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Computing the electrical conductivity of a 
computer model of a material

• Electrical conductivity is a key observable. It is however just a number 
(for the DC conductivity) or a function () for the AC case. 

• The tool to compute () is the “Kubo formula”. From the quantum 
mechanics of a material (wave functions, energy eigenvalues -- 
computed in any modern ab initio simulation) it returns () 

• Conduction arises from quantum transitions near the Fermi level (for 
the AC case) and at the Fermi level for the DC case.

Single-particle form:
“Kubo-Greenwood” formula
Kubo (1957), Greenwood (1958),
Mott, (1960’s).



But there is a wider world

• In this talk we extract atomistic information about conduction mechanisms. 
We determine transport processes in the material: which atoms, or 
microstructures contribute to the conduction, how much, etc. 

• The method is readily implemented for any current DFT code (we used 
VASP).

• Some notable previous work: 

R. B. S. Oakeshott, A. MacKinnon, Journal of Physics: Condensed Matter 
1994, 6, 8 1513.

H. U. Baranger, A. D. Stone, Phys. Rev. B 1989, 40 8169.



The rest of the talk

• In the next few slides I show how to ”deconstruct” the Kubo-
Greenwood formula to obtain spatial information about conduction. 

• Basic idea is to tear it apart (and reassemble it) in a form that conveys 
spatial information about transport. 

• And we then apply it to interesting (?) examples…



So by direct substitution:

Define complex-valued functions on grid points in space {x}:

i,j: Kohn-Sham or other single-particle
states, k Bloch vector,  Cartesian index
p: momentum operator.



Write the conductivity as a discrete spatial sum (suppose uniform
grid spacing in 3D, call it h), so….

Define the Hermitian, positive-semidefinite matrix

Then:

Call  “the conduction matrix”



So the natural spatial projection is:

In general the sum is complex. Hence the absolute value bonds. 



Eigenmodes of conductivity: 
diagonalize  in position representation

 has units of conductivity, and:



The eigenvectors pick out the key ‘paths’. In practice, we require 
a small fraction of the spectrum.

“Mapping the computation of percolating paths to a 
diagonalization” (J. C. Phillips, 2019).

[From completeness s= if we include all 



Examples: (1) low density a-C (1.5 gm/cc)

Red: sp3, blue sp2

green: sp. Flaxen
haze is (x).

Conduction is via
sp chains connected

with sp2 rings.

Thanks to Felix.

Model: B. Bhattarai et al., Carbon 131 168 (2018).

http://plato.phy.ohio.edu/~drabold/pubs/216.pdf
http://plato.phy.ohio.edu/~drabold/pubs/216.pdf


Spectral representation: a-C

Sum on 100 eigenvectors
 Note: dim()=64,000

Exact (x) Log density of states of  IPR



Example (2): Finite frequency: which atoms 
absorb light at what wavelength?

• Here we look at a model of an amorphous silicon suboxide: a-SiO1.3.

• For a ‘severely O depleted’ a-SiO2 network, transport is through O 
vacancies and perhaps other defects. 

• If we shine light at two different wavelengths (=2000 nm and 
=1600 nm), what parts of the material absorb the light in the two 
cases?

• Note: applied interest for computer security applications: Physically 
Unclonable Functions (M. N. Kozicki!).



Absorption: =2000 nm, and = 1600 nm

Atom color: Si atoms with
different local bonding, little

grey sphere O.



Example 3: Conduction fluctuations in liquid Si

Liquid Si is a metal (mean 
coordination ~6, but ‘conduction
centres’ moving as atoms diffuse.

Four instantaneous snapshots
of SPC in liquid Si (2000K).



Example 4: FCC Aluminum

• Build a 500-atom supercell of crystalline Al

• Grid up real space on 42x42x42 grid (dim =74 088)

• Compute the SPC (x), and diagonalize  to obtain conduction 
eigenmodes.

• Illustrate the character of one such mode.



Al: Space-projected conductivity

No surprise: delocalized 
metallic mode of conduction as 
we would expect. 

Closeup of the centre
K. Subedi fecit.



Al: Spectral density of states for 
Log DOS for . Note accumulation at 
=0, even for a metal. 

Note spectral tail for 0<<1.2.  Signature 
of metal vs. insulator.

Need many (~1/10) eigenvectors to get 
full conductivity (unlike non-metallic 
case).

Lots of degeneracy.

And what is that ”gap” near 1.3 S/cm? 



Here is one: ~1.0 S/cm

Degenerate with similar 
modes (in orthogonal 

directions)

Heat map of conduction 
with color coding 

indicated. 
yellow>orange>red>black

And what do these modes look like?



Hidden structure

(x) for =1.0 S/cm



Defects in Aluminum (hot off the CPU)

• 108 atoms (cube 12.1485 Å on an edge) 

• Single- and double-vacancies were created.

• Directly compare SPC for crystal, single and di-vacancy.



SPC along 111 direction

Left: crystal, middle: one vacancy and right: divacancy. The 
“observation direction” is shown by arrowhead.

Vacancy

Colors: blue ~ 50 * red



SPC along 110 direction

Left: crystal, middle: vacancy and right: di-vacancy

vacancy(ies)



Compare conductivities

Vacancies Conductivity 
(S/m)

Percentage 
difference

No of k-points 
used (4*4*4)

0 1.085E8 4

1 7.161E7 66% of no 
defect

4

2 (Intimate) 3.965E7 36% of no 
defect

12

2 (Random) 3.549E7 33% of no 
defect

16





Aside: “Gap Sculpting”
Engineering the gap

(Key student: K. Prasai)

Idea:

Seek a model with a specified optical gap (or lack thereof): 

Try to impose a priori condition on gap 

Motive: band gap engineering or metallization of suitable

Materials (example below) 

K. Prasai et al, Sci. Rept. 5, 15522 (2015); K. Prasai, P. Biswas and D. A. Drabold, Phys. Stat. Sol. A 213 1653 (2016).



Ohio U. Chemical and Biomolecular Engineering, 2017



Ohio U. Chemical and Biomolecular Engineering, 2017



Ohio U. Chemical and Biomolecular Engineering, 2017



Practical implementation

Consider a Lagrangian L=− in which  is the usual
kinetic energy, and: 

g(n) is picked to move valence (conduction)
defect states ”where we want them” (for example 
to open up or close a gap).

We’ve done it with tight binding and VASP.

Usual forces

“gap clearing” (or gap cluttering) force



Gap sculpting: continued

Biased dynamics (with forces added to open/close gap) at 
diffusive temperatures may lead to relaxed structures with 
engineered gap.

In practice we carry out the melt-quench segment of the 
simulation with biased forces. After dynamical arrest, we
anneal and relax with physical forces and (chemistry willing)
produce models with the desired optical gap. 

Implemented with (VASP) and tight-binding.



Example 5: Electronic polyamorphism in a 
CBRAM material: a-GeSe3:Ag
• Used “Gap Sculpting1” to make a conducting phase of a-GeSe3 with 

25% silver. Ab initio MD model is always semiconducting.

• “Gap Sculpting” metallized the system2 -- (x) heatmap:
Good conductivity without Ag filaments, 

DFT E~0.04 eV/atom, m~108 i

m~102/( cm) 

Conduction through connected Ag2Se 
structure.

“Electronic polyamorphism”

1. K. Prasai et al., Sci. Rep. 5, 15522 (2015).
2. K. Prasai et al., P.R. Mater. 1 015693 (2017).



Conclusions

• We describe a practical new method to obtain spatial information 
about charge carrier transport. It is readily implemented for any ab 
initio code.

• The matrix  is of significant interest: it’s eigenvectors provide a 
compact description of transport in materials.

• Provide insight into transport in complex materials, and perhaps for 
applications of these (Conducting Bridge RAM, Physically Unclonable 
Functions…)
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DOS and localization of Kohn Sham states for 
GeSe3:Ag

K. Prasai et al., P.R. Mater. 1 015693 (2017).
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