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We use ab initio pseudopotential local-density-approximation methods to create and study 63- and
216-atom models of a-Si. We examine the structure of defects encountered in these cells and pay partic-
ular attention to localization induced by the defects. In particular, we find that geometric defects and lo-
calized states in the gap are not identical and in some cases are grossly different. In addition, we com-
pare ab initio results to several tight-binding models and find that tight-binding descriptions are often

highly arbitrary and inadequate.

I. INTRODUCTION

There have been many theoretical papers on a-Si lately
dealing with electronic-structure calculations and
molecular-dynamics simulations.!™® For electronic-
structure calculations one always wonders if the sample
or cluster that the calculation was performed on was real-
istic. Also, many calculations on clusters are done using
tight-binding theory of various forms and degrees of so-
phistication. In this paper we ask the question of how
realistic this is, or what properties does it treat reason-
ably well and what aspects are questionable? In addition,
we draw some general conclusions about electronic-
structure calculations in a-Si and point out some general
shortcomings of working with small cells. Our primary
tool in these studies is the ab initio total-energy
molecular-dynamics (MD) computer program of San-
key et al.'®!! This allows us to probe the electronic
structure of models of a-Si to unprecedented accuracy.

Recent work!'?> using first-principles molecular-
dynamics simulations has shown that classical angular-
dependent forces lead to sizable errors for the forces
when the Si samples are not close to crystalline. Further,
small errors in the force (0.1 eV/A) can lead to large
qualitative differences in the actual equilibrium structure
and defect concentration. In this paper we provide a de-
tailed study of several supercells that were fabricated
with a first-principles molecular-dynamics computer pro-
gram. From these supercells we can draw some general
conclusions about the nature of the defects encountered
in such simulations.

The most important results of this paper concern the
electronic and geometrical structure of defects and the
density of defects. Until now, theoretical samples have
either contained no geometrical defects!>!* or have con-
tained well over 10% geometrical defects, '* so that the
defects cannot be analyzed as isolated entities. For our
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purposes a geometrical defect is defined as a Si atom that
is not fourfold coordinated. The problem of defining a
coordination radius is discussed in Sec. II. Such samples
with a large number of defects have large defect-defect
interactions and bear only limited relevance to real a-Si,
in part because this interaction causes a drastic reduction
in the localization of the defect wave function. The avail-
able experimental evidence on good electronic material is
that defect states in the gap are well separated and local-
ized. In this paper we present samples that have geome-
trical defect densities at the few percent level, which is
small by current theoretical standards, but is still large by
experimental standards. In addition, investigators usual-
ly characterize supercells by the number of geometrical
defects and assume that each and every geometrical de-
fect corresponds to a single localized state in the gap. We
find that this is not the case. We find structures produc-
ing a gap-state defect with only fourfold-coordinated
atoms and cases where several threefold-coordinated de-
fects correspond to only one gap state. This is true for
supercells with only a few defects or supercells with a
larger number of defects.

Because semiempirical tight binding is frequently used
in studies of a@-Si, we have also critically evaluated tight-
binding versus ab initio methods. We find that tight-
binding theory gives fair results for energy eigenvalues
and the degree of localization of defect states if the state
is well localized and if some radial dependence is includ-
ed in the hopping matrix elements. However, for con-
stant matrix-element integrals with a cutoff or for more
extended states, we obtain poor results. We also find that
defect states tend to interact rather strongly with each
other, even if they are physically separated. This holds
whether one uses a tight-binding model or an ab initio
band structure. However, to the extent that the defects
can be isolated, we find good agreement between ab initio
calculations and tight-binding Bethe-lattice calcula-
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tions®” on the threefold-coordinated dangling-bond state.

To date, most supercell calculations on a-Si have made
use of one of the Wooten-Weaire-Winer!> (WWW) cells.
These cells were constructed with no geometrical defects
and remained defect free after being relaxed with a Keat-
ing potential. Therefore, studies of defects in these cells
has been limited to band tailing and to shallow levels in-
duced by substitutional impurities.'*”!7 The thrust of
our work is on deep levels in the gap induced by coordi-
nation defects and rather badly strained fourfold-
coordinated atoms. Also, until recently, it had been near-
ly universally believed that the D levels observed in the
gap of a-Si were due to threefold-undercoordinated de-
fects or dangling bonds.!® However, recently, Pan-
telides!° ™22 and Stathis and Pantelides?® have challenged
this belief, arguing that some or all of the gap states may
be due to fivefold-overcoordination defects or floating
bonds. Recent work has shown that the strain or envi-
ronmental dependence of the experimental D state is in
much better agreement®’ with the dangling-bond model
than with the floating-bond model. In this paper two
new wrinkles to this controversy have been added. First,
as suggested earlier,” we find defects that are probably
most accurately described as dangling- and/or floating-
bond states since they involve atoms with either three or
five neighbors, depending on a rather arbitrary definition
of a coordination radius. Further, we give explicit exam-
ples of gap-state defects that are fourfold coordinated.
These defects have been studied by tight-binding methods
in a Bethe lattice®” and in supercells* with a large num-
ber of defects. In this work we study them with both ab
initio and tight-binding methods and in supercells with
only a few geometrical defects.

In Sec. II we perform a rather complete analysis on our
best supercell of 63 atoms. Section III contains a less
complete discussion of some other supercells, including
the first accurate electronic-structure-based study of the
216-atom WWW supercell.!> An analysis of tight bind-
ing with respect to these supercells is given in Sec. IV,
and the conclusions are in Sec. V. All of the molecular-
dynamics work referred to in this paper has been per-
formed by using the ab initio molecular-dynamics com-
puter program of Sankey et al.!®!! For cells of 63
atoms, we have used four k points in the simulation, but
only the T point for the 216-atom cell.'?> This method is
well documented in the literature, but a few cautionary
comments are in order here. Since the program uses the
local-density approximation, there are errors in the eigen-
values and difficulties in the interpretation.?* In addition,
the program makes use of the Harris functional and a
minimal basis set, which introduce further errors, al-
though these later approximations fortuitously tend to
compensate errors in the size of the gap. Nevertheless,
valence-band states and total energies are extremely accu-
rate when compared to more sophisticated theories. The
gap and conduction-band states are reasonable, but not so
satisfactory. Where tight binding is referred to, we use
the semiempirical sp3s* parameters of Vogl, Hjalmarson,
and Dow? for Si atoms separated by 2.35 A. Different
radial dependences for the hopping matrix elements are
discussed in Sec. IV.

II. TWO-DEFECT 63-ATOM SUPERCELL

In this section we discuss our two-defect 63-atom su-
percell, which is the best supercell that we have fabricat-
ed by the molecular-dynamics computer program of San-
key et al. By best, we mean it has the fewest geometrical
defects. This supercell has been discussed in the litera-
ture? before, and the coordinates are available upon re-
quest. The electronic density of states obtained for this
sample is quite similar to those obtained earlier’ by
tight-binding theory, and here we focus on the states in
and near the gap. Although the coordination of an atom
depends on the definition of a coordination radius, the
number of geometrical defects does not depend critically
on this number. Slight variations in the coordination ra-
dius almost always merely shift defects between
threefold-coordinated  (dangling-bond) defects and
fivefold-coordinated  (floating-bond)  defects. The
number-density function n (r)=4mrpg (r) for this super-
cell is given in Fig. 1. The function is reasonably close to
pair-correlation functions obtained experimentally for
electronically good samples.?® We note that the
minimum after the nearest-neighbor peak occurs at about
2.85 A and thus forms a natural coordination radius for
defining a neighbor. The energy per atom for the super-
cell is 0.2468 eV /atom above the crystal. This is about a
factor of 2 too big when compared to well-annealed ma-
terial of good electrical quality, but is quite close to the
value for good unannealed material. Its total energy is
better than any other supercells that we have studied.
The bond-angle distribution yields an average bond angle
of 109.2° with a rms deviation of 11.0°. These are about
what is expected from good computer-generated super-
cells.!® The vibrational spectrum for the supercell, given
in Fig. 2, is in excellent agreement with experiment.?’
Although a decent looking radial distribution function
and a reasonable distribution of bond angles are neces-
sary conditions for a credible sample, they are by no
means sufficient to guarantee a close similarity to a-Si.
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FIG. 1. Plot of n (r) vs r/a for the two-defect 63-atom sam-
ple where a is 2.35 A, the crystalline nearest-neighbor distance.
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FIG. 2. Plot of the vibration spectra g(w) for the 63-atom
sample, the WWW sample, and the experimental results.

These properties are quite insensitive to local details, and
we have generated samples with a very large number of
defects whose bond-angle and radial distribution func-
tions are decent looking. The vibrational spectrum is
considerably more sensitive and is probably a much
better measure of how good a sample is. In addition, we
have recently shown? that the electronic properties of
this cell agree impressively well with photoemission ex-
periments. %

This supercell exhibits two geometrical defects for any
reasonable coordination radius Ry. One of these geome-
trical defects is a (threefold-coordinated) dangling bond.
The other is a dangling bond if Ry;<2.78, but is a
(fivefold-coordinated) floating bond if R, >2.78. Howev-
er, local-density calculations from the molecular-
dynamics program (as well as tight-binding calculations
to be considered later) show that these geometrical
configurations are not in a one-to-one correspondence
with the only localized states in the gap. There is an im-
portant lesson here, that geometrical defects are not
necessarily the only gap defects (fairly well-localized
states in the gap). Further, in other supercells we have
always found geometrical defects associated with gap de-
fects, but the number of gap defects can be smaller than
the number of geometrical defects because more than on
geometrical defect can go together to make up a single-
gap state. Also, gap states can exist that are not correlat-
ed with any geometrical defect.

In order to help the reader to visualize the situation,
we have drawn sketches of defects (d1-d4) in Figs.
3(a)-3(d), respectively. These sketches are merely to in-
dicate the neighbors each atom has, as well as some other
pertinent data. Unless otherwise noted, interatomic spac-
ings and bond angles are unremarkable and (since the
sketches are planar) the bond angles of the sketches are
not meaningful. Defect d1, shown in Fig. 3(a), is a
straightforward threefold-coordinated dangling-bond
configuration with its center at atom No. 56. None of the
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FIG. 3. Sketches of the defect configurations for defects (a)
d1, (b) d2, (c) d3, and (d) d4 from the two-defect (four spectral
defect) 63-atom supercell.

nearest-neighbor or next-nearest-neighbor atoms to atom
No. 56 are connected with any of the other defects. Thus
it would appear to be an isolated defect. Defect d2,
shown in Fig. 3(b), is what might be called a classic
dangling- and/or floating-bond defect. For a coordina-
tion radius R;<2.78 A, the defect is a dangling bond
centered at atom No. 52, while for R;>2.78 A one
would call it a floating bond centered at atom No. 30.
The semantics is, of course, unimportant. Because of the
long bond between atoms 30 and 52, previous tight-
binding Bethe-lattice calculations®’ would indicate that
it acts mostly like a dangling bond as far as energy eigen-
value and localization are concerned. As we shall see, the
same conclusion follows from the eigenvalues and locali-
zation computed in this paper from either local density or
tight binding. The only other noteworthy aspect of Fig.
3(b) is that atoms 46 and 51 are neighbors to each other,
which would not be the case for the more ideal dangling-
and/or floating-bond defect alluded to above. The defect
d3 involves only fourfold-coordinated atoms, unless one
chooses an unreasonably small R,. The sketch of the de-
fect is given in Fig. 3(c), where we have indicated the two
interatomic distances that are abnormal and have also
designated the bond angles since they are anomalous.
Thus the combination of stretched bonds and bond angles
that are rather far from tetrahedral combine to form a
state in the gap that cannot be characterized as a band-
tail state. All three defects are reasonably well separated,
although the reader should note atom No. 51 is in both
Figs. 3(b) and 3(c). The last defect, d4, also involves only
fourfold-coordinated atoms. The sketch of the defect is
given in Fig. 3(d), where the one anomalously long bond
length and several anomalous bond angles that differ
from 109° by more than 20° are shown.

Next, let us consider the localization of the defect
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states. Since we are dealing with a supercell of 63 atoms
and an sp® basis, the lowest 126 eigenvalues will be occu-
pied and the higher eigenvalues will be empty. Because
of the finite size of our supercell, one cannot define pre-
cisely what a localized state is. However, in order to aid
in assessing the degree of localization, on can define a
“localized charge” q(n,E) associated with the energy ei-
genvalue E and the atomic site centered at the atom num-
ber n. This charge is obtained from the density matrix
and sp? orbitals of the computer program of Sankey
et al. Because the orbitals possess significant overlap on
sites neighboring the site on which the orbital is centered,
this is only an approximate definition of localization.
The quantity g (n,E) summed over all atoms n is 1. Fur-
ther, we define a mean-square charge associated with the
eigenvalue E as

4,(E)= 3 q(n,E)*.

We note then that ¢,(E) would be 1 for a completely lo-
calized state and would be 1/N (where N is the number of
atoms in the supercell) for a perfect extended state. In
Table I we have listed Q,(E), which is Ng,(E) for a num-
ber of eigenvalues E near the gap. From this table it
would appear that eigenvalues 127, 128, and 129 corre-
spond to more well-localized states than the rest of the ei-
genvalues. However, this is a rather global definition of
localization, and thus in Table II we list Q,(n,E)
=Ngq,(n,E) for several eigenvalues. The table is restrict-
ed to atoms where g,(n,E)>2. From Table II we see
that eigenvalue 126 is most significantly associated with
defect d1, the dangling bond centered at atom No. 56.
However, this geometrical defect is also associated with
the other eigenvalues and other atoms are associated with
this eigenvalue. Eigenvalues 127 and 129 are most prom-
inently associated with defects d3 and d4, respectively,
while eigenvalue 128 is very clearly associated with the
defect d2. However, the most striking aspect of these
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TABLE 1. Mean-square charge Q,(E) as defined in the text
vs energy eigenvalue E for the 63-atom sample. The Fermi level
lies between levels 126 and 127. There is no significance to the
zero of the energy levels. The quantity Q72(E) is the same as
Q,(E), but was calculated by tight-binding theory.

Eigenvalue number E (eV) Q,(E) QT3(E)
122 —3.83 1.16 1.38
123 —3.75 1.34 2.92
124 —3.66 1.40 2.90
125 —3.54 1.30 2.05
126 —3.54 1.46 3.93
127 —2.65 3.07 5.40
128 —2.33 4.40 3.76
129 —1.95 2.25 1.97
130 —1.82 1.66 1.53
131 —1.65 1.67 1.85

tables is that the defect states are far less localized than
expected. Both experiments®® and Bethe-lattice calcula-
tions®” on isolated defects predict localization of the
dangling-bond state to about 70% of their charge on a
single site. This lack of localization is not due to the
band-structure program. For example, we find the same
lack of localization on this supercell sample using the
same tight-binding code that yielded very localized de-
fects with the Bethe lattice. Further, this same ab initio
band-structure code yields a similar lack of localization
when applied to the well-known WWW supercell. We
believe that the reason for the lack of localization is that
none of the defects is isolated well enough from other de-
fects including the fourfold-coordinated defects with
rather strained bonds. We note that artificially hydro-
genating defects in our supercell within tight-binding
theory or artificially limiting the number of neighbors
within tight binding does localize the remaining defects
greatly. However, this is probably meaningless since
such a construction does not correspond to a physically

TABLE II. Q,(n,E) for eigenvalues 122131 for values of n, where Q,(n,E) is greater than 2.0 for

the 63-atom sample.

Eigenvalue Eigenvalue Eigenvalue
number n Q,(n,E) number n Q,(n,E) number n Q,(n,E)
122 44 2.23 127 50 6.57 130 13 2.21
122 56 2.18 127 52 4.11 130 21 2.79
123 21 2.13 127 56 4.43 130 24 2.53
123 44 2.19 128 21 3.95 130 36 2.37
123 54 224 128 45 421 130 40 2.10
123 56 4.02 128 50 3.25 130 41 3.09
124 13 2.24 128 51 3.03 130 47 2.74
124 56 4.71 128 52 13.89 130 52 3.06
125 54 2.57 128 56 2.10 130 SS. 2.27
125 56 2.80 129 5 2.11 131 5 3.51
126 23 3.28 129 12 2.27 131 24 2.93
126 56 5.29 129 13 6.61 131 36 3.35
127 19 4.78 129 24 5.68 131 41 3.19
127 23 7.19 129 36 2.69 131 44 2.12
127 44 2.34 129 52 2.55 131 47 2.65
127 45 2.31 130 5 2.24 131 55 2.54
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relaxed cell. The variation in localization with tight
binding will be discussed later in Sec. IV.

III. OTHER SUPERCELLS

In this section we will discuss other supercells in con-
siderably less detail. First, we consider the 216-atom
WWW (Ref. 13) sample. When we received the coordi-
nates of this supercell, they had been relaxed with the
Stillinger-Weber potential®! (with no geometrical defects).
We minimized the energy using the computer program of
Sankey et al. This altered the supercell only slightly in
that the topology was unchanged and the positions of the
atoms were only minimally changed. The energy of the
relaxed cell of 0.2473 eV/atom above c¢-Si is amazingly
(but probably coincidentally) close to the energy of the
63-atom supercell discussed above. The average bond an-
gle was 109.0° with a rms deviation of 11.9°, which is
also very close to the supercell discussed above. The
number-density function for the relaxed sample is shown
in Fig. 4, and the vibrational spectrum is shown in Fig. 2.
Before we relaxed the sample with the first-principles ab
initio molecular-dynamics program, it had no geometrical
defects. One slightly complex and extended geometrical
defect appeared after relaxing. A sketch of this defect is
shown in Fig. 5. As one can see, the defect contains two
fivefold-coordinated atoms and one sixfold-coordinated
atom. Again, the value of the cutoff is critical if one
wants to enumerate geometrical defects, and with a cutoff
radius of Ry <2.71 A there are no geometrical defects.
However, the complex still has some very badly strained
bonds. Table III contains a list of the eigenvalues and
mean-square charge associated with those eigenvalues.
The Fermi level lies between eigenvalues 432 and 433,
and from looking only at the eigenvalue spectrum, those
two eigenvalues appear to be ‘“localized” gap states
within a gap of about 1 eV between band tails. However,
this nice clean picture is not supported by a study of the
localization of the states. That is, Q,(E) is larger for
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FIG. 4. Plot of n(r) vs r/a for the 216 WWW supercell
where a is 2.35 A, the crystalline nearest-neighbor distance.
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FIG. 5. Sketch of the single geometrical defect in the WWW
216-atom cell, the crystalline nearest-neighbor distance.

states 434 and 436 than for either 432 or 433. The pic-
ture becomes even muddier when one considers the local
charge associated with these eigenvalues as shown in
Table IV. A study of this table indicates that eigenvalue
432 is reasonably well correlated with the defect in Fig. 5
in that this state has its greatest localization on atoms
165 and 173, both of which are in the geometrical defect.
However, most of the spectral weight of the state lies
elsewhere. Further, a consideration of state 433 reveals
no real correlation with the geometrical defect. The
atoms with relatively high amounts of spectral weight for
this eigenvalue are fairly well separated, but do have one
feature in common. They are all at sites where at least
one (and usually several) bond angles deviate greatly from
the ideal of 109°. By a large deviation, we mean bond an-
gles 40° greater than 109° or at least 20° less. Evidently,
these very large bond-angle distortions lead to significant
localization. (Recall that a typical bond-angle distribu-
tion has a half-width of about 10°.)

We have also briefly investigated the 54-atom supercell
of Ching, Lin, and Guttman.*? By rapid quenching of
the original coordinates of Ching, Lin, and Guttman, we
obtain a stable cell with no geometrical defects and a de-
cent looking n(r). However, the energy with respect to
the crystal is a very large 0.4124 eV/atom. Upon further
annealing the cell evolved into a structure with four

TABLE III. Mean-square charge Q,(E) as defined in the text
vs energy eigenvalue E for the WWW sample. The Fermi level
lies between 432 and 433. There is no significance to the zero of
the energy levels. The quantity Q12(E) is the same as Q,(E),
but was calculated by tight-binding theory.

Eigenvalue number E (eV) Q,(E) OT8(E)
430 —3.46 4.23 5.46
431 —3.33 3.32 16.83
432 —3.22 4.05 13.37
433 —2.42 6.56 5.14
434 —2.33 9.74 5.40
435 —2.13 5.87 3.69
436 —1.96 4.18 2.03
437 —1.90 4.18 2.5
438 —1.85 6.00 3.03
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geometrical defects with a good n (r), but still a very high
energy of 0.3943 eV/atom. Thus, apparently, it is possi-
ble to find metastable configurations with reasonable
looking n (7)’s, but with very high energies with respect
to the crystal.

From our analysis we believe that nobody (including
us) has produce a completely satisfactory supercell sam-
ple of a-Si. All samples have a rather large number of de-
fects, even though some have few or no geometrical de-
fects. Badly strained bonds (far greater than 10°) also pro-
duce quite localized states, and these seem to pervade
every sample. Since each fourfold-coordinated Si atom
has six bond angles, even a rather small fraction of badly
strained bonds can have a rather large impact. We have
some hope that these strains can be relieved by hydro-
genation of the supercell samples, much like hydrogena-
tion drastically improves a real a-Si. There is also a real
possibility that the size of the supercells is a significant
problem, as suggested by Hollander.** As will become
clear from the next section, the effects of these badly
strained bonds can be largely masked by using particular
tight-binding theories, but this is highly artificial.

IV. TIGHT BINDING

In this section we briefly critique tight-binding theory
with respect to the samples and states described above,
and we use the method of Sankey et al. as the reference.
In a crystal one can fit various results to first-nearest-
neighbor or first- and second-nearest-neighbor hopping
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matrix elements. For an amorphous substance one can
have atoms at any separation, and therefore one needs a
radial dependence for the hopping matrix elements. In
our study we have used the semiempirical sp3s* parame-
ters of Vogl, Hjalmarson, and Dow® for Si atoms
separated by 2.35 A, the separation of atoms in ¢-Si. We
have investigated a number of radial dependences. We
have found that the localization of the eigenstates is ex-
tremely sensitive to this radial dependence. Table V sum-
marizes some of the localization analysis for eigenvalue
126 of our 63-atom cell. All of the ¢’s in the tables refer
to the fraction of total charge for a given eigenvalue and
thus add up to 1 when summed over all sites. g(MD)
refers to the local-density value described earlier in this
paper. The rest of the g’s are tight-binding constructs
and refer to just one atom. Fedders and Carlsson® have
modified the tight-binding scheme of Vogl, Hjalmarson,
and Dow to include a distance-dependent hopping matrix
element that has an exponential cutoff originally used by
Stillinger and Weber (SW).3! The quantities g(SW,3.7)
and g(SW,2.7) refer to this method. Here the 3.7 refers to
the smooth cutoff distance with the SW scheme, and the
2.7 refers to artificially cutting the hopping matrix ele-
ment off a 2.7 A. Finally, the quantity g (d ~2,3.2) refers
to a matrix element that decreases as one over the dis-
tance squared, and g(const,3.2) refers to a matrix element
that is constant up to 3.2 A and is then zero.

In a perfect crystal, g would be 1/N. In these tables we
have chosen to exhibit all atoms for a given eigenvalue
where g > 3/N or about 0.03 for any of the methods. The

TABLE IV. Q,(n,E) for eigenvalues 430-438 for values of n, where Q,(n,E) is greater than 5.0 for

the WWW sample.
Eigenvalue Eigenvalue Eigenvalue
number n Q,(n,E) number n Q,(n,E) number n Qy(n,E)

430 7 5.02 433 122 12.33 436 111 10.27
430 10 8.85 433 126 10.24 436 112 11.03
430 12 12.52 433 143 5.50 436 114 6.49
430 26 5.83 433 146 20.62 436 117 7.89
430 154 5.71 433 153 13.38 436 131 18.21
430 155 5.11 433 199 8.33 436 184 23.18
430 158 15.95 433 202 9.81 436 203 11.77
430 160 5.94 434 78 7.44 437 10 5.59
430 188 5.32 434 122 28.18 437 20 8.05
431 148 12.59 434 126 14.97 437 41 7.04
431 158 7.46 434 143 9.69 437 42 15.30
431 180 5.55 434 146 10.42 437 45 5.71
431 182 8.14 434 153 6.44 437 158 8.73
432 77 7.75 434 199 8.06 437 165 6.94
432 97 5.39 434 202 23.30 437 182 5.84
432 99 6.32 435 10 10.58 437 185 6.17
432 148 7.81 435 42 14.42 437 187 8.96
432 156 5.77 435 94 8.00 438 99 12.17
432 159 5.83 435 158 18.16 438 102 16.18
432 165 11.64 435 161 5.57 438 106 19.70
432 173 9.41 435 164 5.83 438 111 13.32
432 182 5.54 435 167 5.24 438 117 7.46
432 188 9.96 435 185 11.61 438 151 6.37
433 77 5.97 435 187 11.85 438 184 5.62
433 78 9.43 436 58 6.38
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TABLE V. Amount of charge g at various atomic sites for eigenvalue 126 calculated by various
methods for the 63-atom sample. The definition of the g’s is given in the text. All atoms with g >0.03

by any method are included.

Atom number gMD) q(SW,3.7) q(d"%,3.2) g(const,3.2) q(SW,2.7)

4 0.020 0.015 0.004 0.004 0.045

5 0.017 0.032 0.029 0.003 0.002
19 0.032 0.042 0.060 0.026 0.003
22 0.015 0.037 0.040 0.014 0.011
23 0.063 0.155 0.166 0.026 0.008
45 0.015 0.026 0.021 0.010 0.060
56 0.062 0.163 0.138 0.004 0.502
59 0.010 0.013 0.011 0.002 0.047

most striking aspect of these tables is that tight-binding
theories with constant hopping integral or a theory with
a rather short (2.7 A) cutoff has almost nothing to do
with reality. Neither the values of g nor the trends have
any discernible relation to the ab initio results. The situa-
tion for the cases that have a radial-dependent hopping
matrix element with a long enough cutoff is much better.
There is some consistency between the two cases in this
category, and the ¢’s are reasonably proportional to the g
from ab initio calculation. Here one should remember
the g(MD) is not defined in exactly the same way as are
the other ¢’s. One might well ask why the details of the
radial dependence are much less important than the fact
that one needs some radial dependence. We believe that
the answer is that the radial dependence breaks symme-
try in a number of cases, and thus a number of unphysi-
cal degeneracies or near degeneracies are broken. For ex-
ample, tetrahedral symmetry could be broken by either a
bond-angle distortion or by a distribution of bond
lengths. The latter possibility cannot have any effect with
a constant radial dependence.

In Tables I and III we have listed the mean-square
charge Q,(E) for eigenvalues near the Fermi level for the
63-atom and WWW samples, respectively. It is easily
seen from this table that tight-binding theory can give
very misleading results for the amount of localization. In
addition, for relatively nonlocalized states rather far from
the Fermi level, the correlation between the localization
as computed from the computer program of Sankey
et al. and from tight-binding theory is minimal. Thus
tight binding appears to have no connection with the ac-
tual fluctuations in the wave function at various sites for
the extended states. This has interesting implications for
the use of tight binding in total-energy calculations. That
is, while tight binding can yield a respectable electronic

density of states, the problems with transferability and
sensitivity to computational details make it unreliable for
molecular-dynamics simulations or total-energy calcula-
tions such as those involving phase diagrams. For exam-
ple, Paxton, Satton, and Nex? find structural energy
differences much too large compared to the accurate cal-
culations of Yin and Cohen.3* The ab initio computer
program of Sankey et al.!! does not have this problem.

V. CONCLUSIONS

In this paper we have used an ab initio method'! to
study the geometrical and electronic structure of models
of a-Si. We have accurately probed the electronic struc-
ture of the very important WWW cell. In addition, we
have observed significant difficulties with using small (less
than a few hundred atoms) cells in modeling a-Si. The
use of small cells in conjunction with periodic-boundary
conditions makes it difficult to study the properties of iso-
lated defects. A small cell with only one spectral defect
might make an appropriate model for a-Si, but structures
with more defects are on weaker ground. This difficulty
may eventually be ameliorated by a study of a cluster
with hydrogenated surface (without periodic-boundary
conditions) or hydrogenation of the native defects them-
selves (with periodic-boundary conditions). Finally, we
have examined simplified electronic-structure models
(empirical tight binding) and find them to be unreliable
for many purposes.
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