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PLAN OF LECTURE

• Disorder and Order, introduction

• Electronic structure of amorphous materials

• Note:  This is just a quick overview. There are 
several books.  An old (1984) but excellent book 
is by Elliott, free for download on researchgate. 
You can also have my lecture notes (email me!)

• I am NOT teaching all the lore, only giving the 
general outlook.



INTERLUDE: SCHRODINGER ON 
“APERIODIC CRYSTALS”

E. S. “What is 

Life” (lectures in Dublin

from 1942). p. 3 of the

1962 CUP reprint



MOTIVATION

• To understand disordered matter via 
computer models.

• To design materials with sought after 
properties.

Fact: neither experimentalists nor theorists 
succeed by themselves in our field – it’s all 
about working together.



DISORDER: SCOPE OF THE 
PROBLEM



THE CHALLENGE

• All solids are fundamentally quantum mechanical entities: we 
know that lattice vibrations have to be quantized, accurate 
forces come only from quantum mechanics, can only 
understand metals and insulators with quantum mechanical 
electrons, etc.

• The structure of amorphous solids is unknown and always will 
be in a literal sense: no experiment can tell us 1022  

coordinates and no computer can store them.

• So we will need a way to make representative atomic 
models and deal with quantum mechanics in such an extended, 
disordered system.  



WHAT WE KNOW: CLUSTERS

• We can work out the properties of molecules pretty well 

with standard methods.

• Number of energy minima grows exponentially with 

number of atoms (Stillinger). Finding the “ground state” 

becomes difficult before even 20 atoms. A harbinger of 

challenges ahead…

• No k-space, no bands etc, just molecular orbitals.

• Not usually a good way to represent a solid – surface 

artifacts.



WHAT WE KNOW: CRYSTAL 

• Crystal: a configuration of atoms arrayed in periodic 

fashion.

• Can come with one atom per unit cell (Bravais lattice FCC, 

BCC, SC etc), or there may be a basis (a collection of 

translations) associated with each point in a Bravais lattice 

(for example, diamond). Or 106 atoms – proteins. Most 

recent Nobel prize: 2009.



DIAMOND



WHY CRYSTALS ARE EASY: 
SYMMETRY AND ITS USE

• The basic point is: we know where the atoms are, and their 

periodicity has important consequences.

• For calculations, the periodicity makes a critical difference. 

Since the electronic or vibrational Hamiltonian commutes 

with the translation operator, we get Bloch’s theorem:

u has full periodicity of the lattice, (nk) labels the electronic states



CRYSTALS ARE EASY

• Bloch’s theorem lets us work with two indexes: n, the band 
index and k, the Bloch wave-vector. For a macroscopic 
system, k continuous, all information is included first 
Brillouin zone. 

• In calculations, we can solve

                 H(k) (n,k)=E(n,k) (n,k)

 We solve this independently for each k. We diagonalize a 
matrix of dimension Nbasis where Nbasis is of order the 
number of valence electrons per site, not of order the 
number of atoms!



CRYSTALS ARE EASY: II

• Diffraction experiments for xtals give sharp peaks. From 

these it is possible to uniquely infer the structure 

(essentially, invert the experiment).  The Bragg problem.

• Disorder gives smooth functions with a few. peaks  Vastly 

less information in the diffraction experiment. Impossible 

to “invert” the experiment without additional information.

• Very similar statements are true for lattice vibrations.



OUR PROBLEM: DEALING WITH 
THIS!



DISORDER IS CHALLENGING

• It’s difficult to even work out “representative” coordinates.

• Even with the coordinates, “post processing” (like studying 

electronic structure) scales much worse with N (depending 

on the method)

• We would like to get ground state properties, transport, 

and some information about excitations (as for optics).

• We lose Bloch’s theorem.



ROLE OF EXPERIMENT: 
STRUCTURE

• For amorphous materials we have a variety of probes: 

Scattering: X-rays, neutrons etc (averaged, so extremely 

incomplete) “sum rule”

Electronic and optical (indirect, and averaged)

NMR, etc (indirect and averaged)

STM (even if it can be done as a surface probe)



EXPERIMENT MUST BE 
COMPLEMENTED BY MODELING TO 

GAIN UNDERSTANDING

• Hope is that adding what we know from experiment to 

theory will yield a “complete” picture.

• To make any progress at all on electrons, phonons, optics 

or transport we must have a structural model

• Therefore the overarching problem of this field is 

structure determination. 



STATE OF THE FIELD

• New experiments: Ever more brilliant X-ray sources, a 
number of facilities for elastic and inelastic neutron 
scattering. STM is advancing.

• New theory: A revolution in the last 20 years – realistic 
atomistic models of disordered systems.  Ever-improving 
quantum mechanical simulation codes and Machine 
Learning.

• New applications: photovoltaics (a-Si:H), batteries (solid 
electrolytes), computer memory devices (DVD, CD, solid 
state FLASH – phase change and conducting bridge). TFTs, 
fiber optics, night vision………



BASIC SCIENCE: SOME OPEN 
QUESTIONS

• Structural estimation/prediction/inference

• Engineering the properties we want (MGI)

• Metallic glasses and quasicrystals (Nobel: Schectman; ribbon quench)

• The nature of electron states and transport in disordered materials 
(Nobel: Anderson and Mott). Localization has taken on a life of its own 
(Ball Lightning!!)

• Weird low-T specific heat, “tunneling modes”. The key to LIGO!

• Computer memory devices made with solid amorphous electrolytes

• Many others….



ELECTRONS IN DISORDERED 
MATERIALS



ROADMAP

I. A simple picture of the Anderson 
transition.

II. Non-locality of quantum mechanics in 
the solid state -- with disorder.

III. The coupling to phonons.

 Implement this for real materials using 
credible models.



Crystalline Si (diamond) Amorphous Silicon

Translational periodicity                   Short-range order, no L.R.O.

Bloch states                                       k not a “good” quantum number

Q. How does disorder in atomic coordinates affect the

                                   electron states?



DISORDER + WAVES = 
LOCALIZATION

Water waves with obstacles; left periodic obstacles, commensurate 

frequency to yield “Bragg reflection”, note that pattern is extended

in space. Right: disordered obstacles, standing waves – localization!

If its true for water, why not electrons too?! 
Lindelof et al. 1996



Models of disorder

Anderson Model (1958)

H = ∑I |I><I| EI + ∑IJ |I><J| SIJ

EI are random, “diagonal”
disorder. Fact -- enough 

variation in EI -- all states

localized! 

Topological (bond length/angle) disorder

H = ∑I |I><I| EI + ∑IJ |I><J| SIJ

SIJ: Computed from

realistic model. 

Anderson model: disorder uncorrelated site-to-site; our case – 

spatial correlations induce correlations in matrix elements. 



ANDERSON MODEL

Left: A localized eigenstate in 1D (Kramer/MacKinnon)

 Right: 3D critical eigenstate (15.6M sites; Roemer)



I. APPROACH FOR A REAL 
MATERIAL

• Compute electronic states around the gap for big and 

realistic models of a-Si1, and study the nature of the 

localized (midgap) to extended (in the band) transition. 

[4096 atoms model, periodic BC]

• Employ unholy amalgam of tight-binding, maximum entropy, 

shift and invert Lanczos techniques.

1B. Djordjevic, M. F. Thorpe and F. Wooten, PRB 52 5685 (1995)



Evolution of electron states

in a-Si.  J-J Dong, DAD PRL 80 1928 1998

|Ψ|2



INTERPRETATION 

• Structural irregularities or defects “beyond the mean” 

exist.

• If “bad enough” these induce localized wave functions.

• If two such defects are spatially near and have similar 

energies, system eigenstates will be mixtures. “States b 

and c” [clue: Symmetric and anti-symmetric linear 

combinations of b and c yield single “islands”]

• If many such resonant defects overlap, one has 

“electronic connectivity”. This is Mott’s mobility edge.

“Resonant Cluster Proliferation” Model



UNIVERSALITY OF ISLAND 
PROLIFERATION 

Anderson model,

W/V=16.5 (all states

localized). 

Vitreous silica vibrations

note white centers

FCC lattice with force

constants selected

from uniform dist of width

(W/V=2)

Vibrational evecs

for 10K atom model

of a-Si.



“UNIVERSALITY” AND 
STRUCTURE OF EIGENSTATES

• Disorder comes in many shapes and sizes. 

• electrons, Anderson models (diagonal and off-
diagonal);  “real” disorder from topologically 
disordered network.

• vibrations “Substitutional”;  Force constant 
disorder on a FCC lattice;  Topological disorder (a-
silica) with long-range (Coulomb) interactions; (a-
Si)10,000 atom

   The qualitative nature of the localized-extended transition is similar for 
all these systems.

  

Ludlam, Taraskin, Elliott, DAD – JPCM 17 L321 (2005).



II I. LOCALITY OF QM IN 
DISORDERED SOLID STATE

Even for disordered system: almost all eigenstates fill space. Looks like 

the force on atom at R requires information from everywhere!

                           [Here, n is a Kohn-Sham orbital.]

Can perturbing the solid 1m away from R really change the force on at 

R???  (No! Boys, Kohn, Vanderbilt, Daw...)



DENSITY MATRIX: GAUGE OF 
ELECTRONIC NONLOCALITY

W. Kohn: Density matrix ρ is localized by destructive wave-mechanical 

interference.                  Principle of Nearsightedness

One might suppose that destructive wave-mechanical interference 

should be influenced by structural disorder. Is it?

The decay of the density matrix is fundamental attribute of the material 

(and structure).

eigenstates



EXAMPLE: ALUMINUM

Metal: power law decay. Free electron gas gives similar DM 

to DFT! Gibbs’ ringing* from cutoff at Fermi surface.

ζ=kf|x-x’| 
n: density of electron gas

*Published by Henry Wilbraham (1848), On a certain periodic function, The Cambridge and Dublin Mathematical Journal 3: 198–201, 

Trinity College, when 22 years old, 50 years before Gibbs!

Kohn-Sham

S. N. Taraskin et al., PRB 66 233101 (2002)



DECAY OF DENSITY MATRIX IN 
INSULATORS: ANALYTIC APPROACH

Start with centrosymmetric n.n. tight-binding Hamiltonian

Two orbitals per

site, bonding and

antibonding, SC

lattice.

Density matrix is integral over Brillouin zone:

S(k) is structure factor, A(k) depends on S and tight

binding parameters. 



D.M. ASYMPTOTICS (CONT’D)

S is a (known) sum, depending on dimensionality D=1,2,3

Sum the series, use Stirling approximation, in 3D get (for

example):

2d, 3d: S. Taraskin, DAD, Elliott PRL 88 196405 (2002); also 1d: L. He and D. Vanderbilt, PRL 86, 5341 (2001).



REALISTIC CALCULATIONS (C-SI 
AND A-SI): DFT

The same exponential decay, crystal or amorphous!

X. Zhang and DAD, PRB 63 233109 (2001).



WANNIER FUNCTIONS

• Wannier functions: unitary transformations of 
eigenstates localized in real space.

• Not unique, but Vanderbilt showed how to 
compute maximally-localized Wannier 
functions1.

• Long range decay of these is similar for c-Si and 
a-Si, and similar to decay of density matrix.

• We compute with an O(N) projection method, 
results much like MLWFs.

1D. Vanderbilt and coworkers “Maximally-localized WF”, N. Marzari et al, RMP 84 1419 (2012)



WANNIER FUNCTIONS FOR 
DISORDERED SYSTEMS

Diamond a-SiDAD Eur. Phys. J B 68 1 (2009)



CONCLUSION: LOCALITY

We quantify Kohn’s Principle:

(1) Analytically for two-band insulator

(2) By direct calculation of  with Kohn-Sham orbitals for 

metals, crystalline and amorphous semiconductors. Also 

Wannier functions from projection.

(3) Topological disorder makes little qualitative difference, 

at least for a-Si (and SiO2).



IV. BUT WHAT OF LOCALIZED  
ELECTRONS + PHONONS

• The electron-phonon coupling gauges 
how the electron energies/states change 
with atomic deformation.

• Phonon effects near the Fermi level: key 
to transport, device applications, theory 
of localization.

• We begin with a simple simulation….
 



THERMAL FLUCTUATIONS OF 
THE KOHN-SHAM EIGENVALUES

States near gap fluctuate by tenths of eV >> kT !

Τ=300Κ, 216

atoms,  point



SENSITIVITY OF ELECTRON ENERGY 
TO PARTICULAR PHONON

• Hellmann-Feynman theorem and harmonic approximation 

with classical lattice dynamics leads easily to fluctuations in 

electron energy eigenvalue 

We call Ξ the electron-phonon coupling



E-P COUPLING: A-SI, A-SE

Si

Se

Ξn(ω) = ∑α<ψn|∂H/∂Rα|ψn> χα(ω)

Couple electron n (energy E) and phonon ω

R. Atta-Fynn, P. Biswas, DAD Electron-phonon 

coupling is large for localized states, PRB 69 245204 
(2004)



CORRELATION BETWEEN 
LOCALIZATION AND THERMAL 

FLUCTUATION FROM MD

Localization (T=0 property)

<δλ2> 

Fits analytic result for low T

150K

300K

500K

700K

(T>0 property)



INTERPRETATION

1. Large e-p coupling for localized states near 

the gap. Localization amplifies e-p coupling.

2. For localized states, simple algebra1 leads 

to the conclusion that:

 a) Ξn(ω)2 [for eigenvalue n] ~ IPR [n]

 b) <δλ2> ∼ IPR

IPR = inverse participation ration; measure of localization

1Atta-Fynn, Biswas and DAD, PRB 69 254204 (2004)



ADDITIONAL TOPICS (AS TIME 
ALLOWS): NOVEL MODELING 

SCHEMES AND REAL-SPACE 
PROJECTION OF THE ELECTRICAL 

CONDUCTIVITY



MODELING PARADIGMS AND 
IMPOSING A PRIORI INFORMATION

1) Simulation: Implement your best calculation (big cell, 
fancy interactions, long time evolution, etc). Hope that 
the results look like experimental ones.

2) Information: Try to invert the experimental data.

3) Merge the two: carry out simulation but impose the a 
priori (possibly experimental) information as part of the 
simulation.



INFORMATION PARADIGM: REVERSE 
MONTE CARLO

K A PLOW, MC G REE VY  E T A L .

• Information paradigm. What does experiment imply about 
the structure?

• “Reverse Monte Carlo”: put atoms in a supercell, move 
at random with Monte Carlo, keep moves if closer to 
experiment, accept with Metropolis probability if worse.

• Result: matches experiment by construction, but diffraction 
data alone is insufficient to produce a chemically realistic 
model. Still, it is a clever idea -- use the information you 
have!



RMC: DISCUSSION

• Promising if additional information (constraints) are 
employed. Has sort of worked for a-Si (but still only 88% 
fourfold).

• Has special flexibility to build in a priori information.

• Constraints are dangerous: we are imposing information, 
but we are potentially imposing errors – the model is only as 
good as the information employed!



FORCE ENHANCED ATOMIC 
REFINEMENT (FEAR): TEACH RMC 

CHEMISTRY

• Start with random model (assume density is known)

• Repeat to these two steps convergence:

   -- Obtain N accepted moves from RMC [drives model 

toward experiment]

   -- Take M conjugate gradients steps with energy functional 

[enforce chemistry]

Typically N~100, M~1-5.  Always N>>M. 



FORCE ENHANCE ATOMIC REFINEMENT(FEAR)

8
Pandey et. al, Phys.RevB 94, 235208 (2016)

PartialStructural  

minimization

PartialEnergy  

minimization



EXAMPLE: FEAR FOR 
AMORPHOUS SIO2

• Adopt 648-atom, 1536-atom models.

• Use the van Beest (BKS) potential (PRL, 1990). Start with 

random coordinates.

• After 100 successful RMC moves, move all the atoms along 

van Beest gradient – only one step, not a full minimization.

• Repeat previous until convergence (fit and force) is achieved. 

• Need about 30,000 force calls

A. Pandey, P. Biswas, DAD Phys Rev B 92 155205 (2015)



FEAR OF SILICA

FEAR: minimization of error vs. experiment and total energy. 



RESULTS: SILICA 



AB INITIO FEAR – USE DFT (VASP 
OR SIESTA) AS ENERGY 

FUNCTIONAL

• First example: silicon and SIESTA 



RMC   MELT QUENCH   FEAR

7

Blue: 4-fold

Green, Red 

are 

coordinatio

n defects
RMC

FEAR

Melt-Quench

Pandey et. al, Scientific reports 6,33731(2016), JNCS J. Non-Cryst. Sol 492 27 (2018).



FEAR: A-SI  ANIMATION AND 
DETAILS



EXAMPLE: LETS TRY AMORPHOUS 
CARBON ACROSS DENSITIES

• Hard: Carbon happily sp3, sp2 or even sp bonds. Need a 

good potential. 

• Wealth of experiments to check against.

• We carry this out with largish models (up to 800 atoms), 

SIESTA as energy functional. Then relax final models with 

VASP (little change).



AMORPHOUS CARBON ACROSSDENSITIES

648atoms

Bhattaraii, Pandey & DAD, Carbon, 131 168 (2018); PCCP (submitted)

Purple  

(sp3),  

Orange  

(sp2),  

Green  

(sp)



AMORPHOUS CARBON
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LOW DENSITY (0.95 GM/CC) FEAR CARBON (800-, 648-

ATOM MODELS)

Purple (sp3), Orange (sp2), Green(sp)



A PREDICTION: EXAFS OF 
0.95GM/CC A-C. FAIRLY SMALL 

DIFFERENCES…



COMMENT

• This computation  provides evidence that 

amorphous C with density near 1 gm/cc is a form 

of three-dimensional graphene: warped, wrapped 

sp2 sheets including ring disorder (pentagons, 

hexagons, heptagons) and also with sp and sp3 

defects.



STRUCTURAL COMPARISON

Bhattarai et. al, PRL submitted(2018)



ELECTRONIC AND VIBRATIONAL

PROPERTIES



FEAR: AG-DOPED CHALCOGENIDES , 
[ (GESE 3) 1-XAG X X=0 .05, 0 .077]  DATA: 

ZEIDLER AND S ALMON (B ATH) VASP, A. 
PRADEL GROUP (MONTPEL LIER)



CONCLUSION (FEAR)

• Efficient:Fewer calls to force code.

• Robust convergence: Really works [a-Si, a-C (0.95-3.5 gm/cc), GeSeAg 
materials]. We’re trying a metallic glass, fiddling with EXAFS too -- 
Pd40Ni40P20 (nothing to report yet!). Used empirical pots, tight-binding, 
SIESTA and VASP. Routinely produces (slightly) lower total energies than a 
reasonable melt quench.

• Dead Easy: if you know RMC and VASP, this is essentially a shell script.
15
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