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The technique of quantum molecular dynamics is reviewed, and a 
simplified approach based on a first-principles tight-binding 
implementation of local density theory is discussed. Several 
illustrations and applications of the theory are presented. Applying 
it to amorphous materials, we have developed a procedure for 
producing amorphous Si networks with small defect concentrations. 
Benchmark checks are made for atomic geometries at Si(lll)-(2x1) and 
Si(OOl)-(2x1), p(2x2), and ~(4x2) reconstructed surfaces. A 
simulation of a Scanning Tunneling Microscope tip interacting with a 
reconstructed surface is performed, and it is shown how the tip can 
alter the reconstruction of the surface. Simulation of a kinked 
Si(OO1) surface step and comparison to an unkinked step are also 
presented. 

I. Introduction 

The decade of the ‘80’s has seen an explosion 
of growth in the development and application of 
first-principles electronic structure methods 
and total energy calculations. These 
calculations give as output the energy levels, 
band structure, and total energy of the system 
from the input of the atomic number and the 
atomic positions. A wide variety of theoretical 
methods are used to perform such calculations, 
but most are based on the local density 
approximation (LDA). 

One frontier of the ‘90’s, which is just 
beginning to be crossed, is the ability to 
include the dynamics of the atoms in the 
electronic structure calculation. It is hoped 
that this will allow us to remove as input the 
positions of the atoms; rather the atomic 
positions are output. The atomic positions are 
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in many cases what one really wants to know. For 
instance, one wants the position of the atoms at 
a reconstructed surface or of adatoms at a 
surface, the atomic coordinates and defect 
structures of amorphous materials, or even the 
atomic configuration of atoms in a molecule. 

In this paper we discuss the method of quantum 
molecular dynamics, which allows the dynamics of 
the system to be probed simultaneously with the 
electronic structure of the system. The essence 
of the method can be expressed in an 
oversimplified vay by describing it as a 
combination of the SchrSdinger equation for the 
electrons, 

E Y I & I, 

with Newton’s law of motion for the nuclei, 

+ + 
P - m a. 

Applications of this melding together of 
classical and quantum physics are immense. 
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Standard quantities can be investigated such as 
the band structure h , p onon dispersion, charge 
density, and total energy. The introduction of 
forces and Newton’s laws extends the range of 
possible quantities which can be investigated to 
anharmonic effects in phonon systems, ground and 
configurational excited state geometries, 
liquids, amorphous systems, non-equilibrium 
systems and so on. In all of this, a fundamental 
assumption is that the Born-Oppenheimer 
(adiabatic) approximation holds. This 
approximation assumes that the light electrons 
respond instantaneously to the motion of the 
heavy nuclei and are in the instantaneous ground 
state. 

This paper will review the method of quantum 
molecular dynamics in section II. In Sections 
III-VII we present some applications of our 
method of quantum molecular dynamics which 
include studies of vibrational modes, amorphous 
Si structures, Si surface reconstructions, a 
Scanning TunneIing Microscope (STM) tip-surface 
simulation, and relaxation and energetics around 
a kinked Si(OO1) surface step. 

II. Methods of Quantum Molecular Dyncuics 
in Covalent System 

The use of molecular dynamics using empirical 
potentials is not at all new. In 1959, Alder and 
Wainwright [l] published “Studies in molecular 
dynamics . . . w using a square well potential. A 
whole school of work has been established 
following the work of A. Rahman [Z]. Atomic (or 
3-body or higher-body) potentials are still very 
much used today for simulations of very large 
systems containing hundreds to hundreds of 
thousands of atoms. In such a simulation an 
interaction between atoms is assumed, and the 
parameters of the interaction are generally fit 
to some experimental quantities. It was realized 
early that a simple two-body potential will not 
work well for a covalent system (such as Si or 
GaAs) since the interaction between atoms is 
quite unlike a central potential because of the 
directional nature of the electron-sharing among 
the atoms. To remedy this situation, higher-body 
interactions have been included [3-71 to mimic 
the natural tetrahedral bonding these systems 
prefer. Our experience with these potentials at 
surfaces however, has been quite disappointing. 
We have examined 2x1 reconstructions on Si(ll1) 
surfaces and find that none of the potentials we 
have tested give satisfactory results. Some 
claim to give a reconstructed surface as the 
minimum energy, but when used in a molecular 
dynamics simulation, we find a relaxed (1x1) 
surface is actually lower in energy. It may be 
too much to expect for a potential to predict 
geometries far from geometries in which they 
were fit, since electronic structure effects, 
which generally drive such reconstructions, are 
absent from the theory. 

Quantum molecular dynamics simulations are 
orders of magnitude more difficult to perform 
than molecular dynamics simulations based on 
potentials. However, they properly incorporate 
the electronic states, so are more realistic, 
and contain a far more complete description of 
the system. 

The first such calculation to include the 
electronic structure of a covalent system in a 
molecular dynamics simulation to our knowledge 
was submitted in 1985 by Sankey and Allen (a]. 
In this work, the electronic structure was 
considerably simplified by using an empirical 
tight-binding Hamiltonian of the Harrison et al. 
form (91. The forces were determined by 
differentiating the electronic structure total 
energy by making use of the Hellmann-Feynman 
theorem. This approach was used to investigate 
(110) surface relaxation in 12 different 
semiconductors. Wenon et al. [lo] have developed 
a complementary approach using Green’s 
functions. An empirical tight-binding approach 
has recently been used to study the anharmonic 
effects in high temperature Si and disorder and 
defects in Si (111, and for an Si3 cluster and a 
Si(OO1) surface (121. 

The empirical tight-binding method has the 
advantage of being very f st and easy to use. It 
typically uses only an sp 4 basis of orbitals for 
each of the two atoms, and so requires the 
diagonalization of a relatively small 
Aamiltonian matrix. Its chief disadvantage is 
that the matrix elements are adjustable 
parameters, adjusted to fit some experimental or 
theoretical observation. Its fundamental flaw 
however is that it is not based on any rigorous 
total energy theory, so that a total energy 
functional has to be guessed at or invented. 
Ion-ion interactions, and electron-electron 
interactions are included only approximately and 
phenomenologically by introducing some empirical 
short ranged potential. 

The electronic structure methods developed 
during the ‘80’s led Car and Parrinello 1131 and 
others [14] to formulate their so called 
“unified approach” which follows the traditional 
approach of expanding the wavefunction in plane- 
waves in a periodic system. They use a 
fictitious Lagrangian for the electrons along 
with the true Lagrangian for the nuclei to 
follow the dynamics of the electrons and nuclei 
simultaneously. This technique avoids the 
diagonalization of super-large matrices which 
occur in plane-wave expansions. This technique 
has made no fundamental approximations, so that 
the level of accuracy previously enjoyed in 
static calculations ought to be present here as 
well. The disadvantage however is that the 
calculations are quite extensive, requiring huge 
computer resources. This limits the size and 
scope of the calculations that can be performed. 
Furthermore, these technical difficulties force 
hidden approximations to be made, such as the 
use of only the P point in Brillouin zone 
summations. 

In this paper, we present recent results of 
quantum molecular dynamics simulations, which 
combine the simplicity of empirical tight- 
binding techniques, with the rigorous 
foundations of the LDA and the use of 
pseudopotentials. We have achieved this by 
developing an ab-initio tight-binding method 
optimized specifically for molecular dynamics. 
The electronic states of the system are written 
as a linear combination of pseudo-atomic- 
orbitals (PAO’s) at each site. For the systems 
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we have st died so far (Si, Gc, and C), we 
include sp Y orbitals on each site. The orbitals 
are obtained from a self-consistent LDA 
pseudopotential calculation of the free atom, 
but with the boundary condition that the 
wavefunction vanish at rc, instead of the usual 
boundary condition that the wavefunction vanish 
at infinity. This slightly excites the atom from 
its ground state, and crudely represents 
confinement effects of the electron in the 
condensed system. Its real practical purpose 
however, is to introduce a cutoff for the range 
of wavefunction overlap and matrix elements 
between an atom and its neighbors. We have 
chosen rc to be 5.0, 5.0, and 3.3 aB for Si, 
Ge, and C respectively, which yields Aamiltonian 
matrix elements up to third neighbors in the 
bulk phases of these materials. 

The total energy and electronic states are 
computed with the use of four major 
approximations. The first approximation is the 
LDA and the use of norm-conserving 
pseudopotentials for the valence electrons. The 
second is the use of PAO’s in which to evaluate 
the first-principles tight-binding matrix 
elements. The third approximation is to replace 
the Kohn-Sham LDA self-consistent energy 
functional by the considerably simplified but 
approximate Harris [15] energy functional. Acre 
the input charge density is a sum of neutral 
atom charge densities, and the output charge 
density is included to first order in the energy 
functional. Finally, the fourth approximation 
involves the evaluation of the matrix elements 
of the various terms of the Aarris LDA 
Aamiltonian. Most terms are computed exactly, 
but some three-center integrals are constructed 
(nearly exactly) by multipole expansions, and 
the non-linear exchange-correlation matrix 
elements are evaluated in a mean-field-like 
approximation. ~11 matrix elements are computed 
in advance and stored in tabulated form. The 
method combines the rigorous foundation of the 
LDA with the computational simplicity of the 
tight-binding method. It is a numerically fast 
procedure compared to any other first principles 
approach. 

The method is performed entirely in real 
space, so that systems such as molecular 
clusters can be handled as easily as a periodic 
solid. Static quantities have been computed [16] 
such as the equilibrium lattice constant, bulk 
modulus, optic mode frequency, cohesive energy, 
band structure, and phase diagram as a function 
of volume for bulk Si, and equilibrium 
structures of small Si clusters. Excellent 
agreement is found with experiment and other 
calculations. Only a brief outline of the theory 
has been given here, but complete details 
including further motivation and derivations are 
given in Refs. [la] and [17]. We now briefly 
describe some applications of the method. 

III. Vibrational nodes 
A simple application of the method and a 

further test of the accuracy of the method is 
the determination of phonon dispersion curves of 
bulk Si with wavevector along the (100) 
direction. We consider a supercell of Si 
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Figure 1. The phonon dispersion relations of Si 
obtained from the first-principles tight-binding 
method for k-vectors along (loo), compared to 
experiment. 

containing 16 atoms. The unit cell is a long 
thin rectangular parallelepiped with the long 
axis along (100) and short axes along (0 -1 1) 
and (0 1 1). The atoms are started from their 
equilibrium positions and given random 
velocities. They will vibrate as a mixture of 
transverse and longitudinal modes whose 
wavevectors “fit” into the Brillouin zone along 
the (100) direction, for a supercell which is 
four lattice periods long. The frequencies as a 
function of wavevector and polarization are 
obtained from the velocity-velocity 
autocorrelation function. The frequency 
dispersion relations at low temperature compared 
to experiment are shown in Figure 1. The 
agreement with experiment is excellent over the 
whole range. Notice that the flattening of the 
acoustic transverse modes near X is well 
reproduced. We emphasize that no fitting of 
parameters of any kind was done. Furthermore, 
the use of dynamical matrices or of the harmonic 
approximation is also not needed. 

IV. Awrphous Si 
The first-principles tight-binding molecular 

dynamics technique has been used to model 
defects, disorder, and structure in amorphous 
Si. We review here some of our major findings. 

Theoretically, a:Si networks are constructed 
by quenching randomly disordered or partially 
melted Si to form a condensed, but disordered 
system in a local (metastable) minimum energy 
configuration. A general feature of all 
molecular dynamics simulations of amorphous Si 
to date is that the concentration of defects is 
too large. Experimentally a:Si can be made with 
a few percent defects, while simulations 
generally produce -20% defects. In our 
simulations, we noted that a sample, initially 
with little disorder, always reverted back to a 
perfect crystal (OX defects) during quenching. 
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The atoms in this layer are made very massive, 
so that they are unable to move, and their 
dangling bonds are “tied off” with hydrogen 
atoms. 

The molecular dynamical relaxation is usually 
done by dynamical quenching; i.e., whenever the 
kinetic energy passes a local maximum (thus the 
potential energy passes a local minimum) the 
kinetic energy is set to zero. This process is 
repeated until the system is stable and all 
forces are zero. 

Figure 2. Geometry of the “pseudo-defect” 
containing badly strained, but four-fold 
coordinated, atoms. This pseudo-defect remains 
stable in the amorphous solid and has a deep 
level in the gap. 

With complete disorder, the sample finds a local 
minimum after quenching with 15-25X defects. 
With this in mind, we have developed a procedure 
[18][19] which uses an intermediate region 
between little disorder and complete disorder, 
which when quenched to a local minimum, yields a 
small concentration of defects as found in 
experiments. Specifically, a 64 atom supercell 
of amorphous Si is found with a -6% 
concentration of defects corresponding to two 
dangling bonds (three-fold coordinated atoms) 
and two floating bonds (five-fold coordinated 
atoms). Annealing this sample at room 
temperature for some time and then quenching, we 
find that this sample converts to a two defect 
sample of two dangling bonds, and hence a 
concentration of -3% defects. This two defect 
sample however, had three levels in the gap. Two 
of them were from the two dangling bonds, and 
the third was from the “pseudo-defect” shown in 
Figure 2. This pseudo-defect would not normally 
be considered a defect since each of the atoms 
has four neighbors. The central atom (labeled C) 
has two near-normal neighbors with bulk-like Si 
bond-lengths (-2.358) and two neighbors (labeled 
A and B) which are stretched away from C with a 
large opening angle of 164O. The deep level 
wavefunction of this pseudo-defect is highly 
localized nearly uniformly on atoms A, B, and C. 
Such large strained bonds may play an important 
role in band tailing states of a:Si. 

V. Surface RecOIIStNCtiOnS 

In order to simulate a reconstruction at a 
surface, we first create an atomic basis, or 
supercell, which is subject to periodic boundary 
conditions in the plane of the desired surface. 
The size of the basis depends on the size of the 
reconstruction to be studied (e.g., 2x1, 2x2, 
4x2, etc.), and on the number of atomic layers 
in the slab deemed necessary (usually five or 
six). The slabs are isolated, and unlike plane- 
wave methods, there is no large-distance 
periodic repetition of the slabs normal to the 
surface. 

At the surface (the top-most atomic layer), 
dangling bonds are left free to drive the 
reconstruction. On the bottom-most layer, 
however, we simulate connections to the bulk. 

Si(lll)-(2x1) 
The starting point for the reconstruction 

process of the Si(lll)-(2x1) surface is the 
terminated bulk Si(111) surface (six layers 
deep) in a 2x1 unit cell. In terminating the 
bulk, we have “cut” the bonds which lie in the 
(111) direction. We allowed the system to 
vibrate at room temperature for 100 time steps 
(about 0.25 ps) and then dynamically quenched. 
The final state given after quenching is in 
agreement with Pandey’s it-bonded chain model 
[20] for the Si(lll)-(2x1) surface (Figure 3). 
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Figure 3. Final state of Si(lll) surface 
reconstruction - Pandey n-bonded chain model. 

An intermediate state in the reconstruction is 
Haneman’s buckling model [21]. Passing from the 
metastable Haneman model to the Pandey model 
requires breaking a bond in a six-membered ring 
followed by a rebonding to form five- and seven- 
membered rings. It should be emphasized that 
this process occurs without any manipulation or 
insertion of extra energy. The atomic positions 
so found at the reconstructed surface are 
output, not input. The only “bias” put in is 
that we “asked” for a 2x1 reconstruction by our 
initial choice of supercell. The reconstruction 
is spontaneous, and there is no barrier to the 
formation of the n-bonded surface. This agrees 
with the result of Northrup and Cohen [22] who 
find a very small barrier of 0.03 eV/surface 
atom between the Haneman and Pandey models. The 
energy difference between our initial and final 
states is 0.6 eV/surface atom. The energy 
difference (not the barrier) between the the 
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buckling model and the final state is about 0.2 
eV/surface atom. 

Si(DO1) Surface Reconstructions 

The Si(OO1) reconstructed surface remains 
incompletely understood. It seems relatively 
clear that the ~(4x2) reconstruction is the 
ground state. Calculations (231 and experiment 
(low temperature LEED [24]) agree on this point. 
Less clear, but also indicated by calculations 
[23](25], the ~(2x2) reconstruction is lower in 
energy than any 2x1 reconstruction. 

For 2x1 reconstructions, the most recent self- 
consistent LDA calculations [25][26] find that 
the symmetric dimer is lower in energy than the 
asymmetric dimer. The energy difference is 
small, about 0.02 eV/dimer. However, the latest 
self-consistent LDA band structure calculations 
1231 give both the symmetric diner and the 
asymmetric dimer to be metallic; while, 
experimentally, the surface is found to be 
semiconducting 1271. Artacho and Yndurain (281 
have proposed that there is a strong spin 
correlation within the dimer which would make 
the symmetric dimer surface semiconducting, but 
as yet the magnetic nature of the surface has 
not been confirmed. 

Room temperature ST!! images of the Si(OO1) 
surface [24] show the ~(2x2) and ~(4x2) 
reconstructions appearing principally near large 
defects. In nominally clean regions of the 
surface, the reconstruction is principally 2x1, 
and the dimers appear to be symmetric. To sum 
UP? there is still a significant gap between 
theory and experiment for the Si(OO1) surface. 

The starting point for our simulation of the 
reconstruction is the ideal terminated bulk 
Si(OO1) surface (five atomic layers deep) in a 
2x1 unit cell. (We have repeated the calculation 
in a cell 13 layers deep with identical 
results.) Dynamical quenching leads to a final 
state of an asymmetric dimer. The symmetric 
dimer is an intermediate state in this process. 
The energies of these two states with respect to 
the terminated bulk are: symmetric dimer, -1.65 
eV/dimer, and asymmetric dimer, -2.26 eV/dimer. 
We Eind the symmetric dimer surface to be 
metallic and the asymmetric dimer surface to be 
semiconducting. When relaxation is allowed in a 
2x2 unit cell (two dimers in the same row), a 
~(2x2) reconstruction is found, and for a 4x2 
unit cell (two rows of two dimers each), a 
~(4x2) reconstruction is found. The energies of 
the ~(2x2) and ~(4x2) reconstructions with 
respect to the terminated bulk are the same, 
-2.33 eV/dimer. 

We have also done simulations with steps 
(described elsewhere in this paper) and 
vacancies on the Si(OO1) surface and we have 
found that the local environment is highly 
influential in determining the symmetry or 
asymmetry of dimers. For example, we find that, 
for a surface with 25% defects (one dimer 
missing out of a row of four), the dimers tend 
to be symmetric. (Our result is similar to 
Pandey’s n-bonded defect model [26].) Work with 
lower concentrations of defects and defects of 
various shape and size is in progress. 

VI. Interaction between a Si(OO1) Surface 
and an SRI tip 

Because of the importance of the STH in 
determining the structure of the Si(OO1) 
surface, we investigated the possible effects of 
STH imaging on the Si(OO1) dimer reconstruction. 
Demuth et al. [29] have suggested that the high 
resolution of images of the Si(OO1) surface 
might be due to tunneling between the surface 
and Si clusters adsorbed on the STM tip. In view 
of this, we created an STM tip made of four Si 
atoms. Three of these atoms were fixed in an 
equilateral triangle 3.84A on a side in a plane 
parallel to the surface. The fourth atom was 
placed on the normal through the center of that 
triangle and was free to move. This free tip 
atom was relaxed and was placed above an 
asymmetric dimer in a 2x2 unit cell. In this 
simulation there was no potential difference 
between the tip and the surface and there was no 
tunneling current. 

We began with the tip above the lower, or 
“down”, atom of the asymmetric dimer. We find 
that, for an initial separation of 4.1A or less, 
the attraction between the tip and the surface 
is strong enough to alter the tilt of the dimer 
(Figure 4). In fact, the “down” atom is 
attracted upward to a nearly symmetric position. 
However, when the tip is moved directly above 
the higher atom of the same asymmetric dimer, 
the position of that atom is not significantly 
affected. As a result, due to the STM tip- 
surface interaction, an asymmetric dimer imaged 
by our STH tip would appear symmetric. Since the 

e ?? 0 
81, 
* 

Figure 4. STl4 tip interaction with Si(OO1) 
asymmetric dimer in a ~(2x2) unit cell. The 
initial positions are the open circles, and the 
final positions are the filled circles. The tip 
is over the lower atom of the dimer. Initially, 
the tip-surface atom separation was 4.0A. 
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Figure 5. Simulated Si(OO1) vicinal surface with 
smooth sB edge (a) Top view (b) Side view. 

Si wavefunctions in our simulations vanish at 
(2.645)1), 4.1A should be regarded as a minimum 

rc 

cutoff value for this type of interaction. 

VII. Kinked SD steps on the Si(OO1) Surface 
The geometry of the Si(OO1) surface is such 

that, where single steps occur, dimers on the 
two levels run in perpendicular directions. When 
the dimer rows in the upper level are parallel 
to the step edge the step is named sA, following 
Chad1 [30]. When the dimer rows in the upper 
level are perpendicular to the step edge the 
step is named sB. It has been experimentally 
observed [31] that sA steps tend to be straight 
or smooth, while sB steps tend to be kinked or 
j agged . 

As a first step in understanding the origin of 
the jagged step, we have compared the total 
energies of fully atomically relaxed sB kinked 
and straight steps. We elected to use a vicinal 
(1,1,13) surface with a tilt angle of 6.2 
degrees. The steps were modeled according to 
Chadi 1301. We began with a 64 atom supercell 
using symmetric dimers and then allowed the 

system to relax into asymmetric dimers (Figure 
5). The three dimers atop the sB step were found 
to form a pattern in which the outer two dimers 
were asymmetric while the central dimer was 
nearly symmetric. The 64 atom cell was then 
repeated along the step, doubling the size of 
the unit cell. We again allowed this system to 
relax and found a negligible change in the final 
energy, as expected. This was taken as the 
energy of a smooth sB step. 

To create a kinked sB step, a single dimer 
from one row of three was removed and placed at 
the head of the second row of three dimers, 
creating a row of two dimers and a row of four 
dimers. This 128 atom system was then 
dynamically quenched to find the ground state. 
The final energy of the kinked edge is 0.04 eV/a 
(a = 3.84 A along the step edge) lower than that 
of the smooth sB edge. 

There was considerable geometrical relaxation 
within the diner row containing four dimers. In 
particular, the dimer which had been symmetric 
(the dimer at the center of the old row of 
three) became asymmetric, while the added dimer 
relaxed to a symmetric configuration (Figure 6). 
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(b) 

Figure 6. Simulated Si(OO1) vicinal surface with 
kinked sB edge (a) Top view (b) Side views. 
Upper drawing shows rows of two dimers. Lower 
drawing shows rows of four dimers. 

There was also considerable relaxation of second 
layer atoms at the newly formed step edges. 

These results suggest that the kinked sB step 
is lower in energy than the smooth sB step. 
However, in interpreting this result one must 
consider that there are two types of sB step 
edges. In one type, the sB edge connects to the 
side of a dimer row in the lower level. Chadi 
[30] refers to this edge as a rebonded sB edge. 
In the other type, the sB edge connects to the 
side of a trough (like those betweendimer rows) 
in the lower level. Chadi [30] refers to this as 
a nonbonded sB edge. Removing or adding a single 
dimer to a dimer row at an sB edge changes the 
sB edge type. For example, in this calculation, 
we have changed from rebonded sB edges (in our 
smooth sB edge) to nonbonded sB edges (in our 
kinked sB edge). To complete our study of this 
type of kink we must also begin with a smooth, 
nonbonded sB edge, and end with a kinked, 

rebonded sB edge. This calculation and other 
work with kinked sB steps is in progress. 
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