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Roadmap 

•  Silver-doped chalcogenide glass 
materials 

•  Application as a computer memory 
device 

•  Scientific Puzzles 
•  Our modeling (a work in progress!) 
•  Results and prospects 
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Solid electrolytes 

•  High ionic conductivity, low electronic 
conductivity “solid electrolyte” or fast ion 
conductor.  

•  Usually, not always, cation conduction. 
•  Best conductivity Li+ (smallest) or Ag+ (most 

deformable) 
•  Applications: batteries, chemical sensors, 

supercapacitors and fuel cells… 
•  Basic process is thermally activated hopping 



Glassy solid electrolytes 

•  Often have glasses with higher ionic 
conductivity than crystal (eg. : Lithium 
Borate: Li2B4O7) 

•  Conduction is isotropic 
•  No grain boundaries 
•  Continuously variable compositions 

possible 
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Ag-doped chalcogenide 
glasses 

•  Silver doped chalcogenide glasses are solid 
electrolytes. 

•  Interesting photoresponse: 
o  Photodissolution (light ‘dissolves’ surface Ag film into 

bulk)  

o  Photoexsolution (light ‘extracts’ Ag from bulk to surface) 



Photo-induced surface deposition 
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T. Kawaguchi and S. Maruno JAP 77 628 (1995) 
(Arsenic sulfide-based glass) 
T. Kawaguchi, S. Maruno and S. R. Elliott  
JAP 79 9096 (1996) (S, Se-based glasses) 



Programmable Metallization Cell 
(PMC) 

Figures courtesy of M. N. Kozicki, M. Mitkova, ASU 

PMC is nanostructured: Ag2Se 
xtals in Ge-rich glass phase. 
Ag-rich crystallites ca. 2-7nm 

SEM image of device 



PMC 

•  A promising technology: 
o  Low voltages needed: ~200 mV 
o  Low power consumption 
o  Fast: under 20 ns switch times 
o  Good for at least 1012 cycles 

See: www.axontc.com 
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Puzzles 

•  What is the structure of the bulk glass? 
•  Where does the Ag “sit”; and what is the 

nature of these traps? 
•  Why is the Ag so mobile? 
•  What is the mechanism of photo-

induced surface deposition? 
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Approach 

•  We use ab initio MD to model:              
a-(GeSe3).9Ag.1 and a-(GeSe3).85Ag.15 

•  Hamiltonians: FIREBALL2000 (local 
orbital LDA), VASP (plane wave LDA) 

•  Models made by conventional melt 
quenching (equilibrate liquid, quench 
over 5ps, anneal) 
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Limitations 

•  Tiny models (~250 atoms) 
•  Short times (< 100 ps) 
•  Homogeneous systems only: not 

picking up phase separation 
effects, which may be relevant for 
PMC. 

•  No electrochemistry yet. 
Physical Chemistry, U. Cambridge 
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 GeSe:Ag Models 

Neutron total 
structure factors.   

Experiment: 
 A. Piarristeguy, J. 
Non-Cryst. Sol. 332, 
1 (2003).  



What does it mean? 

•  Analysis of partials shows that first peak (near 
1.1Å−1) is mostly due to Ge-Ge and Ag-Ag 
correlations. The peak becomes prominent 
with increased Ge and decreased Ag content. 

•  Continuous wavelet transform methods 
(Harrop, Taraskin, Elliott et al.) suggest that 
peaks near k~2.0Å−1, 3.5Å−1 involve extended 
spatial correlations (up to 15-20Å) 
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Network Topology and Chemical Order 

•  Silver is mostly two-fold: 100% for x=0.1 
and 86% for x=0.15 (remainder three-
fold) 
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Partial RDFs 
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Ag-Ag no clear 
correlations “random” for 
these x. (nb. limited 
statistics) 



Traps: I 
•  Ag sits midway between host atoms separated by 

about 5Å. Call this a trapping center (TC).  

•  This emerged for FIREBALL and VASP from melt-
quench models and for unbonded Ag introduced in 
the network: Ag ‘finds its way’ to the same form of 
TC. Physical Chemistry, U. Cambridge 



Traps: II 

•  The TCs are distributed in the glass. 
Silver sits at isolated TC (32%) or in 
region with higher density of TC (68%) 
available. 

•  The Ag sub-system is a sort of “glass 
within a glass”. How does ‘melting’ 
proceed for trap system? 
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Electronic Density of States 

Top valence band: 
Ge and Se p-states, 
Ag 4d. Band edges 
mostly due to Se 4p 
lone pairs 

Tafen, Mitkova, DD PRB 72 054206 (2005) 



Electrons: II 

•  With VASP, we find electronic deep 
donor level for non-bonded Ag (~0.2eV 
below LUMO). 

•  In a simple picture of light-solid 
interactions, photodiffusion might be 
associated with (light-induced) 
occupation changes in these levels. 
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Ag dynamics (x=0.15, T=1000K) 
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Ag trapping/diffusion 

•  Average trapping time: ca. 2-3 ps 
(1000K) 

•  From Einstein relation, D~1-2E−5 cm2/s 
at T=1000K for both glasses. Short 
simulations: caveat emptor. 

•  Extrapolating to 300K gives D within in 
factor of ~10 of experiment (Urena et al., 2005) 
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Examples of Hopping 
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There is rapid hopping among the adjoining TCs for volumes with more TCs. 

Isolated trap “big hop” Multiple traps 

I. Chaudhuri, F. Inam, DAD Phys. 
Rev. B (in press, 2009) 



Ag Dynamics 

•  “Supertraps” exist. Hopping is faster 
and shorter-ranged in parts of cell with 
higher trap density.  

•  “Long” hops from isolated traps. 
Reminiscent of “diffusive” and “non-diffusive” 

processes of Middleton and Wales (PRB 64 
024205 2001). 
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Trap and Ag dynamics 
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Orange: traps 
Blue: Ag 



Silver dynamics 

•  At 300K the Ag and TCs are uniformly 
distributed in cell. 

•  At 700K the TC-network becomes more 
diffuse, and the Ag-network “melts” 
heterogeneously: large hops from 
isolated TCs, small, rapid hops from 
overlapping TCs. 
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Some inferences 
•  There are trapping centers. This is a direct 

observation of the Scher-Lax-Phillips1 traps. Trap 
model is successful to explain relaxation data.  

•  Traps have a dynamic character: fill more of space at 
higher T. 

•  We need better statistics. Absorption and emission 
rates of cages, temperature dependence etc. In 
progress. 

•  Local basis (FIREBALL) and plane wave (VASP) 
produce very similar results. 

1J. C. Phillips, Rep. Prog. Phys 59 1133 (1996). 



Whats next? 

•  Surface structure 
•  Phase separation, interfaces 
•  Photoresponse 
•  Electrochemistry and filament growth 
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