-
Sham eigenvalues in thermal 

MD) 
•  Electrons near Fermi level are localized. 
•  Localized states have a large electron-lattice 

coupling. 
•  How do electronic energies and states 

change in thermal simulation? 



Thermal fluctuations in electron 
energies (spaghetti plot) 

Thermal simulation 
T=300K, Ef~-3.0eV 

States near gap fluctuate by tenths of eV >> kT ! 

Conduction 
band 

Valence 
Band 



Correlation between localization 
and thermal fluctuation from MD 

Localization (T=0 property) 

          <δλ2>  

Fits analytic result for low T 

150K 

300K 

500K 

700K 

        (T>0 property)




Thermal motion modulates the 
eigenstates (charge density) too! 

The same eigenstate at two 
different instants of time 
(separated by ~100 fs!) 

DAD and P. A. Fedders PRB 60 R721 (1999) 



Why the big charge fluctuations? 

Resonant cluster argument: 
 1. Eigenvalues in gap are sensitive to thermal 

disorder. 
 2. Thermal disorder can tune cluster energies 

into resonance; then there is strong mixing 
between clusters; eigenstates change 
dramatically. 



Electrical conductivity 

•  Electronic conduction is key in applications. 
•  High “Temperature Coefficient of 

Resistance” (TCR) makes a-Si:H an ideal 
material for IR imaging (night vision) 
applications.  

•  We compute the conductivity using linear 
response theory “the Kubo formula”. 



Large temperature coefficient of 
resistance in a-Si, why? 

•  In an adiabatic picture, thermal disorder strongly 
modulates electronic energy eigenvalues and 
eigenstates. 

•  The conductivity depends critically on these 
quantities. We routinely compute all of these. 

•  We use these quantities, obtained from believable 
atomistic models to estimate the T-dependence of 
the conductivity. 

•  Disorder (thus localization) amplifies the electron-
lattice coupling, enhances T-dependence of 
conductivity.  



Estimating the conductivity 

  

€ 

σ ∝ limω→0
1
ω

( fi
ik
∑ − fk ) |<ψ i | p | ψk >|2 δ(Ek − Ei − ω )DC conductivity: 

€ 

ω : frequency
ψ :wavefunction
E : energy _eigenvalue
p :momentum_operator
bar : thermal_ average

We compute all this for credible 
structural models. Main T-dependence is 
in the thermal (trajectory) average!  

Thus, DC conductivity may be computed as the zero 
frequency limit. To include the motion of the lattice (thus 
temperature dependence), we average over the motion   
of the atoms from a simulation. 



We have carried this out 

•  System needs to be well equilibrated. 
•  Small systems (ca 64 atoms) and simple 

approximations (minimal basis set) appear 
to work rather well.  

•  Calculations: average Kubo formula over 
many configurations at various T. 

Abtew et al., Phys Rev B 76, 045212 (2007) 



Results from Kubo study 
a-Si (intrinsic material) 

IPR [measure of localization] 
 as function of temperature 

DC Conductivity (black line) 
Open symbols, experiments 



T-dependent conductivity  
a-Si:H (intrinsic) 

        IPR                                          Conductivity 



Interpretation 

•  Low-T, states are very localized in the gap. Higher T, they 
become more extended (hence better able to conduct). 
Also, gap shrinks with temperature, and not just from 
melting (still solid at 1000K). 

•  Decent agreement with experiment, don’t know yet if the 
kink for a-Si:H at ~700K is “real”. Close to a “metallic 
transition”. 



Doping: Meyer-Neldel Rule† 

•  Meyer-Neldel rule (MNR) is the observation that pre-
exponential factor and activation energy are correlated: 

   σ0=σ00exp(AEa) for conductivity. 

   This holds for many materials, even with different mechanisms for the 
conductivity, and the constant Ea ~ 15 eV-1. As it is nearly universal it is 
interesting. 

   There are several explanations offered for this.  

†W. Meyer and H. Neldel, Z. Tech. Phys. 12 588 (1937). 



Meyer-Neldel: Procedure 

•  For several Fermi level positions “sample 
doping”, compute σ(T). Slope is Ea and 
intercept is DC conductivity. 

•  Then, plot MNR prefactor σ0 vs. Ea. We get 
a straight line with some scatter, and the 
right slope (ca. 15/eV): 



MNR from first principles 

σ0=σ00 exp(Ea/EMNR) EMNR=0.060eV (best fit). 
This is quite close to experiment. 



MNR: interpretation 
a work in progress! 

•  Empirically our thermally-averaged Kubo formula 
simulations pick up the correct T-dependence and 
the MNR. Therefore, the physical mechanism 
underlying MNR is “in” the simulations. 

•  We suppose that the MNR arises from the 
increasing E-P coupling for tail and gap states. 

•  Not a priori obvious that pathetic little 64 atom 
cells should pick up these effects. 

•  Maybe we have the “universal” explanation (time 
will tell!) 

Details, Abtew et al. JNCS 354 2909 (2008) 



Conclusions (T>0, Transport)  
The electron-lattice coupling is large for localized 

electron states. 
The Kubo formula appears to provide reasonable 

estimates of T-dependence of the electrical 
conductivity in a key amorphous material 

The Meyer-Neldel “compensation law” arises 
from the strong energy dependence of the 
electron-lattice coupling. No Meyer-Neldel 
relation if no localized states. 


