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Need for first principles
simulations

Observe the hard to observe:

defect wave functions

localized vibrational modes

atomistic of charge transport in
molecules

magnetic moments on selected
sites

Explore the hard to make:

Novel materials
Exploration of new compositions

Overcome the plague of the macroscopic average,
obtain truly atomistic information.



Scope of the problem

* Need: Transferability of the potentials: cannot
depend upon fitting to particular structures
and local environments. Prediction depends
upon this.

* Need: Efficiency to enable large models.
* Need: Broad applicability of the methods.



The formulation

* Current practical “first principles”™ materials
theory is almost all based upon the
Independent electron approximation.

* These methods fail for strongly-correlated
systems (when interactions beat the
delocalization from the kinetic energy).
Examples: 3d, 4d transition metals, Ce, Sm,
Eu etc. / ignore these important problems
here.



History: steps toward a practical theory

 Thomas-Fermi Models [Parr/Yang]

The electron density is a key variable to
energetics

|ldea: For electron gas energy E, density p:

E = Kinetic Energy + Exchange Energy + Hartree (Coulomb
repulsion energy) + External potential:
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Here, A, B, C are constants,® is external potl. Key point:
Energy is a functional of the electron density!



The purist’s starting point

To really get this right we need to solve
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Not quite hopeless, but very, very hard!



Making Progress on the
many-body problem

 Born-Oppenheimer (splitting the ionic and electronic
degrees of freedom): since M. << M;,,, also can
perform classical MD simulation for ions in a force
field obtained from the instantaneous electronic
ground state.

« Hartree, (Hartree-Fock): Use the variational principle
to extract the best single-particle equations starting
with product (Slater determinant) ansatz.

« Mathematical form of Hartree problem: “Self-
consistent” Hartree equations:

2 12mV? + VW, W, = AW



Hartree and Hartree-Fock

 Still used especially in quantum
chemistry community.

* Advantage: may be systematically
improved “Moeller-Plessett perturbation
theory” for the correlation energy "MP2,
MP4”. ..

* Disadvantage: not very accurate in
solids without heroic efforts.



Density Functional Theory
(Kohn, Hohenberg, Sham)

 Theorem Il: For any system of interacting
particles in external potential V_(x), the
potential V(x) is determined uniquely (up to

a constant) by the ground state particle
density p(x).

« Corollary: As Hamiltonian is fully determined,
so are all many-body wavefunctions. Thus all
properties of the system are determined by

P(X).

Presentation lifted from R. M. Martin, Electronic Structure



DFT: I

 Theorem Il. A universal functional for the
energy E[p] may be defined for any external
potential V _.(x). For given V_,(x), the exact
ground state energy is the global minimum of
this functional, and the density p(x) that
minimizes the functional is the exact ground
state density.

Tremendous advance: maps ground state
energy calculation for interacting many-
electron problem onto effective one-electron
problem.



DFT: Get Practical

So we can write:
Elpl= [ d’xV,,(x)p(x)+ F[p]

F is universal and unique, and E is minimized by

the true ground state density, so if we knew F

there would be a mathematical prescription: find the
density that minimizes E and you have found the true
energy and density!

but:
WHAT IS F?



Whatis F?

“Decompose” F into bits we expect to be there; set up
so approximate part is smooth and slowly varying. We write:

Flpl=e*12 [ d’x, [ d’x,p(x)p(x,) /1 x, = x, 1+T,,(p) + E,.(p)

e ]

L What is left:
Classical electrostatics Kinetic exchanage-
“ " energy of 9
Hartree” term on. correlation
interacting ehergy

electrons



Local Density Approximation

« We know F[p] and E[p] exactly for range of p
for homogeneous electron gas from
celebrated Quantum Monte Carlo calculations
of Ceperley and Alder.

* SO approximate:
E. [p(0)]= [ dxp(x)e, [p(x)]

Ildea is to “build up” the XC energy for the

(weakly) inhomogeneous gas from ¢,.(x) -- the
XC energy for the homogeneous gas.



What about T .7

 If the electrons are non-interacting then:

T,=2Y<x\p i2mly, >
Where we have the connection:
p=2Y1xF

Thus, if we work with n_/2 orthogonal orbitals, we can
get a reliable estimate for the kinetic energy.

The Kohn-Sham
epiphany!

No free lunch theorem: n_ /2 orbitals is a lot harder than
one function p. Back to Hartree-like equations!



LDA Is surprisingly accurate
and useful

* Cohesive energies tend to be a bit high ("LDA
overbinds”) typically a 10% effect.

« Can extend to spin polarized case: “Local
Spin Density Approximation™ (LSDA)

* For improvements in energetics, use
“generalized gradient corrections”. Some of
the best are somewhat empirical.



Honesty in advertising

 While DFT in the LDA can be excellent
for energies and forces, it does not
directly yield the correct optical gap.
After all it is a ground state theory!

* Of course there are fundamental
limitations to the independent-particle
picture, so don’t expect good results for
highly correlated systems.



Math/computation: The Kohn-
Sham equations

(-7 /2mV* +V

ext

(x) + VHartree (.X) + VXC(X)}X = )LX

Note: really the Hartree and XC terms depend on p, and thus
These equations are non-linear and must be iterated to
“self-consistency”.

The fundamental equation of practical density functional theory



Pragmatism

* Pseudopotentials: enable accurate
calculations only (explicitly) handling the

valence electrons (4 for Si, not 14!)
key ideas: Herring, Phillips, Hamann, Vanderbilt

* As this is quantum mechanics, practical
calculations require a choice of
representation.



Name your poison: plane
waves or local orbitals

IX>=EaGIG> Ix>=2aulu>

G=0 u
PLANE WAVE LOCAL BASIS
BASIS
G are reciprocal lattice u is local basis function, usually
vectors, |G>, plane waves atomic-like orbitals, blips efc.

. Sankey et al FIREBALL
Car-Parrinello, Payne Ordejon et al SIESTA
VASP, CPMD, ABINIT (others)

FHI98MD, (others)

Excellent implementations of both available



“Order N” Methods

The CPU demand scales at least like N3 for N
the number of electrons. Often want models
with 102-104 atoms. Big problem!

In systems with an optical gap, can work with
“generalized” Wannier functions (localized in
real space) or a truncated density matrix.
With real-space localized representations,
linear scaling “O(N)" is possible. (Vanderbilt,
Mauri et al, Ordejon et al, many others)

All bets are off for O(N) for metals!
This Is a research area, not a black box areal!



Personal biases before
applications

Use the method that makes the most sense.

Ex: DNA -- do it with local basis methods (require order N and
its not really periodic)

Ex: Periodic systems and high precision, use plane waves.
Bells and whistles already implemented might well play a role.

These are usually huge and complex codes you will not want to
write yourself.

Of course empirical potentials or tight-binding may be the right
choice for very large systems or qualitative accuracy!

Finally, remember that all this is approximate. Often
extraordinarily reliable, but care is still needed!



First some fun. Cluster to
nano to crystal.Simple O(N)

 How do discrete electronic and vibrational molecular levels form
bands? Note the faceted, flat, locally “graphitic” faces.

« We directly compute this for icosahedral carbon fullerenes with
60-3840 atoms and compare to an exact (k-space) calculation
for monolayer graphite.

Ceo

We use a tight-binding s
Hamiltonian here.




Sample calculation: estimating the
density of states of any big matrix

« Strategy: convert the computation of the
density of states (DOS) into the
classical (Hausdorff) moment problem.

* Solve the moment problem with
information theory (the method of
maximum entropy).
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Cluster to crystal: electrons
and phonons
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SSC 96 833 (1995), PRL 75 1324 (1995) Ordejon, Martin, Dong, DD.



A few brief comments

« Can observe the formation of bands; directly
track the molecular to solid transition.

* Van Hove singularities at some band edges

 Emphasizes that the electronic (and
vibrational) structure depends upon the local
environment.



DFT: Examples

Portrait of a famous defect
Cu pair in Si: The Movie
Si(111) 7x7 surface
Biomolecules

Magnetic properties
Glasses



Valence alternation pair defect
In Se

With X. Zhang, using SIESTA and CASTEP. The
unpaired electron spin density is turquoise near the chain
end.



Vibrational mode of Cu dimer
in Si

Thank you Stefan
Estreicher, Tx. Tech.
PRL 90 035504 (2003).

substitutional-interstitial
copper pair local mode




Si(111) 7x7 reconstruction
Brommer et al PRL ‘92

unoccupied occupied

experiment

FIG. 2. STM images of the Si(111)-(7x7) surface reconstruction based on the results of this calculation (top panels), and the ex-
perimental results of Avouris and Wolkow [17] (bottom panels). Shown are unoccupied (left panel) and occupied (right panel) state
contributions. The determination of the grey scale in the top panels is described in the text.



Si(111) 7x7

* OId (1992) but still impressive
calculation of 111 reconstruction on
~700 atom slab.

 Find that 7x7 reconstruction is favored
over expected 2x1 by about 60
meV/cell.



DNA: under the mathematical
microscope

FIG. 2: (Color stereogram) Surfaces of constant density (1.5
10° e~ /A®) for the states corresponding to the lowest unoc-

cupied band (red), and highest occupied band (blue) of the

ordered pGpC structure.

Molekel [(34].

The graphs were produced with

There is wide interest

in DNA as a conductor.
This is a simulation
showing those states
which could be

involved in conduction.
~1000 atoms. Local basis
order N approach used.

Artacho et al SIESTA



Structure and moments of Fe
clusters

T. Oda et al. PRL ‘98
Car-Parrinello CPMD

Fe atoms and the
moment at each site




Glasses

Basic problem: Where are the atoms?! Here |
discuss:

« Computer “glass making” and the motion of
Ag ions in glassy chalcogenide hosts.

 Complex pressure-induced phase transition in
amorphous silicon.

* For more on better ways to make model
glasses come to my talk tomorrow.



Modeling glasses and amorphous
materials

Glasses are interesting and challenging

1)

To sensibly model with periodic BC need large
models -- at least a few atom atoms.

Hard to really simulate glass formation --
simulation time scales are far too short.

They are ubiquitous (windows, wine glasses,
TFTs for laptops, solar cells, DVD media)

They are interesting (Anderson transition etc.)



L

Fecl
Pe Glass a’la Computer

Build a cell (with ~ 200 atoms) and periodic
boundary conditions with the atoms you
want.

2. Cook/anneal -- form an equilibrated liquid a
bit above T...

3. Simulate quenching it -- remove kinetic
energy “dissipative dynamics” until motion is
arrested. This is the model of the glass!




Melt quench example: silver
ion dynamics in Ge, Se,_:Ag

* An important problem: How does Aqg diffuse in
chalcogenide hosts? Silver is incredibly
mobile in GeSe glasses.

« Key to understanding/optimizing
Programmable Metallization Cell (memory
device), photo-response of Ag etc

 Fundamental problem in solid state ionics



Approach

* Use Fireball2000 (J. Lewis ef al. local basis
ab initio) MD
* Cook and quench in conventional way,

forming models of a-(GeSe;) 4Se :Ag and a-
(GeSe;) gs5e 5:Ag (10-15% Ag in models)

« Study the Ag dynamics directly from thermal
MD simulation.



GeSe:Ag Models (240 atoms)

« Experiment Static structure

_ factors.
32 j\/\/\“’ﬂr/\ Experiment:
: A. Piarristeguy, J.
1 " Non-Cryst. Sol. 332,
' 10 1 (2003).



Ag” hopplng from thermal MD

Most diffusive Ag atom

4 
Thermal MD, constant 2 / Least diffusive Ag atom
T, 20 ps, ab initio 0

Interactions.

- Atom 221
Atom 230

Atom 209
Atom 210



Dance of the silver atoms




Some first inferences

* There are trapping defects. This is a direct observation of the
proposed Scher-Lax-Phillips’ traps. Trap model is very
successful with relaxation data.

 There is free volume (reduced local density) for rapid diffusers.

* We need statistics! Absorption and emission rates of cages,
temperature dependence etc. All in progress.

 Some goals: provide the microscopic parameters for the
trapping model, elucidate the microscopic (and dynamic) nature
of the traps.

'J. C. Phillips, Rep. Prog. Phys 59 1133 (1996).



A prediction: amorphous GaN

We show that an amorphous
phase of GaN can have a
state free gap.

Since grown by
Kordesch, Silva,

FIG. 2. Electronic density of states. The vertical dashed line

1s the Fermi level. We can roughly predict an experimental Oth ers.
gap of 2.8 eV for both models, surprisingly independent of the APL 77 1117 (2000).
threefold content. The broadening used was 0.1 eV.

Stumm & DD PRL 79 677 ‘97



Pressure-induced phase
transition in a-Si

Ingredients:
* Constant pressure MD simulation, Sankey
Hamiltonian (local basis LDA).

« 216 atom models of a-Si from Mike Thorpe
(ASU): highly realistic models of a-Si.

Approach:

« Simulate applied pressure and track the
structural response



Response to pressure: first order
transition?
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FIG. 1. (a) The normalized volume of a-S1 to the zero-pressure
measured volume. At 16.25 GPa, the volume drops suddenly, indi-

cating pressure-induced phase transition. (b) Gibbs free energy of Durandurdu, DD PRB 64 2001 (b)

amorphous and high pressure phase cross near 9 GPa implying a
transition.



Electronic Structure and Pressure.

How the Insulator-metal transition occurs
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FIG. 6. Electronic eigenstates in the band gap region. The posi-
tion of vertical bars represents the eigenvalues of the electronic
eigenstates and height of the bars is the spatial localization O,(E).
The Fermu level lies in the middle of the band gap. Note the abrupt
delocalization of tail states at 16.25 GPa.

Localization (Inverse Participation
Ratio) and pressure. Note the
abrupt delocalization of band tails
at critical pressure and collapse
of the gap



Binary glass - a different story
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FIG. 1. The normalized volume of a-GeSe, changes smoothly
with up to 12 GPa. After this pressure and several others, it shows
slope changes. Upon a pressure release from 75 GPa, the path is
reversed up to 30 GPa, and thereafter hysteresis is seen.



Photo-response

* At every (MD) time step we have a lot of
information: coordinates, energy

eigenvalues, eigenfunctions, density
matrix,...

We can simulate light-induced promotion

(by changing electronic occupations)
and monitor structural change from
creating the pair.



Logic

Simulate an electron-hole pair (remove e from top of valence
states n and add to bottom of conduction states n+1). For
Hamiltonian H and electron states ¥’

The net change 1n the interatomic ‘bandstructure’ force 1s:

AF, =<y |-HIdR 1y  >-<y |-dH/R, 1y >
Force from occupying state n+1 Force from depleting

(conduction tail) state n (valence tail)



A 216-atom model of a-Se

Hybrid melt-quench with a priori information (chain topology)
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Example: Amorphous Se

Starting structure (one
IVAP). Only active atoms
shown.

Intermediate structure (in
excited state)

Final structure

Defect Free! “Photoanneal”

X. Zhang, DD PRL 83 5042 (1999)
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a-Se: photo-induced changes

Usually the network improves with occupation change
(as here, IVAP disappears).

Why: Network “feels” changes near where the defects
wavefunctions are localized (these are the states that
suffer occupation change). Network is locally
“annealed” .

Other words: The electron-phonon coupling is large for

localized states.
Atta-Fynn, Biswas, DAD PRB 69 545204 (2004)



Where to learn more

R. M. Martin, Electronic Structure, Basic Theory
and Practical Methods, Cambridge, 2004.

Associated website with a wealth of links to most
active research groups, software and pedagogic
tools: ElectronicStructure.org

Detailed treatment of many aspects of DFT: Parr
and Yang, Density Functional theory of Atoms and
Molecules Oxford, 19809.

Molecular Dynamics: Allen and Tildesley,
Computer Simulation of Liquids, Oxford 1989.

Richardl FL Bardn

Electronic Structure
Basu Thoory and Froatical Methods




