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Pertinent questions

« How does the disorder affect electron
states?

* What microstructures give rise to
exponential “Urbach” tails observed in
defective crystals and disordered systems?

* How useful is the linear response theory
(Kubo-Greenwood formula) in amorphous
materials?



We know about electron states in this (diamond):




But what are electron states like 1n this (a-S1)?




History: Electron Localization
from disorder g

P. W. Anderson Sir N. F. Mott

“There is an extensive literature calculating the position of the mobility edge with
various simple models, but it has not yet proved possible to do this for a “continuous
random network” such as that postulated for SiO,, As,Se;, amorphous Si or any
amorphous material where the coordination number remains the same as in the crystal.
This problem is going to be quite a challenge for the theoreticians - but up till now we
depend on experiments for the answer...” [From Mott’s Nobel lecture, 1977]



The classic view
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Tight-binding model of disorder

Anderson model (1958)

n i Here, €. are random. The
o\ /- .\ 7 | disorder 1s diagonal only.
= : + . S
H 121 8’|l><l| l-,]zzl V|l><J| Sufficient variation in €,
(i# ) makes all states localized!

In what follows, we have disorder in V3V, not €. (Justs or p

1°
atomic energies). Topological disorder modulates V; we compute
the electronic consequences of this disorder.



Computing the electronic
consequences of static disorder

* We compute electronic eigenstates around
the gap for realistic models! of a-Si, and
study the nature of the localized (midgap) to
extended (in the band) transition.

How: Use 4,096 and 10,000 atom models of
a-S1, tight-binding Hamiltonian, maximum
entropy and shift&invert Lanczos to
compute the states.

1 Djordjevic, Thorpe and Wooten “DTW” hereafter; Barkema and Mousseau
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Interpretation

Structural irregularities exist in the network. (Example:
a dangling bond site, a strained site, a strained
complex, a crystallite etc)

If “bad enough” these induce localized wave functions.

If two such defects are spatially near and have similar
energies, system eigenstates will be mixtures. “States b
and ¢” [clue: Symmetric and anti-symmetric linear
combinations of b and ¢ yield single “islands™
connected by filaments]

If many such resonant defects overlap, one has
“electronic connectivity”. This 1s Mott’s mobility edge.



“Resonant cluster proliferation™

In midgap-band tail region (where states are localized), write
the Hamiltonian in “island representation™:

H=} g [C><t| + Y [C> Ecs <0

Here, ‘C> 1s localized “island state” as above, with energy
€, Erg 1S inter.cluster coupling from embedding islands in
amorphous environment.

Hiickel Ansatz: Epg ~ <C[0>(gc+84)/2

“Add network topology 1n perturbation
theory”

|‘Ij§> = |§> + Zcp;ef; Et_,q)/(sz;_ecp ‘(P>

Small denominator -- resonance - strong mixing



Island representation: direct
construction

 Start with most local states (midgap)

* Moving toward L-D threshold, extract the
most localized objects from which the states

could be built (maximize the IPR).

 We “decomposed” about 100 eigenstates for
a-S1 model with 10,000 atoms.

wloc = E aigi Gi B E bEl/}E

/ E(loc .states)
i(islands) \/

eigenvectors islands




Island properties

* Islands decay exponentially.

* From midgap until LD transition,

localization length increases modestly from
~0.6 A to about 1.2 A.

Thus, island decay length does not diverge at
LD transition, but number of 1slands
becomes large (resonant cluster
proliferation)



Extension to other forms of
disorder

* Disorder comes 1in many shapes and sizes.
* For electrons, we look at:

Anderson models (diagonal and off-
diagonal), “real” disorder from
topologically disordered network.



Other disorder (continued)

e Vibrations

“Substitutional” Force constant disorder on a FCC
lattice

Topological disorder (a-silica) with long-range
(Coulomb) interactions.
Topological disorder: 10,000 atom a-Si1 model

Bottom line: the qualitative nature of the localized-
extended transition is similar for all these
systems.

Ludlam, Taraskin, Elliott, DD -- JPCM 17 L321 2005



Universality: three adjacent-
energy eigenstates

Vitreous silica vibes

Anderson model, note white centers

W/V=16.5 (all states A,
localized). —— [ANERS

Vibrational evecs
<«— for 10K atom model
of a-Si.

FCC lattice with force —»
constants selected

from uniform dist of width
(W/V=2)




The Urbach tail problem

Urbach! noted exponential (not Gaussian) tails for impure
crystals in 1953. Rather ubiquitous (particularly in systems
with disorder). Question 1s: why exponential? Interesting
because nearly universal.

Old important problem -- various models: Halperin-Lax,
Cohen et al, Dow-Redfield. Very different models.

This has been carefully studied in amorphous Si. Aljishi et
al, PRL 1990. Find: exponential tails at valence and
conduction edges, conduction tail far more T-dependent than

valence tail.

IF. Urbach, Phys. Rev. 92 1324 (1953)



Simulations

 We employ SIESTA for these calculations
(local basis ab initio DFT code). Large

systems and extensive k-sampling required.

* We relax point defects in 512-atom

supercell model of ¢-S1; compute electronic
DOS.

* We do the same for 512-atom DTW model
of a-Si.
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We find exponential tails in good
models of a-S1.

| ! |
* Using 512-atom DTW - ®  a-Si(DTW model) 1
. DTW distorted model]

models, obtain

exponential valence tail:
p(E)xexp(-IE-E, |/E,)
E,;~110meV (theory)
E_;~170-240meV (expt)
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So what does 1t mean?

* Obviously, the structures giving rise to the
exponential tails are present.

* We can look at the topology of the band tail states.

In a nutshell, we find that tail eigenstates in the
most realistic models are on 1-D filaments of long
and short bonds we name electron filaments (long
bonds, conduction; short bonds, valence). There

are also structural filaments of long and short
bonds present in the models.



Spectral consequences of long
and short bonds
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Two filament systems

e Electron filaments

PRL 100 206403 (2008)

e Structural filaments

Fig. 2. (A) 1%, (B) 2%, (C) 3%, (D) 4%, (E) 5% and (F) 8% shortest(dark) and longest (light) bonds of model M;.

JNCS 354 3480 (2008)



Comments on Urbach

Electron filaments strongly overlap the structural
filaments

Destroy the filaments and the tail 1s no longer
exponential

Have extended the calculations to 100,000 atoms
and tight binding, still exponential.

Filaments appear as consequence of structural
relaxation.

Generality uncertain, certainly relevant to more
than a-Si.



Conclusion: qualitative nature of
the localized to extended
transition

A cartoon depicting the (a)
character of the states \
near the gap
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Conclusion: T=0

Mid-gap states: highly localized.

Moving toward bands from midgap, eigenstates
are composed initially of filaments, then 1slands.

[slands arise from network defects and energy
eigenfunctions are mixtures of the cluster states 1f
clusters are resonant and overlapping.

Urbach edges, at least nearest mid-gap, arise from
filaments of long and short bonds in a-Si.



[.ocalized Electrons + Phonons

 Move an atom (phonon) — the electron-phonon
coupling gauges how the electron energies/states
change with this deformation.

* Importance: Key to transport, device applications,
theory of localization.

* Large coupling in amorphous systems: localized
electron states and a floppier network; crystals are
dull because all states are extended!

PRB 69 254204 (2005); JNCS 266 156 (2000).



Sensitivity of electron energy to
particular phonon

* Hellmann-Feynman theorem and harmonic
approximation with classical lattice
dynamics leads easily to fluctuations in

electron energy eigenvalue <O\>>:
3N —o, |

o A S A, 3kp'l =n(w)
(SN2 = ] — [t O (1) ~ =
OAL) = lim 7_./” at oA, (1) ( oM )Z 2

: W
w=1

- T

3N -
Enlw) = Z"l}.'n|w|‘-'n}' Xalw).

[ —

We call = the electron-phonon coupling



How sensitive 1s electron (energy
E) to phonon (frequency w)?

E-Fermi
0.05
E-P coupling °
\ '@O-
=
0.01
Phonons ———, <
Electrons

Zn(0) = 2 <W|OH/OR (> %o ()
Couple electron n (energy E) and phonon w



Interpretation

1. Large electron-phonon coupling for localized states near
the gap.

2. For localized states, simple algebra leads
to the conclusion that:

a) =2 [electron eigenvalue n] ~ IPR [n]

b) <O\*> ~ IPR

[PR = inverse participation ration; measure of localization

Why this is interesting: direct correlation between a static property
(IPR) and dynamic property — adiabatic variance of the electron
eigenvalues near E..



Now add thermal disorder
directly! (track jiggling Kohn-
Sham eigenvalues 1n thermal
MD)
* Electrons near Fermi level are localized.

* Localized states have a large electron-lattice
coupling.

 How do electronic energies and states
change in thermal simulation?
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Correlation between localization
and thermal fluctuation from MD
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Thermal motion modulates the
eigenstates (charge density) too!

(a) A snaphot of the LUMO state:

time= L147.5 fs
The same eigenstate at two
different instants of time
(separated by ~100 {s!)
(b) A snaphot of the LUMO state:

time= 1032.5 fs

DAD and P. A. Fedders PRB 60 R721 (1999)




Why the big charge fluctuations?

Resonant cluster argument:

1. Eigenvalues 1n gap are sensitive to thermal
disorder.

2. Thermal disorder can tune cluster energies
into resonance; then there 1s strong mixing
between clusters; eigenstates change
dramatically.



Electrical conductivity

 Electronic conduction is key 1n applications.

* High “Temperature Coefficient of
Resistance” (TCR) makes a-S1:H an 1deal
material for IR 1maging (night vision)
applications.

 We compute the conductivity using linear
response theory “the Kubo formula™.



Large temperature coefficient of
resistance 1n a-S1, why?

In an adiabatic picture, thermal disorder strongly
modulates electronic energy eigenvalues and
cigenstates.

The conductivity depends critically on these
quantities. We routinely compute all of these.

We use these quantities, obtained from believable
atomistic models to estimate the T-dependence of
the conductivity.

Disorder (thus localization) amplifies the electron-
lattice coupling, enhances T-dependence of
conductivity.



Estimating the conductivity

Thus, DC conductivity may be computed as the zero
frequency limit. To include the motion of the lattice (thus
temperature dependence), we average over the motion
of the atoms from a simulation.

|
DC conductivity: o « limweo—z(fi - f)ly. I ply, >I°8(E, - E - ho)
W "

w: frequency We compute all this for credible
Y : wavefunction structural models. Main T-dependence is
E :energy _eigenvalue in the thermal (trajectory) average!

p . momentum _operator

bar : thermal _average



We have carried this out

* System needs to be well equilibrated.

* Small systems (ca 64 atoms) and simple
approximations (minimal basis set) appear
to work rather well.

 Calculations: average Kubo formula over
many configurations at various T.

Abtew et al., Phys Rev B 76, 045212 (2007)



Results from Kubo study

a-Si (intrinsic material)
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T-dependent conductivity

a-Si:H (intrinsic)
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Interpretation

« Low-T, states are very localized in the gap. Higher T, they
become more extended (hence better able to conduct).

Also, gap shrinks with temperature, and not just from
melting (still solid at 1000K).

* Decent agreement with experiment, don’t know yet 1f the
kink for a-Si:H at ~700K 1s “real”. Close to a “metallic
transition”.



Doping: Meyer-Neldel Rule?

* Meyer-Neldel rule (MNR) is the observation that pre-
exponential factor and are correlated:

0,=00€Xp(Al ) for conductivity.

This holds for many materials, even with different mechanisms for the
conductivity, and the constant E, ~ 15 eV-. As it is nearly universal it is
interesting.

There are several explanations offered for this.

TW. Meyer and H. Neldel, Z. Tech. Phys. 12 588 (1937).



Meyer-Neldel: Procedure

* For several Fermi level positions “sample
doping”, compute o(T). Slope 1s E, and
intercept 1s DC conductivity.

* Then, plot MNR prefactor g, vs. E,. We get
a straight line with some scatter, and the
right slope (ca. 15/eV):



MNR from first principles
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0p=0q9 EXP(E/E\nr) Evng=0-060eV (best fit).
This is quite close to experiment.



MNR: interpretation

a work in progress!

* Empirically our thermally-averaged Kubo formula
simulations pick up the correct T-dependence and
the MNR. Therefore, the physical mechanism
underlying MNR is “in” the simulations.

* We suppose that the MNR arises from the
increasing E-P coupling for tail and gap states.

* Not a priori obvious that pathetic little 64 atom
cells should pick up these effects.

* Maybe we have the “universal” explanation (time
will tell!)

Details, Abtew et al. INCS 354 2909 (2008)



Conclusions (T>0, Transport)

The electron-lattice coupling 1s large for localized
electron states.

The Kubo formula appears to provide reasonable
estimates of T-dependence of the electrical
conductivity in a key amorphous material

The Meyer-Neldel “compensation law” arises
from the strong energy dependence of the
electron-lattice coupling. No Meyer-Neldel
relation 1f no localized states.



