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Solid electrolytes

High ionic conductivity, low electronic
conductivity “solid electrolyte” or fast ion
conductor.

Usually, not always, cation conduction.

Best conductivity Li* (smallest) or Ag* (most
deformable)

Applications: batteries, chemical sensors,
supercapacitors and fuel cells...

Basic process is thermally activated hopping
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Glassy solid electrolytes

Often have glasses with higher ionic
conductivity than crystal (eg. : Lithium
Borate: Li,B,0,)

Conduction is isotropic
No grain boundaries

Continuously variable compositions
possible
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Ag-doped chalcogenide
glasses

» Silver doped chalcogenide glasses are solid
electrolytes.

* |Interesting photoresponse:

o Photodissolution (light ‘dissolves’ surface Ag film into
bulk)

o Photoexsolution (light ‘extracts’ Ag from bulk to surface)
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Photo-induced surface deposition

FIG. 3. SEM photographs of photodeposited Ag particles on Ag,sAs;sS4
(x=45) sample. The illuminations with lights of (a) 80, (b) 200, and (c) 530
mW/cm? were provided for 15 min at 21 °C.

T. Kawaguchi and S. Maruno JAP 77 628 (1995)
(Arsenic sulfide-based glass)

T. Kawaguchi, S. Maruno and S. R. Elliott

JAP 79 9096 (1996) (S, Se-based glasses)
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Programmable Metallization Cell
(PMC)

| M.N. Kozicki et al./ Superlattices and Microstructures 34 (2003) 459465
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PMC is nanostructured: Ag,Se
xtals in Ge-rich glass phase.
Ag-rich crystallites ca. 2-7nm

Superionic region

Electrons

m Glassy insulator

Electrodeposited metal

SEM image of device
Figures courtesy of M. N. Kozicki, M. Mitkova, ASU



PMC

* A promising technology:

o Low voltages needed: ~200 mV
o Low power consumption

o Fast: under 20 ns switch times
o Good for at least 71072 cycles

See: www.axontc.com
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Puzzles

What is the structure of the bulk glass?

Where does the Ag “sit”; and what is the
nature of these traps?

Why is the Ag so mobile?

What is the mechanism of photo-
iInduced surface deposition”?
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Approach

« We use ab initio MD to model:
a-(GeSe;) gAg 1 and a-(GeSes) gsAd 45

« Hamiltonians: FIREBALL2000 (local
orbital LDA), VASP (plane wave LDA)

* Models made by conventional melt
quenching (equilibrate liquid, quench
over 5ps, anneal)
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Limitations

* Tiny models (~250 atoms)
» Short times (< 100 ps)

 Homogeneous systems only: not
picking up phase separation
effects, which may be relevant for
PMC.

* No electrochemistry yet.
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GeSe:Ag Models

(GeSes)o.85A20.15

(C;CSQB)D.QO*AX%OJO

—— Theory

" Experiment Neutron total
structure factors.

x=15

Experiment:

A. Piarristeguy, J.
Non-Cryst. Sol. 332,
1 (2003).
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What does it mean?

* Analysis of partials shows that first peak (near
1.1A-1 is mostly due to Ge-Ge and Ag-Ag
correlations. The peak becomes prominent
with increased Ge and decreased Ag content.

« Continuous wavelet transform methods
(Harrop, Taraskin, Elliott ef al.) suggest that
peaks near k~2.0A"1, 3.5A"1 involve extended
spatial correlations (up to 15-20A)

Physical Chemistry, U. Cambridge



Network Topology and Chemical Order

» Silver is mostly two-fold: 100% for x=0.1
and 86% for x=0.15 (remainder three-
fold)

Ge4 Ge3 562 Se3 Sel Ag2 Ag3
x=0.10 35 (65%) 17 (31.5%) 86 (53.1%) 56 (33.9%) 17 (11.8%) 24 (100%) -
x=0.15 34 (66.7%) 13 (25.5%) 85 (55.6%) 57 (37.2%) 11 (7.2%) 31 (86.1%) 4 (11.1%)

Ge-Se Se-Se Ag-Se Ag-Ge
x=0.10 64% 21% 13% 1.5%
x=0.15 57.1% 19.2% 18.2% 5.2%
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Traps: |

* Ag sits midway between host atoms separated by
about 5A. Call this a trapping center (TC).

Q o

ca.5 A

mvwv

* This emerged for FIREBALL and VASP from melt-
quench models and for unbonded Ag introduced in
the network: Ag ‘finds its way’ to the same form of

TC. Physical Chemistry, U. Cambridge



Traps: |

 The TCs are distributed in the glass.
Silver sits at isolated TC (32%) or in

region with higher density of TC (68%)
avallable.

* The Ag sub-system is a sort of “glass
within a glass™. How does ‘melting’
proceed for trap system?
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Electronic Density of States

SILVER TRANSPORT IN Ge,Se,_,: Ag MATERIALS:...

200

150

Top valence band:
Ge and Se p-states,
Ag 4d. Band edges
mostly due to Se 4p
lone pairs

100 +

EDOS

Tafen, Mitkova, DD PRB 72 054206 (2005)

FIG. 5. Electronic density of states and species projected elec-
tronic density of states for Se, Ge, and Ag for (GeSes) 90Ag0.10 (top
panel) and (GeSe3)(gsAg 15 (bottom panel) glasses.
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Electrons: I

« With VASP, we find electronic deep
donor level for non-bonded Ag (~0.2eV
below LUMO).

* In a simple picture of light-solid
interactions, photodiffusion might be
associated with (light-induced)
occupation changes in these levels.
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Ag dynamics (x=0.15, T=1000K)

Displacement (A)

6 -4 -2 0 2 4 6 8 10 12
Displacement (A)

FIG. 8. (Color online) Trajectories of the most (indigo and
brown) and least (black) mobile Ag atoms in (GeSes)ygsAg) 15
glass (T=1000 K).
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Ag trapping/diffusion

* Average trapping time: ca. 2-3 ps
(1000K)

« From Einstein relation, D~1-2E-5 cm?/s
at T=1000K for both glasses. Short
simulations: caveat emptor.

» Extrapolating to 300K gives D within in
factor of ~10 of experiment (urena et al., 2005)
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Examples of Hopping
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There is rapid hopping among the adjoining TCs for volumes with more TCs.

I. Chaudhuri, F. Inam, DAD Phys.
Physical Chemistry, U. Cambridge Rev. B (in press, 2009)



Ag Dynamics

« “Supertraps” exist. Hopping is faster
and shorter-ranged in parts of cell with
higher trap density.

* "Long” hops from isolated traps.

Reminiscent of “diffusive” and “non-diffusive”
processes of Middleton and Wales (PRB 64
024205 2001).
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Trap and Ag dynamics

(a) 300K (b) 700K

Orange: traps
Blue: Ag
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Silver dynamics

* At 300K the Ag and TCs are uniformly
distributed in cell.

* At 700K the TC-network becomes more
diffuse, and the Ag-network “melts”
heterogeneously: large hops from
isolated TCs, small, rapid hops from
overlapping TCs.
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Some inferences

« There are trapping centers. This is a direct
observation of the Scher-Lax-Phillips' traps. Trap
model is successful to explain relaxation data.

* Traps have a dynamic character: fill more of space at
higher T.

 We need better statistics. Absorption and emission
rates of cages, temperature dependence etc. In
progress.

* Local basis (FIREBALL) and plane wave (VASP)
produce very similar results.

'J. C. Phillips, Rep. Prog. Phys 59 1133 (1996).
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Whats next?

Surface structure
Phase separation, interfaces
Photoresponse

Electrochemistry and filament growth
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