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Computing the electrical conductivity of a
computer model of a material

 Electrical conductivity is a key observable. It is however just a number
(for the DC conductivity) or a function o(w) for the AC case.

* The tool to compute c(w) is the “Kubo formula”. From the quantum
mechanics of a material (wave functions, energy eigenvalues --
computed in any modern ab initio simulation) it returns o(®).

e Conduction arises from guantum transitions near the Fermi level (for
the AC case) and at the Fermi level for the DC case.
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But there is a wider world

* In this talk we extract atomistic information about conduction mechanisms.
We determine transport processes in the material: which atoms, or
microstructures contribute to the conduction, how much, etc.

* The method is readily implemented for any current DFT code (we used
VASP).

 Some notable previous work:

R. B. S. Oakeshott, A. MacKinnon, Journal of Physics: Condensed Matter
1994, 6, 8 1513.

H. U. Baranger, A. D. Stone, Phys. Rev. B 1989, 40 81609.



The rest of the talk

* In the next few slides | show how to “deconstruct” the Kubo-
Greenwood formula to obtain spatial information about conduction.

e Basic idea is to tear it apart (and reassemble it) in a form that conveys
spatial information about transport.

 And we then apply it to interesting (?) examples...



. o |2 Ij: Kohn-Sham or other single-particle
— E 9ij (k7 U.J) E : |pij | states, k Bloch vector, o Cartesian index

p: momentum operator.

So by direct substitution:
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Define complex-valued functions on grid points in space {x}:
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Write the conductivity as a discrete spatial sum (suppose uniform
grid spacing in 3D, call it h), so....

o~ h° S: S:Qz'jf%(x)[ %(X/)]*

x,X' 1

Define the Hermitian, positive-semidefinite matrix

_ 1,6 *
I'(x,x) = h Zgijgij (%) 1€ (x")] Call T “the conduction matrix”
1jQ

Then:

O = Zx x/ F(X7X/)



So the natural spatial projection is:

C(x) = |20 I'(x%,X')

In general the sum is complex. Hence the absolute value bonds.



Eigenmodes of conductivity:
diagonalize I in position representation

[ = Zy, X ) Ap (X

A has units of conductivity, and:
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The eigenvectors pick out the key ‘paths’. In practice, we require
a small fraction of the spectrum.

[From completeness C.=C if we include all u]

“Mapping the computation of percolating paths to a
diagonalization” (). C. Phillips, 2019).



Examples: (1) low density a-C (1.5 gm/cc)

Red: sp3, blue sp?
green: sp. Flaxen
haze is C(x).

Conduction is via
sp chains connected
with sp? rings.

Thanks to Felix.

Model: B. Bhattarai et al., Carbon 131 168 (2018).



http://plato.phy.ohio.edu/~drabold/pubs/216.pdf
http://plato.phy.ohio.edu/~drabold/pubs/216.pdf

Spectral representation: a-C
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Example (2): Finite frequency: which atoms
absorb light at what wavelength?

* Here we look at a model of an amorphous silicon suboxide: a-SiO, ;.

* For a ‘severely O depleted’ a-SiO, network, transport is through O
vacancies and perhaps other defects.

* |f we shine light at two different wavelengths (A=2000 nm and
A=1600 nm), what parts of the material absorb the light in the two
cases?

* Note: applied interest for computer security applications: Physically
Unclonable Functions (M. N. Kozicki!).



Absorption: A=2000 nm, and A= 1600 nm

0Si20 1Si120 1SI30 25110 2Si20 3Si00 3510 4Si00

Atom color: Si atoms with
different local bonding, little
grey sphere O.




Example 3: Conduction fluctuations in liquid Si

Liquid Si is a metal (mean
coordination ~6, but ‘conduction
centres’ moving as atoms diffuse.

Four instantaneous snapshots
of SPC in liquid Si (2000K).




Example 4: FCC Aluminum

* Build a 500-atom supercell of crystalline Al
e Grid up real space on 42x42x42 grid (dim I'=74 088)

* Compute the SPC ((x), and diagonalize I" to obtain conduction
eigenmodes.

e |llustrate the character of one such mode.



Al: Space-projected conductivity

No surprise: delocalized
metallic mode of conduction as
we would expect.

Closeup of the centre
K. Subedi fecit.




Al: Spectral density of states for I

10° L Log DOS for I'. Note accumulation at
— Pos il A=0, even for a metal.

10*

Note spectral tail for 0<A<1.2. Signature
of metal vs. insulator.

103
Need many (~1/10) eigenvectors to get
- 4 full conductivity (unlike non-metallic
case).

102

10t
Lots of degeneracy.

And what is that “gap” near 1.3 S/cm?




And what do these modes look like?

Here is one: A~1.0 S/cm

Degenerate with similar
modes (in orthogonal
directions)

Heat map of conduction
with color coding
indicated.
yellow>orange>red>black
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Hidden structure

% A(X)]? for A=1.0 S/cm




Defects in Aluminum (hot off the CPU)

* 108 atoms (cube 12.1485 A on an edge)
 Single- and double-vacancies were created.

* Directly compare SPC for crystal, single and di-vacancy.



SPC along 111 direction

Left: crystal, middle: one vacancy and right: divacancy. The
“observation direction” is shown by arrowhead.

Vacancy

Colors: blue ~ 50 * red



SPC along 110 direction

Left: crystal, middle: vacancy and right: di-vacancy




Compare conductivities

Vacancies Conductivity Percentage No of k-points
(S/m) difference used (4*4*4)

1.085E8 4

1 7.161E7 66% of no 4
defect

2 (Intimate) 3.965E7 36% of no 12
defect

2 (Random) 3.549E7 33% of no 16

defect



And now
for something
completely different...




Aside: “Gap Sculpting”
Engineering the gap
(Key student: K. Prasai)

|dea:
Seek a model with a specified optical gap (or lack thereof):
Try to impose a priori condition on gap

Motive: band gap engineering or metallization of suitable
Materials (example below)

K. Prasai et al, Sci. Rept. 5, 15522 (2015); K. Prasai, P. Biswas and D. A. Drabold, Phys. Stat. Sol. A 213 1653 (2016).
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Practical implementation

Consider a Lagrangian Z=T—® in which T is the usual
kinetic energy, and:

@(Rl, Rs ... ,R;m) = Z f3<1];’g|H|\];’g> + U, Usual forces

f
+ Z Y9(An) ((Vn|H|Yy) — Ef) “gap clearing” (or gap cluttering) force

g(A,) is picked to move valence (conduction)
defect states “where we want them” (for example
to open up or close a gap).

We’ve done it with tight binding and VASP.



Gap sculpting: continued

Biased dynamics (with forces added to open/close gap) at
diffusive temperatures may lead to relaxed structures with
engineered gap.

In practice we carry out the melt-quench segment of the
simulation with biased forces. After dynamical arrest, we
anneal and relax with physical forces and (chemistry willing)
produce models with the desired optical gap.

Implemented with (VASP) and tight-binding.



Example 5: Electronic polyamorphism in a
CBRAM material: a-GeSe;:Ag

 Used “Gap Sculpting!” to make a conducting phase of a-GeSe; with
25% silver. Ab initio MD model is always semiconducting.

* “Gap Sculpting” metallized the system?2-- {(x) heatmap:

Good conductivity without Ag filaments,
DFT AE~0.04 eV/atom, c,,~108 G;

c,,~10%/(€2 cm)

Conduction through connected Ag,Se
structure.

“Electronic polyamorphism”

Insulating 1. K. Prasai et al., Sci. Rep. 5, 15522 (2015).
2. K. Prasai et al., P.R. Mater. 1 015693 (2017).




Conclusions

* We describe a practical new method to obtain spatial information
about charge carrier transport. It is readily implemented for any ab
initio code.

* The matrix I is of significant interest: it’s eigenvectors provide a
compact description of transport in materials.

* Provide insight into transport in complex materials, and perhaps for
applications of these (Conducting Bridge RAM, Physically Unclonable
Functions...)
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DOS and localization of Kohn Sham states for
GeSe3:Ag

300

200

[E—
O
O

Density of States

I
|
|
|
|
|
|
|
|
I ! I
-2 0 2 -2 0 2
Energy (eV)

K. Prasai et al., P.R. Mater. 1 015693 (2017).
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FIG. 3. The (black curve) electronic density of states (DOS) and
(orange drop lines) Inverse Participation Ratio (IPR) of the insulating
model (a) and the metallized model (b). The energy axis for all data
sets is shifted to have Fermi level at 0 eV (highlighted by the broken
vertical line).
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