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PLAN OF LECTURE

Disorder and Order, introduction
Electronic structure of amorphous materials

Note: This is just a quick overview. There are
several books. An old (1984) but excellent book
is by Elliott, free for download on researchgate.
You can also have my lecture notes (email me!)

| am NOT teaching all the lore, only giving the
general outlook.




INTERLUDE: SCHRODINGER ON
“APERIODIC CRYSTALS”

The non-physicist cannot be expected even to grasp—let
alone to appreciate the relevance of—the difference in
‘statistical structure’ stated in terms so abstract as I have
just used. To give the statement life and colour, let me
anticipate, what will be explained in much more detail later,
namely, that the most essential part of a living cell—the
chromosome fibre—may suitably be called an aperiodic crystal.
In physics we have dealt hitherto only with periodic erystals.
To & humble physicist’s mind, these are very interesting and
complicated objects; they constitute one of the mmtfﬂld'
nating and complex material structures by which inanimate
nature puzzles his wits. Yet, compared with the aperiodic
crystal, they are rather plain and dull. The difference in
structure is of the same kind as that between an ordinary
wallpaper in which the same pattern is repeated again and
again in regular periodicity and a masterpiece of embroidery,
say a Raphael tapestry, which shows no dull rep: but

o caborate,cohren, eaningfl desig traced by he et
master.

.

E.S.“What is

Life” (lectures in Dublin
from 1942). p. 3 of the
1962 CUP reprint



MOTIVATION

To understand disordered matter via
computer models.

To design materials with sought after
properties.

Fact: neither experimentalists nor theorists
succeed by themselves in our field — it’s all
about working together.



DISORDER: SCOPE OF THE

PROBLEM




THE CHALLENGE

All solids are fundamentally quantum mechanical entities: we
know that lattice vibrations have to be quantized, accurate
forces come only from quantum mechanics, can only

understand metals and insulators with quantum mechanical
electrons, etc.

The structure of amorphous solids is unknown and always will
be in a literal sense: no experiment can tell us 1022
coordinates and no computer can store them.

So we will need a way to make representative atomic
models and deal with quantum mechanics in such an extended,
disordered system.




WHAT WE KNOW: CLUSTERS

We can work out the properties of molecules pretty well
with standard methods.

Number of energy minima grows exponentially with
number of atoms (Stillinger). Finding the “ground state”

becomes difficult before even 20 atoms. A harbinger of
challenges ahead...

No k-space, no bands etc, just molecular orbitals.

Not usually a good way to represent a solid — surface
artifacts.




WHAT WE KNOW: CRYSTAL

Crystal: a configuration of atoms arrayed in periodic
fashion.

Can come with one atom per unit cell (Bravais lattice FCC,
BCC, SC etc), or there may be a basis (a collection of
translations) associated with each point in a Bravais lattice
(for example, diamond). Or 108 atoms — proteins. Most
recent Nobel prize: 2009.




DIAMOND




WHY CRYSTALS ARE EASY:
SYMMETRY AND ITS USE

The basic point is: we know where the atoms are, and their
periodicity has important consequences.

For calculations, the periodicity makes a critical difference.
Since the electronic or vibrational Hamiltonian commutes
with the translation operator, we get Bloch’s theorem:

i) = €5 T un(r).

u has full periodicity of the lattice, (nk) labels the electronic states



CRYSTALS ARE EASY

Bloch’s theorem lets us work with two indexes: n, the band
index and k, the Bloch wave-vector. For a macroscopic
system, k continuous, all information is included first
Brillouin zone.

In calculations, we can solve

H(k) w(n.k)=E(n,k) y(n,k)

We solve this independently for each k.We diagonalize a
matrix of dimension N, where N, is of order the
number of valence electrons per site, not of order the
number of atoms!




CRYSTALS ARE EASY: I

Diffraction experiments for xtals give sharp peaks. From
these it is possible to uniquely infer the structure
(essentially, invert the experiment). The Bragg problem.

Disorder gives smooth functions with a few. peaks Vastly
less information in the diffraction experiment. Impossible
to “invert” the experiment without additional information.

Very similar statements are true for lattice vibrations.




OUR PROBLEM: DEALING WITH
THIS!




DISORDER IS CHALLENGING

It’s difficult to even work out “representative” coordinates.

Even with the coordinates, “post processing” (like studying
electronic structure) scales much worse with N (depending
on the method)

We would like to get ground state properties, transport,
and some information about excitations (as for optics).

We lose Bloch’s theorem.




ROLE OF EXPERIMENT:
STRUCTURE

For amorphous materials we have a variety of probes:

Scattering: X-rays, neutrons etc (averaged, so extremely
incomplete) “sum rule”

Electronic and optical (indirect, and averaged)
NMR, etc (indirect and averaged)

STM (even if it can be done as a surface probe)




EXPERIMENT MUST BE
COMPLEMENTED BY MODELING TO
GAIN UNDERSTANDING

Hope is that adding what we know from experiment to
theory will yield a “complete” picture.

To make any progress at all on electrons, phonons, optics
or transport we must have a structural model

Therefore the overarching problem of this field is
structure determination.




STATE OF THE FIELD

New experiments: Ever more brilliant X-ray sources, a
number of facilities for elastic and inelastic neutron
scattering. STM is advancing.

New theory:A revolution in the last 20 years — realistic
atomistic models of disordered systems. Ever-improving
quantum mechanical simulation codes and Machine
Learning.

New applications: photovoltaics (a-Si:H), batteries (solid
electrolytes), computer memory devices (DVD, CD, solid
state FLASH — phase change and conducting bridge). TFTs,
fiber optics, night vision.........




BASIC SCIENCE: SOME OPEN
QUESTIONS

Structural estimation/prediction/inference
Engineering the properties we want (MGl)
Metallic glasses and quasicrystals (Nobel: Schectman; ribbon quench)

The nature of electron states and transport in disordered materials
(Nobel: Anderson and Mott). Localization has taken on a life of its own
(Ball Lightning!!)

Weird low-T specific heat,“tunneling modes”.The key to LIGO!
Computer memory devices made with solid amorphous electrolytes

Many others....
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ELECTRONS IN DISORDERED
MATERIALS




ROADMAP

l. A simple picture of the Anderson
transition.

ll.  Non-locality of quantum mechanics in
the solid state -- with disorder.

lll.  The coupling to phonons.

Implement this for real materials using
credible models.




Q. How does disorder in atomic coordinates affect the
electron states?

Crystalline Si (diamond) Amorphous Silicon
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Bloch states k nota “good” quantum number



DISORDER + WAVES =
LOCALIZATION

Water waves with obstacles; left periodic obstacles, commensurate
frequency to yield “Bragg reflection”, note that pattern is extended
in space. Right: disordered obstacles, standing waves — localization!

If its true for water, why not electrons too?!
Lindelof et al. 1996



Models of disorder

E; are random, “diagonal”

Anderson Model (1958) disorder. Fact -- enough
H=3;|[><I|E; + 2 I><J| S  variation in E, -- all states
localized!

Topological (bond length/angle) disorder S,;: Computed from
H=>,|><I|E,+ >, |I><J| S, realistic model.

Anderson model: disorder uncorrelated site-to-site; our case —
spatial correlations induce correlations in matrix elements.
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Left: A localized eigenstate in 1D (Kramer/MacKinnon)
Right: 3D critical eigenstate (15.6M sites; Roemer)



|. APPROACH FOR A REAL
MATERIAL

* Compute electronic states around the gap for big and
realistic models of a-Si', and study the nature of the
localized (midgap) to extended (in the band) transition.
[4096 atoms model, periodic BC]

* Employ unholy amalgam of tight-binding, maximum entropy,
shift and invert Lanczos techniques.

B. Djordjevic, M. F. Thorpe and F. Wooten, PRB 52 5685 (1995)
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INTERPRETATION

e Structural irregularities or defects “beyond the mean”
exist.

 If “bad enough” these induce localized wave functions.

* If two such defects are spatially near and have similar
energies, system eigenstates will be mixtures. “States b
and ¢~ [clue: Symmetric and anti-symmetric linear
combinations of b and c yield single “islands” ]

* If many such resonant defects overlap, one has
“electronic connectivity” .This is Mott’s mobility edge.

“Resonant Cluster Proliferation” Model




UNIVERSALITY OF ISLAND
PROLIFERATION

Vitreous silica vibrations

Anderson model, note white centers

W/V=16.5 (all states

localized). |4 j

Vibrational evecs
for 10K atom model

FCC lattice with force _, of a-Si

constants selected

from uniform dist of width
(W/V=2)




“UNIVERSALITY” AND
STRUCTURE OF EIGENSTATES

* Disorder comes in many shapes and sizes.

* electrons,Anderson models (diagonal and off-
diagonal); “real” disorder from topologically
disordered network.

* vibrations “Substitutional” ; Force constant
disorder on a FCC lattice; Topological disorder (a-
silica) with long-range (Coulomb) interactions; (a-
Si) 10,000 atom

The qualitative nature of the localized-extended transition is similar for
all these systems.

Ludlam, Taraskin, Elliott, DAD — JPCM 17 L321 (2005).



1. LOCALITY OF QM IN
DISORDERED SOLID STATE

Even for disordered system: almost all eigenstates fill space. Looks like
the force on atom at R requires information from everywhere!

bes{ZZ Z (Yn| — VRH |1)y)

n occ

[Here, y,, is a Kohn-Sham orbital.]

Can perturbing the solid 1m away from R really change the force on at
R??? (No! Boys, Kohn, Vanderbilt, Daw...)
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DENSITY MATRIX: GAUGE OF
ELECTRONIC NONLOCALITY

eigenstates

/
p(x,x")=2 D, YX(X),(x")

n 0OCC

W. Kohn: Density matrix p 1s localized by destructive wave-mechanical
interference. Principle of Nearsightedness

One might suppose that destructive wave-mechanical interference
should be influenced by structural disorder. Is it?

The decay of the density matrix is fundamental attribute of the material
(and structure).



P(xaxl) (I/AS)

EXAMPLE: ALUMINUM

™ ' I l P(x,x’)=2(21r)3f d3ke k- (x—x")
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FIG. 4. Contour plot of the real-space density matrix for Al
calculated in the {100} plane for the conventional cubic unit cell
(the x-y axes are parallel to the bonds).

S. N. Taraskin et al., PRB 66 233101 (2002)
Metal: power law decay. Free electron gas gives similar DM
to DFT! Gibbs ’ringing* from cutoff at Fermi surface.

*Published by Henry Wilbraham (1848), On a certain periodic function, The Cambridge and Dublin Mathematical Journal 3: 198-201,
Trinity College, when 22 years old, 50 years before Gibbs!



DECAY OF DENSITY MATRIX IN
INSULATORS: ANALYTIC APPROACH

Start with centrosymmetric n.n. tight-binding Hamiltonian

Two orbitals per

H= ZSH“P"}{EM + Z tuwlip) ('] site, bonding and
m i) antibonding, SC

lattice.

Density matrix is integral over Brillouin zone:

]I'iI' S
} —
ru 2(277"- f f (Ak + Sk “3

S(k) is structure factor,A(k) depends on S and tight
binding parameters.




D.M. ASYMPTOTICS (CONT’D)

I N 2 T
Pr. = Gaayrt 2, )k[m)k(k,ﬂ 2+ 1)2p

S is a (known) sum, depending on dimensionality D=1,2,3

Sum the series, use Stirling approximation, in 3D get (for
example):

= (- 1)‘*\/;@[ )
bl o

2d, 3d: S. Taraskin, DAD, Elliott PRL 88 196405 (2002); also 1d: L. He and D. Vanderbilt, PRL 86, 5341 (2001).
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REALISTIC CALCULATIONS (C-SI
AND A-Sl): DFT

r(A) r(A)
The same exponential decay, crystal or amorphous!

X. Zhang and DAD, PRB 63 233109 (2001).



WANNIER FUNCTIONS

Scanned at the American
Institute of Physics

* Wannier functions: unitary transformations of
eigenstates localized in real space.

* Not unique, but Vanderbilt showed how to
compute maximally-localized Wannier
functions'.

* Long range decay of these is similar for c-Si and
a-Si, and similar to decay of density matrix.

* We compute with an O(N) projection method,
results much like MLWFs.

ID. Vanderbilt and coworkers “Maximally-localized WF”, N. Marzari et al, RMP 84 1419 (2012)



Diamond

WANNIER FUNCTIONS FOR
DISORDERED SYSTEMS

DAD Eur. Phys. JB 68 1 (2009)




CONCLUSION: LOCALITY

We quantify Kohn’s Principle:
Analytically for two-band insulator

By direct calculation of p with Kohn-Sham orbitals for
metals, crystalline and amorphous semiconductors.Also
Wannier functions from projection.

Topological disorder makes little qualitative difference,
at least for a-Si (and SiO,).

38



V. BUT WHAT OF LOCALIZED
ELECTRONS + PHONONS

* The electron-phonon coupling gauges
how the electron energies/states change
with atomic deformation.

* Phonon effects near the Fermi level: key
to transport, device applications, theory
of localization.

* We begin with a simple simulation....




Energy eigenvalue (eV)

THERMAL FLUCTUATIONS OF
THE KOHN-SHAM EIGENVALUES

Amorphous Si 216 Crystal Si 216

1 bd L] i Ll 1 pd L] dop 1 R/

b ] ® 1 A4 L)
0 500 1000 1500 2000 O 500 1000 1500 2000
Time (fs) Time (fs)

States near gap fluctuate by tenths of eV >> kT’

T=300K, 216
atoms, | point



SENSITIVITY OF ELECTRON ENERGY
TO PARTICULAR PHONON

* Hellmann-Feynman theorem and harmonic approximation
with classical lattice dynamics leads easily to fluctuations in
electron energy eigenvalue <™ 2>

. - 3N —o
, L [m . BkpT) v Z2(w)
2% 1 2 —~ 1
(a}‘ﬂ> o T]-EI:::'-L ; /;] fff(ﬁ)\”(f) ~ ( M ) ; L:.Jg 3
3N ~
oH
Zn (*—’-’1) — Z(Tf{"?i' |— |"’+"I-'n> Xa (*—’-’)
=1 C}Rﬁ

We call = the electron-phonon coupling



E-P COUPLING: A-SI, A-SE

Si

Se

=n(W) = 2a<W,|OH/OR |W,> Xo(W)
Couple electron n (energy E) and phonon W

R. Atta-Fynn, P. Biswas, DAD Electron-phonon
coupling is large for localized states, PRB 69 245204 42
(2004)



CORRELATION BETWEEN
LOCALIZATION AND THERMAL
FLUCTUATION FROM MD

700K
. 0.004 | SOOK
<ON>> __, -
(T>0 property) ; _ 300K
0.002 - //’liilf{ 1 SOK
0.000 [ "90—06’96%’ -

D008 0.012 0.016 0.020 0.024
IPR

Fits analytic result for low T
Localization (T=0 property)



INTERPRETATION

1. Large e-p coupling for localized states near
the gap. Localization amplifies e-p coupling.

2. For localized states, simple algebra' leads
to the conclusion that:

a) = (w)? [for eigenvalue n] ~ IPR [x]

b) <0A*> ~ IPR

IPR = inverse participation ration; measure of localization

lAtta-Fynn, Biswas and DAD, PRB 69 254204 (2004)



ADDITIONAL TOPICS (AS TIME
ALLOWS): NOVEL MODELING
SCHEMES AND REAL-SPACE
PROJECTION OF THE ELECTRICAL
CONDUCTIVITY




MODELING PARADIGMS AND
IMPOSING A PRIORI INFORMATION

Simulation: Implement your best calculation (big cell,
fancy interactions, long time evolution, etc). Hope that
the results look like experimental ones.

Information: Try to invert the experimental data.

Merge the two: carry out simulation but impose the a
priori (possibly experimental) information as part of the
simulation.




INFORMATION PARADIGM: REVERSE

MONTE CARLO
KAPLOW, MCGREEVY ET AL

Information paradigm. What does experiment imply about
the structure?

“Reverse Monte Carlo” : put atoms in a supercell, move
at random with Monte Carlo, keep moves if closer to
experiment, accept with Metropolis probability if worse.

Result: matches experiment by construction, but diffraction
data alone is insufficient to produce a chemically realistic
model. Still, it is a clever idea - use the information you
have!




RMC: DISCUSSION

Promising if additional information (constraints) are
employed. Has sort of worked for a-Si (but still only 88%
fourfold).

Has special flexibility to build in a priori information.

Constraints are dangerous: we are imposing information,
but we are potentially imposing errors — the model is only as
good as the information employed!




FORCE ENHANCED ATOMIC
REFINEMENT (FEAR): TEACH RMC
CHEMISTRY

Start with random model (assume density is known)
Repeat to these two steps convergence:

-- Obtain N accepted moves from RMC [drives model
toward experiment]

-- Take M conjugate gradients steps with energy functional
[enforce chemistry]

Typically N~100, M~1-5. Always N>>M.




FORCE ENHANCE ATOMIC REFINEMENT (FEAR)

Total energy
functional

Experimental data

Start
(Cy)

End

Partial Structural
minimization

Poor Convergence

Pandey et. al, Phys.RevB 94, 235208 (2016)

Partial Energy
minimization



EXAMPLE: FEAR FOR
AMORPHOUS SIO,

Adopt 648-atom, | 536-atom models.

Use the van Beest (BKS) potential (PRL, 1990). Start with
random coordinates.

After 100 successful RMC moves, move all the atoms along
van Beest gradient — only one step, not a full minimization.

Repeat previous until convergence (fit and force) is achieved.

Need about 30,000 force calls

A. Pandey, P. Biswas, DAD Phys Rev B 92 155205 (2015)




FEAR OF SILICA

'14 _I I 1 I 1 ] 3

i — FESR (648-atom) —2.5
g — FESR (1536-atom) 7

g
3 -16
# ol "
QO -17F 159
gﬁ - -
§ 18 |
S 1 S ... 0.5

20 —0

6 8 10 12 14
lOg [Nucccpl]

FEAR: minimization of error vs. experiment and total energy.
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RESULTS: SILICA

SQ

FESR (1536-atom)

_____ FESR (648-atom)
. Expt.

Peak position (A)
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AB INITIO FEAR — USE DFT (VASP
OR SIESTA) AS ENERGY
FUNCTIONAL

First example: silicon and SIESTA




RMC MELT QUENCH FEAR
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Green, Red

, coordinatio

. '\ n defects

—RMC ——FEAR |

- - —-Expt. <= EXpl: 1

Melt-Quench h |
MM-

Sifeeeey SRR S feee
r(A)
~ - T Meksveren R
| ““‘ é 2

Angles{deqy ~  Angles(deqg)

Pandey et. al, Scientific reports 6, 33731(2016), JNCS J. Non-Cryst. Sol 492 27 (2018). '



FEAR: A-SI

ANIMATION AND

DETAILS

rce-enhanced Atomic Refinement:

Evolution of 216-atom model amorphous Si starting from random

initial configuration with beige sphere representing (correctly coordinated)

four-fold atoms, green over-coordinated and red under-coordinated.

RED : Si (<4)
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EXAMPLE: LETS TRY AMORPHOUS
CARBON ACROSS DENSITIES

Hard: Carbon happily sp3, sp? or even sp bonds. Need a
good potential.

Wealth of experiments to check against.

We carry this out with largish models (up to 800 atoms),
SIESTA as energy functional. Then relax final models with
VASP (little change).




AMORPHOUS CARBON ACROSS DENSITIES

648 atoms

p=095g/cm?

p =299 g/em’ p=3.50g/em’

Bhattarail, Pandey & DAD, Carbon, 131 168 (2018); PCCP (submitted)

Purple
(sp?),

(sp?),
Green

(sp)



Structure Factor:

S(Q)

AMORPHOUS CARBON

3.50 glem”

—o Expt.
V160

299 glem®

P~

V72 (0.92 glem’)

o

20

Bhattarai et. al, Carbon (2018)

Radial Distribution Function: g(r)
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LOW DENSITY (0.95 GM/CC) FEAR CARBON (800-, 648-
ATOM MODELS)

Purple (sp’), (sp?), Green (sp)




A PREDICTION: EXAFS OF

0.95GM/CC A-C. FAIRLY SMALL

DIFFERENCES...

0.3
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COMMENT

This computation provides evidence that
amorphous C with density near | gm/cc is a form
of three-dimensional graphene: warped, wrapped
sp? sheets including ring disorder (pentagons,
hexagons, heptagons) and also with sp and sp3
defects.




Radial distribution function: g(r) (arb. units)

STRUCTURAL COMPARISON

schwarzite (792 atom)
== 2D a-graphene (800 atom)
= 3D a-graphene (800 atom)

— p-graphene (800 atom)

| R TR O FL AL B S ! | ) I i
3D a-graphene 3D a-graphene

N 2 9

@
—— 2D a-graphene Y :.-5
— 3D a-graphene 1‘55
4 v %
? ) 2D a-graphene
1 3 =
@ 8
2 P

L& 13 2 &

10 20 30 % U
: p-graphene 2D a-graphene
=]

b
2
5 [ AR (T S G Ll u
2 Tt ‘ ‘
schwarzite /1 ‘
M PR TRN T A S M IO I
4 6 8 10 12 14 16 80 120 160
Total number of nodes (n) Bond Angle(8)

Bhattarai et. al, PRL submitted (2018)

Bond Angle Distribution (BAD)



Vibrational density of states (VDOS) (arb. units)
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FEAR: AG-DOPED CHALCOGENIDES,
[(GESE;), xAGy X=0.05,0.077] DATA:
ZEIDLER AND SALMON (BATH) VASP, A.
PRADEL GROUP (MONTPELLIER)
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CONCLUSION (FEAR)

* Efficient Fewer calls to force code.

* Robust convergence: Really works [a-Si,a-C (0.95-3.5 gm/cc), GeSeAg
materials].VVe're trying a metallic glass, fiddling with EXAFS too --
Pd,,NisP,, (nothing to report yet!). Used empirical pots, tight-binding,
SIESTA and VASP, Routinely produces (slightly) lower total energies than a
reasonable melt quench.

* Dead Easy:if you know RMC andVASR this is essentially a shell script.
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