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Need for first principles
simulations

Observe the hard to observe:     defect wave functions
localized vibrational modes
atomistic of charge transport in
molecules
magnetic moments on selected
sites

Explore the hard to make:         Novel materials
Exploration of new compositions

Overcome the plague of the macroscopic average,
obtain truly atomistic information.



Scope of the problem

• Need: Transferability of the potentials: cannot
depend upon fitting to particular structures
and local environments. Prediction depends
upon this.

• Need: Efficiency to enable large models.
• Need: Broad applicability of the methods.



The formulation

• Current practical “first principles” materials
theory is almost all based upon the
independent electron approximation.

• These methods fail for strongly-correlated
systems (when interactions beat the
delocalization from the kinetic energy).
Examples: 3d, 4d transition metals, Ce, Sm,
Eu etc. I ignore these important problems
here.



History: steps toward a practical theory

• Thomas-Fermi Models [Parr/Yang]
The electron density is a key variable to

energetics
Idea: For electron gas energy E, density ρ:
E = Kinetic Energy + Exchange Energy + Hartree (Coulomb

repulsion energy) + External potential:
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Here, A, B, C are constants,Φ is external potl. Key point: 
Energy is a functional of the electron density! 



The purist’s starting point

To really get this right we need to solve
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Not quite hopeless, but very, very hard!



Making Progress on the
many-body problem

• Born-Oppenheimer (splitting the ionic and electronic
degrees of freedom): since melectron << mion, also can
perform classical MD simulation for ions in a force
field obtained from the instantaneous electronic
ground state.

• Hartree, (Hartree-Fock): Use the variational principle
to extract the best single-particle equations starting
with product (Slater determinant) ansatz.

• Mathematical form of Hartree problem: “Self-
consistent” Hartree equations:
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Hartree and Hartree-Fock

• Still used especially in quantum
chemistry community.

• Advantage: may be systematically
improved “Moeller-Plessett perturbation
theory” for the correlation energy “MP2,
MP4”…

• Disadvantage: not very accurate in
solids without heroic efforts.



Density Functional Theory
(Kohn, Hohenberg, Sham)

• Theorem I: For any system of interacting
particles in external potential Vext(x), the
potential Vext(x) is determined uniquely (up to
a constant) by the ground state particle
density ρ(x).

• Corollary: As Hamiltonian is fully determined,
so are all many-body wavefunctions. Thus all
properties of the system are determined by
ρ(x).

Presentation lifted from R. M. Martin, Electronic Structure



DFT: II

• Theorem II. A universal functional for the
energy E[ρ] may be defined for any external
potential Vext(x). For given Vext(x), the exact
ground state energy is the global minimum of
this functional, and the density ρ(x) that
minimizes the functional is the exact ground
state density.

Tremendous advance: maps ground state
energy calculation for interacting many-
electron problem onto effective one-electron
problem.



DFT: Get Practical

So we can write:
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F is universal and unique, and E is minimized by
the true ground state density, so if we knew F
there would be a mathematical prescription: find the
density that minimizes E and you have found the true
energy and density!

but:
WHAT IS F?



What is F?
“Decompose” F into bits we expect to be there; set up
so approximate part is smooth and slowly varying. We write:
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Classical electrostatics
“Hartree” term

Kinetic
energy of
non-
interacting
electrons

What is left:
exchange-
correlation
energy



Local Density Approximation

• We know F[ρ] and E[ρ] exactly for range of ρ
for homogeneous electron gas from
celebrated Quantum Monte Carlo calculations
of Ceperley and Alder.

• So approximate:

Idea is to “build up” the XC energy for the
(weakly) inhomogeneous gas from εxc(x) -- the

XC energy for the homogeneous gas.! 
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What about Tni?

• If the electrons are non-interacting then:
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Where we have the connection: 
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Thus, if we work with ne/2 orthogonal orbitals, we can
get a reliable estimate for the kinetic energy.

No free lunch theorem: ne/2 orbitals is a lot harder than
one function ρ. Back to Hartree-like equations!

The Kohn-Sham
epiphany!



LDA is surprisingly accurate
and useful

• Cohesive energies tend to be a bit high (“LDA
overbinds”) typically a 10% effect.

• Can extend to spin polarized case: “Local
Spin Density Approximation” (LSDA)

• For improvements in energetics, use
“generalized gradient corrections”. Some of
the best are somewhat empirical.



Honesty in advertising

• While DFT in the LDA can be excellent
for energies and forces, it does not
directly yield the correct optical gap.
After all it is a ground state theory!

• Of course there are fundamental
limitations to the independent-particle
picture, so don’t expect good results for
highly correlated systems.



Math/computation: The Kohn-
Sham equations
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Note: really the Hartree and XC terms depend on ρ, and thus
These equations are non-linear and must be iterated to
“self-consistency”.

The fundamental equation of practical density functional theory



Pragmatism

• Pseudopotentials: enable accurate
calculations only (explicitly) handling the
valence electrons (4 for Si, not 14!)

       key ideas: Herring, Phillips, Hamann, Vanderbilt

• As this is quantum mechanics, practical
calculations require a choice of
representation.



Name your poison: plane
waves or local orbitals

! 

| " >= a
G

G#0

$ |G >

! 

| " >= aµ

µ

# |µ >

PLANE WAVE
BASIS

G are reciprocal lattice 
vectors, |G>, plane waves

Car-Parrinello, Payne
VASP, CPMD, ABINIT
FHI98MD, (others)

LOCAL BASIS

µ is local basis function, usually
atomic-like orbitals, blips etc.

Sankey et al FIREBALL
Ordejon et al SIESTA
(others)

           Excellent implementations of both available



“Order N” Methods
• The CPU demand scales at least like N3 for N

the number of electrons. Often want models
with 102-104 atoms. Big problem!

• In systems with an optical gap, can work with
“generalized” Wannier functions (localized in
real space) or a truncated density matrix.
With real-space localized representations,
linear scaling “O(N)” is possible. (Vanderbilt,
Mauri et al, Ordejon et al, many others)

• All bets are off for O(N) for metals!
• This is a research area, not a black box area!



Personal biases before
applications

• Use the method that makes the most sense.
• Ex: DNA -- do it with local basis methods (require order N and

its not really periodic)
• Ex: Periodic systems and high precision, use plane waves.
• Bells and whistles already implemented might well play a role.

These are usually huge and complex codes you will not want to
write yourself.

• Of course empirical potentials or tight-binding may be the right
choice for very large systems or qualitative accuracy!

• Finally, remember that all this is approximate. Often
extraordinarily reliable, but care is still needed !



First some fun. Cluster to
nano to crystal.Simple O(N)

• How do discrete electronic and vibrational molecular levels form
bands? Note the faceted, flat, locally “graphitic” faces.

• We directly compute this for icosahedral carbon fullerenes with
60-3840 atoms and compare to an exact (k-space) calculation
for monolayer graphite.

We use a tight-binding
Hamiltonian here.



Sample calculation: estimating the
density of states of any big matrix

• Strategy: convert the computation of the
density of states (DOS) into the
classical (Hausdorff) moment problem.

• Solve the moment problem with
information theory (the method of
maximum entropy).







Mead & Papanicolaou, 84
Biswas, 05



Cluster to crystal: electrons
and phonons

SSC 96 833 (1995), PRL 75 1324 (1995) Ordejon, Martin, Dong, DD.



A few brief comments

• Can observe the formation of bands; directly
track the molecular to solid transition.

• Van Hove singularities at some band edges
• Emphasizes that the electronic (and

vibrational) structure depends upon the local
environment.



DFT: Examples

• Portrait of a famous defect
• Cu pair in Si: The Movie
• Si(111) 7x7 surface
• Biomolecules
• Magnetic properties
• Glasses



Valence alternation pair defect
in Se

With X. Zhang, using SIESTA and CASTEP. The
unpaired electron spin density is turquoise near the chain
end.



Vibrational mode of Cu dimer
in Si

Thank you Stefan
Estreicher, Tx. Tech.
PRL 90 035504 (2003).

substitutional-interstitial
copper pair local mode



Si(111) 7x7 reconstruction
Brommer et al PRL ‘92

unoccupied occupied

theory

experiment



Si(111) 7x7

• Old (1 992) but still impressive
calculation of 111 reconstruction on
~700 atom slab.

• Find that 7x7 reconstruction is favored
over expected 2x1 by about 60
meV/cell.



DNA: under the mathematical
microscope

There is wide interest
in DNA as a conductor.
This is a simulation
showing those states
which could be
involved in conduction.
~1000 atoms. Local basis
order N approach used.

Artacho et al  SIESTA



Structure and moments of Fe
clusters

Fe atoms and the
moment at each site

T. Oda et al. PRL ‘98
Car-Parrinello CPMD



Glasses

Basic problem: Where are the atoms?! Here I
discuss:

• Computer “glass making” and the motion of
Ag ions in glassy chalcogenide hosts.

• Complex pressure-induced phase transition in
amorphous silicon.

• For more on better ways to make model
glasses come to my talk tomorrow.



Modeling glasses and amorphous
materials

 Glasses are interesting and challenging
1) To sensibly model with periodic BC need large

models -- at least a few atom atoms.
2) Hard to really simulate glass formation --

simulation time scales are far too short.
3) They are ubiquitous (windows, wine glasses,

TFTs for laptops, solar cells, DVD media)
4) They are interesting (Anderson transition etc.)



1. Build a cell (with ~ 200 atoms) and periodic
boundary conditions with the atoms you
want.

2. Cook/anneal -- form an equilibrated liquid a
bit above Tm.

3. Simulate quenching it -- remove kinetic
energy “dissipative dynamics” until motion is
arrested. This is the model of the glass!

Glass a’la Computer



Melt quench example: silver
ion dynamics in GexSe1-x:Ag

• An important problem: How does Ag diffuse in
chalcogenide hosts? Silver is incredibly
mobile in GeSe glasses.

• Key to understanding/optimizing
Programmable Metallization Cell (memory
device), photo-response of Ag etc

• Fundamental problem in solid state ionics



Approach

• Use Fireball2000 (J. Lewis et al. local basis
ab initio) MD

• Cook and quench in conventional way,
forming models of a-(GeSe3).9Se.1:Ag and a-
(GeSe3).85Se.15:Ag (10-15% Ag in models)

• Study the Ag dynamics directly from thermal
MD simulation.



 GeSe:Ag Models (240 atoms)

Static structure
factors.

Experiment:
 A. Piarristeguy, J.
Non-Cryst. Sol. 332,
1 (2003).



Ag+ hopping from thermal MD
Most diffusive Ag atom
Least diffusive Ag atomThermal MD, constant

T, 20 ps, ab initio
Interactions. 



Dance of the silver atoms



Some first inferences
• There are trapping defects. This is a direct observation of the

proposed Scher-Lax-Phillips1 traps. Trap model is very
successful with relaxation data.

• There is free volume (reduced local density) for rapid diffusers.
• We need statistics! Absorption and emission rates of cages,

temperature dependence etc. All in progress.
• Some goals: provide the microscopic parameters for the

trapping model, elucidate the microscopic (and dynamic) nature
of the traps.

1J. C. Phillips, Rep. Prog. Phys 59 1133 (1996).



A prediction: amorphous GaN

Stumm & DD PRL 79 677 ‘97

We show that an amorphous 
phase of GaN can have a 
state free gap.

Since grown by
Kordesch, Silva,
Others.
APL 77 1117 (2000).



Pressure-induced phase
transition in a-Si

Ingredients:
• Constant pressure MD simulation, Sankey

Hamiltonian (local basis LDA).
• 216 atom models of a-Si from Mike Thorpe

(ASU): highly realistic models of a-Si.
Approach:
• Simulate applied pressure and track the

structural response



Response to pressure: first order
transition?

a-Si, P=0

High pressure
metallic phase
16 GPa

Durandurdu, DD PRB 64 2001

Volume vs. Pressure
           abrupt collapse



Electronic Structure and Pressure.
How the Insulator-metal transition occurs

Localization (Inverse Participation
Ratio) and pressure. Note the 
abrupt delocalization of band tails
at critical pressure and collapse
of the gap



Binary glass - a different story

Glassy GeSe2 
Continuous transition!

Durandurdu, DD
PRB 65 2002



Photo-response

• At every (MD) time step we have a lot of
information: coordinates, energy
eigenvalues, eigenfunctions, density
matrix,…

We can simulate light-induced promotion
(by changing electronic occupations)
and monitor structural change from
creating the pair.



Logic

Simulate an electron-hole pair (remove e- from top of valence
states n and add to bottom of conduction states n+1). For
Hamiltonian H and electron states 
 
The net change in the interatomic ‘bandstructure’ force is:
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A  216-atom model of a-Se
Hybrid melt-quench with a priori information (chain topology)



Example: Amorphous Se
• Starting structure (one

IVAP). Only active atoms
shown.

• Intermediate structure (in
excited state)

• Final structure
Defect Free! “Photoanneal”

X. Zhang, DD PRL 83 5042 (1999)



a-Se: photo-induced changes

Usually the network improves with occupation change
(as here, IVAP disappears).

 Why: Network “feels” changes near where the defects
wavefunctions are localized (these are the states that
suffer occupation change). Network is locally
“annealed” .

Other words: The electron-phonon coupling is large for
localized states.

Atta-Fynn, Biswas, DAD PRB 69 545204 (2004)



Where to learn more
• R. M. Martin, Electronic Structure, Basic Theory

and Practical Methods, Cambridge, 2004.
• Associated website with a wealth of links to most

active research groups, software and pedagogic
tools:  ElectronicStructure.org

• Detailed treatment of many aspects of DFT: Parr
and Yang, Density Functional theory of Atoms and
Molecules Oxford, 1989.

• Molecular Dynamics: Allen and Tildesley,
Computer Simulation of Liquids, Oxford 1989.


