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Abstract. In this Colloquium, I describe some current frontiers in the physics of semiconducting amorphous
materials and glasses, including a short, but self-contained discussion of techniques for creating computer
models, among them the quench from the melt method, the Activation-Relaxation Technique, the decorate
and relax method, and the experimentally constrained molecular relaxation scheme. A representative
study of an interesting and important glass (amorphous GeSe3:Ag) is provided. This material is a fast-
ion conductor and a serious candidate to replace current FLASH memory. Next, I discuss the effects of
topological disorder on electronic states. By computing the decay of the density matrix in real space,
and also computing well-localized Wannier functions, we close with a quantitative discussion of Kohn’s
Principle of Nearsightedness in amorphous silicon.

PACS. 61.43.-j Disordered solids – 61.43.Bn Structural modeling: serial-addition models, computer
simulation – 61.43.Fs Glasses – 71.23.Cq Amorphous semiconductors, metallic glasses, glasses – 71.23.An
Theories and models; localized states – 66.30.Dn Theory of diffusion and ionic conduction in solids –
71.23.-k Electronic structure of disordered solids

1 Introduction

Amorphous materials are among the most important for
applications ranging from art to optoelectronics. While
our ancestors have been making glass since the Bronze
Age (ca. 3000 BC), scientists have only started to un-
ravel the structure of this familiar material in the last
century, and there is still much work to be done. The
applications of amorphous materials are incredibly var-
ied [1,2]. Conventional glass has kept us warmer in win-
ter, decorated cathedrals, been a source of jewelry and
adornment since Egyptian times, served as the enclosure
for vacuum and cathode-ray tubes, and as the pipeline
through which information flows. Amorphous materials
like a-Si:H and thin-film oxides are key electronic materials
for thin-film transistors, solar photovoltaics and infrared
imaging/detection. Diamondlike amorphous C films are
standard coatings for drill bits, artificial heart valves and
razor blades. Chalcogenide glasses are the basis of cur-
rent DVD R/W technology, and may emerge as the next
generation of computer FLASH memory [3,4].

Amorphous materials are without long range order,
but typically have significant local chemical and topo-
logical order. By this we mean that in most of these
systems, the local environment (coordination, nearest-
neighbor bond lengths, bond angles with nearest neigh-
bors etc) for a particular species of atom is quite similar
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(though not identical, as for the case of an ideal crystal).
Unlike the case of a crystal, the order rapidly decays with
distance: distances of second neighbors are more uncertain
than for first neighbors, and so on. The decay of these spa-
tial correlations is an experimental observable via diffrac-
tion, and is the first test that a model must pass to merit
serious consideration. Glasses are a subset of the broader
group of amorphous materials: glasses are made by rapidly
quenching a liquid from the melt, resulting in a structure
with disorder “frozen in”. Other amorphous materials may
be grown by plasma CVD (examples include a-Si:H and
a-C:H), and other ways beside, such as ion bombardment.

The disorder in atomic positions leads to emergent
phenomena unknown in crystals. The properties of a large
collection of atoms with disorder reveal features that are
unique, important and useful. The obvious example is
that electronic and vibrational states may be localized
– confined to a compact volume of space. In crystals,
all electronic or vibrational states are extended through
space (though not necessarily uniformly) as a trivial con-
sequence of Bloch’s theorem. Observables such as the elec-
trical and thermal conductivity are sensitive to localized
states, and produce physical properties very different from
their crystalline counterparts.

Amorphous materials present a challenge and an op-
portunity to the condensed matter theorist. There is a
zoo of interesting physical processes unique to these sys-
tems and important technological applications that could
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benefit from materials optimization and basic understand-
ing. Advancement of understanding begins with knowl-
edge of the structure. Thus, the primary challenge to
the scientist is to create structural models that faithfully
represent the structure. Nowadays, all such studies are
undertaken on computers. While is is very easy with cur-
rent techniques to obtain models, it is difficult to con-
struct models that are entirely adequate – meaning that
they agree with what is known of the material: the body
of experimental data on the system. Thus, I take an op-
portunity to discuss the current state of the art for such
modeling.

The paper is organized as follows. In Section 2, I be-
gin with a discussion of techniques for modeling amor-
phous materials. It my intention to make it clear that
while there are “standard” methods available, there is
tremendous room for development. Since interatomic po-
tentials play a central role, I include a section on the pos-
sibilities including empirical potentials and a thumbnail
sketch of tight-binding methods and density functional
methods (Sect. 3). I divide modeling strategies into two
categories, the Simulation paradigm (Sect. 4) and the In-
formation paradigm (Sect. 5). In Section 6, I describe the
Wooten-Weaire-Winer [5] and other specialized methods.
In Section 7, I study a chalcogenide glass solid electrolyte
material, glassy GeSe3:Ag. Having focused up to this point
on structural aspects of materials, the last part of the pa-
per is devoted to electronic properties (Sect. 8), the nature
of the localized to extended transition in amorphous mate-
rials, and universal aspects of this transition. I close with
a calculation quantifying the locality of a-Si by applying
Kohn’s Principle of Nearsightedness [6].

2 Modeling amorphous materials

The first responsibility of a theorist modeling any disor-
dered material is to create a reasonable structural model.
Such model building is an example of what is sometimes
called an inverse problem: given some incomplete (experi-
mental) information about a material, infer its structure.
Thus, one can begin with measured pair-correlation func-
tions (or static structure factors) and try to find atomic
coordinates reproducing the measurements. The informa-
tion in the pair distribution function of amorphous ma-
terials is inadequate to uniquely specify coordinates in a
model, as we discuss below (Sect. 5.1). Indeed, no cur-
rently conceivable set of experiments implies a unique
model. It may be the case that a set of experiments by
themselves might usefully constrain the coordinates to a
representative subspace of all possible models. The need
for “reducing the dimension of the subspace” is clear from
the work of Stillinger [7], who shows that the number of
energy minima scales exponentially with system size.

Because most measured quantities are averaged over
macroscopic numbers of atoms, each with a unique envi-
ronment, the outcome of experiments is usually smooth
and rather featureless, and therefore carries limited infor-
mation. The contrast is to a field like protein crystallogra-
phy [8], in which exquisite detail is provided by diffraction

data resembling a palisade of δ functions. This informa-
tion leads to impressive reconstructions of huge crystal
unit cells. The smooth curves obtained from amorphous
materials carry much less information and therefore speci-
ficity about microstructure. Another fundamental limita-
tion of the conventional diffraction measurement is that it
is sensitive only to pair correlations. An exception to this
rule is the so-called Fluctuation Electron Microscopy due
to Treacy, Gibson and Voyles [9], which has some sen-
sitivity to three and four body correlations. One should
understand diffraction experiments on amorphous mate-
rials as providing sum rules which must be satisfied, but
are inadequate by themselves to identify a model.

One important case in which experiments imply lo-
cal information about some atoms is from spectroscopy
(electronic, magnetic or optical). For example, electronic
defect states in the optical gap are localized and possess
well-defined energies. Such information provides a window
into the local environment of a tiny fraction of the sites,
though it is just such atoms that tend to determine trans-
port and optical properties.

Thus, while we argue that experiments do not ade-
quately constrain atomic positions, any model which is to
be believed must reproduce all the experiments available.
Obvious as this is, a many papers celebrate agreement
with one incomplete measure (a single experiment, typi-
cally diffraction) and ignore other experiments. In fairness,
it is usually difficult to match all of this information, but
it is a goal that we must strive for.

3 Interatomic potentials for disordered
materials

3.1 Overview

The capability to accurately compute the total (system)
energy and interatomic forces is essential to gauge the
credibility of a model amorphous solid. If interatomic
forces are available, then it is possible to use this infor-
mation to relax the model to obtain a structure closer to
equilibrium. The interatomic potential and its gradients
are such basic tools for the modeler that we include a
brief, self-contained introduction to their estimation.

For amorphous materials the interatomic potential
Φ(R) (here R represents the set of all the atomic coordi-
nates) arises from the chemical bonding between the var-
ious constituent atoms. The chemical bond is a spatially
non-local entity, the details of which depend sensitively
on the local topology (see Sect. 8). Thus, the most reli-
able approach to modeling Φ is to acknowledge the origin
of the complexity (multi-atom forces originating in com-
plicated electronic effects), and start with an attempt to
model the electronic structure of the system (either with
a tight-binding approach or a more fundamental ab initio
method.

Amorphous materials pose a special challenge to any
assumed potential, because the disorder implies a wide
range of bonding environments. For any empirical poten-
tial, there is inevitably a “memory” of the database used
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to fit the potential in the first place. This means that the
assumed potential will be reliable for structures topologi-
cally similar to what was included in the fitting database,
but possibly unreliable for topologies that are “new” to
the potential. In the interatomic potential lore, the ability
of a potential to properly describe a broad range of local
bonding environments is called transferability.

In the following, I briefly review some of the ap-
proaches to approximating Φ.

3.2 Empirical classical potentials

Early potentials were devised by guessing a functional
form with free parameters. These parameters were then
adjusted to ensure that known properties (bond length,
bond angle, melting point, bulk modulus) in reference sys-
tem(s) (solid, liquid or molecular) were reproduced.

Pair potentials are usually a poor approximation for
solids, particularly for covalent systems with directed
bonds. The inadequacy of the pair interaction is easily
understood for a system like Si or C: if one imagines a
pair of bonded Si atoms, it is evident that a third atom
placed at a distance comparable to the separation between
the first two will affect the strength of the interaction be-
tween the initial pair because the presence of the third
atom will cause the electronic hybridization to change.
Thus, three-body forces are important. The argument can
be repeated for a fourth atom interfering with a group of
three, mutatis mutandis. This depressing gedanken exper-
iment can be truncated eventually, but only after many
atoms are included (see Sect. 8.4 for a quantitative dis-
cussion of locality in amorphous materials). To grapple
with this nonlocality, a quantum mechanical calculation
of some form is required [10].

Some systems are harder to model than others. Carbon
is especially difficult since it can form nearly energetically
degenerate tetrahedral sp3 bonds (as for diamond), and
trigonal sp2 bonds (as for graphite). Thus, it is difficult
for a carbon potential to properly differentiate different
topologies which are possible in a-C [11]. Silicon is eas-
ier to describe because of a strong preference for tetrahe-
dral geometries, a consequence of its tendency to form sp3

bonds. For either C or Si, it is not difficult to construct
a potential which is accurate for a single topology, and
small variations about that ideal (as accomplished with a
Keating potential [12]). In some ways SiO2 is easier to han-
dle, since the basic unit of the glass (the crystals, or even
the liquid [13]) is the Si(O1/2)4 tetrahedron. The ionicity
of silica essentially forbids “wrong” (homopolar) bonds,
which is another key constraint which can be built into
a reliable SiO2 potential; no such information is available
for elemental Si or C. VanBeest and coworkers [14] have
published notably successful potentials that have led to
excellent models of g-SiO2 [15].

3.3 The tight-binding method

Beginning in the seventies and eighties, and thanks es-
pecially to the work of Harrison [16], the empirical tight

binding (TB) method grew from a pedagogic mainstay in
textbooks into a powerful tool for understanding a great
many features of solids. It has been continuously advanced
since into a practical tool for computing total energies and
forces (and is therefore the heart of many MD simula-
tions).

In the TB approximation, we imagine that the elec-
tronic eigenstates can be represented by a linear combi-
nation of atomic orbitals: |ψi〉 =

∑
μ a

i
μ|μ〉 where μ is a

site-orbital index and i indexes the band or state. This
method enables the calculation of an approximate one-
body Hamiltonian matrix, whose eigenvalues are taken to
approximate the allowed electronic energies and the eigen-
vectors are the states. An interesting feature of TB calcu-
lations is that |μ〉 are never explicitly used. Instead, rules
for the distance dependence of the basic matrix elements
(such as s−s or π−π, etc.) are devised from a fitting pro-
cedure. In the usual implementation of TB calculations,
the basis is taken to be orthonormal: 〈μ|ν〉 = δμν . Also,
most TB Hamiltonians include interactions only with near
neighbors and include only two-center contributions. The
eigenvectors are filled up to the Fermi level in the usual
way. The sum of the occupied eigenvalues is the (attrac-
tive) electronic contribution to the total energy [17]. To
compute the system (ions + electrons) energy a repulsive
interaction must be added to the electronic part. This is
obtained from some fitting procedure. TB is the simplest
approach enabling an estimate of the many-body forces
characteristic of covalently bonded materials.

Transferability is an issue for tight-binding meth-
ods, as for other potentials. The simplified form for
the Hamiltonian (two-center approximation and assumed
orthogonal basis set) are probably most important in
this connection. The first TB force calculations were
due to Sankey and Allen [18]. The most widely used
TB Hamiltonians for force calculations are those of
Goodwin-Skinner-Pettifor [19] type. The original [19] was
for Si; this was adapted by Xu et al. [20] to carbon systems.
The next step in complexity is to use a non-orthogonal
Hamiltonian, and really “work out” the matrix elements.
In this category is a Hamiltonian whose form is motivated
by density functional theory, explicitly using squeezed
(spatially confined) atomic orbitals as basis functions [21].

The TB method fills an important niche between
empirical potentials, with their serious issues of transfer-
ability and ab initio methods with their impressive accu-
racy, but equally impressive demands on CPU and mem-
ory. After the hard work of building a fairly transferable
TB Hamiltonian, it is relatively easy to get good per-
formance from massively parallel computers, since virtu-
ally all of the computer time is spent in diagonalization.
Current high performance computers routinely have par-
allel libraries available that allow for the efficient use of
many processors for diagonalization. Finally, as the TB
approach is based conceptually upon a real-space local-
ized representation for the electron states, the method is
ideally suited to linear scaling algorithms [22] based on
a real-space localized representation for electrons, either
with the density matrix or Wannier functions (see Sect. 8).
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Colombo [23] and Lewis and Mousseau [24] have re-
viewed the use of TB for disordered systems. In addition,
Colombo has made a convenient public domain TB simu-
lation code available for download [25].

3.4 Ab initio methods

From a fundamental point of view, the complexity of elec-
tronic structure and force calculations arises from the
many-body nature of the interactions between the elec-
trons. Currently, it would seem that direct attacks on the
many-electron problem is too difficult to have direct im-
pact on amorphous systems, requiring as they do a large
number of atoms to provide a model worth investigat-
ing. Thus, all the successful electronic structure calcula-
tions on amorphous insulators have involved some kind
of mapping of the many-body problem into an effective
one-electron problem. Historically, the Hartree [26] and
Hartree-Fock [27] approximations were the first success in
this direction; descendants of these methods are widely
used today, particularly in quantum chemistry. Tight-
binding captures some of the many-body effects, albeit
in an empirical fashion.

Because of the mass difference between the elec-
trons and nuclei, it is possible to decouple the nuclear
and electronic degrees of freedom with the adiabatic or
Born-Oppenheimer approximation [28,29], in which the
electrons are assumed to respond instantly to motions of
the ions (the electrons are taken to be in their ground state
for all instantaneous ionic conformations). In addition, the
nuclei are treated as classical particles which move in a po-
tential determined by the electrons in their ground state,
computed for the instantaneous ionic coordinates.

Virtually all ab initio calculations are based on “den-
sity functional” methods. The conceptual basis of density
functional theory is to work with the electronic charge
density rather than the many-particle wave functions1.
The idea extends back to Thomas and Fermi [30], and
the charge density emerges naturally as a key quantity
in Hartree and Hartree-Fock calculations. The logic justi-
fying the the elevation of the charge density to primacy
in electronic structure calculations is due to the work of
Kohn, Hohenberg and Sham [31]. One of the most ap-
pealing features of DFT is that it is, in principle, an exact
theory.

The following statements are the basis of zero-
temperature DFT:

(1) The ground state energy of a many electron system
is a functional of the electron density ρ(x):

E[ρ] =
∫

d3xV (x)ρ(x) + F [ρ], (1)

where V is an external potential (due for example to inter-
action with ions, external fields, e.g., not with electrons),

1 Kohn gives a fascinating argument that it does not make
sense, even in principle to try to compute the many-electron
wave function systems with more than ca. 100 electrons [6].

and F [ρ] is a universal functional of the density. The trou-
ble is that F [ρ] is not exactly known, though there is con-
tinuing work to determine it. The practical utility of this
result stems from:

(2) The functional E[ρ] is minimized by the true
ground state density.

It remains to estimate F [ρ], which in conjunction with
the variational principle (2), enables calculations on ma-
terials. To estimate F [ρ], the usual procedure is to note
that we know some of the major contributions to F [ρ],
and decompose the functional in the form:

F [ρ] = e2/2
∫

d3xd3x′ρ(x)ρ(x′)/|x− x′|+Tni(ρ)+Exc(ρ).

(2)
Here, the integral is just the electrostatic (Hartree) in-
teraction of the electrons, Tni is the kinetic energy of a
noninteracting electron gas of density ρ, and Exc(ρ) is
yet another unknown functional, called the “exchange-
correlation” functional, which includes nonclassical ef-
fects of the interacting electrons. Equation (2) is diffi-
cult to evaluate directly in terms of ρ (because of the
term Tni). Thus, one introduces single-electron orbitals
|ψi〉, for which Tni =

∑
i occ〈ψi| − �

2/2m∇2|ψi〉, and
ρ =

∑
i occ |ψi(x)|2 is the charge density of the physically

relevant interacting system. The value of this decomposi-
tion is that Exc(ρ) is a smooth and slowly-varying func-
tional of the density: we have included the most difficult
and rapidly varying parts of F in Tni and the Hartree in-
tegral, as can be seen from essentially exact many-body
calculations on the homogeneous electron gas [33]. The
Hartree and non-interacting kinetic energy terms are easy
to compute and if one invokes the “local density approx-
imation” (taking the electron density to be locally uni-
form), and using the results for the homogeneous electron
gas, functional (Eq. (2)) is fully specified.

With noninteracting orbitals |ψi〉,

ρ(x) = 2
∑

i occ

|ψi|2, (3)

then the minimum principle plus the condition that
〈ψi|ψj〉 = δij can be translated into an eigenvalue problem
(the celebrated Kohn-Sham equation) for the |ψi〉:

{−�
2∇2/2m+ Veff [ρ(x)]}|ψi〉 = εi|ψi〉, (4)

where the effective (density) dependent potential Veff (in
practical calculations orbital dependent) is:

Veff [ρ(x)] = V (x)+e2
∫

d3x′ρ(x′)/|x−x′|+δεxc/δρ. (5)

In this equation εxc is the parameterized exchange-
correlation energy density from the homogeneous electron
gas. The quantities to be considered as physical in lo-
cal density functional calculations are: the total energy
(electronic or system), the ground state electronic charge
density ρ(x), and related ground state properties like the
forces. In particular, it is tempting to interpret the |ψi〉
and εi as genuine electronic eigenstates and energies (and
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indeed this can often be useful); but such identifications
are not rigorous [34]. Note that the starting point of den-
sity functional theory was to depart from the use of or-
bitals and formulate the electronic structure problem rig-
orously in terms of the electron density ρ; yet a practical
implementation (which enables an accurate estimate of
the electronic kinetic energy) led us immediately back to
orbitals! This illustrates why it would be very worthwhile
to know F (ρ), or at least the kinetic energy functional
since we would then have a theory with a structure close
to Thomas-Fermi [30] form and would therefore be able to
seek one function ρ rather than the cumbersome collection
of orthonormal |ψi〉.

The usual implementation of LDA leads to a nonlin-
ear set of coupled integrodifferential equations. The ori-
gin of this nonlinearity is that Veff in the Schrödinger-like
(Eq. (4)) is ρ-dependent, which in turn depends on the
eigenvectors |ψi〉, which in turn depend on Veff and so on.
This nonlinearity is dealt with in the usual way “iterat-
ing to self consistency”, an expensive inner loop on an
already challenging computational task. The development
of practical density functional codes is a vast undertaking.
Several “standard” codes are now in general use. Among
these are SIESTA [35] and FIREBALL [36] which employ
local basis sets and VASP [37], CASTEP [38], CPMD [39],
quantum espresso [40] and ABINIT [41] which use a plane
wave representation. Each of these codes has been im-
mensely successful, and all have contributed to the theory
of disordered systems.

The discovery and practical development of density
functional methods has proven to be a transformational
step in modeling amorphous materials but also for solid
state and molecular physics generally. The reason for this
bold claim is that the methodology offers genuinely pre-
dictive capability for a wide variety of materials. It has
enabled the construction of structural models of previ-
ously poorly understood materials, and also allows many
direct connections between theory and experiment – den-
sity functional calculations routinely provide structural,
vibrational, electronic, optical and other information that
may be compared confidently with experiments.

4 Simulation paradigm

4.1 Molecular dynamics simulation

The idea of molecular dynamics (MD) is implicit to a New-
tonian view of the world. If we possess the coordinates
and velocities of a collection of particles and we know the
interatomic force, then Newton’s second law deterministi-
cally specifies the time evolution of the system for all later
times. Classical statistical mechanics is concerned in part
with macroscopic prediction derived from the collective
properties of large systems obeying classical mechanics.

So far as I can tell, the first MD simulation was per-
formed by an astronomer without a computer. During the
second World War, Erik Holmberg [42], was concerned
with modeling energy transfer between colliding galaxies.

His idea was to exploit the identical radial (1/r2) depen-
dence of the light intensity and the gravitational force, to
enable simulations based upon an “optical analog” of the
gravitational interaction. Holmberg constructed a remark-
ably ingenious apparatus in which two groups of 37 lamps
each (each lamp representing a star, each group represent-
ing a galaxy) interacted optically, and the light intensity
at each lamp (“star”) was measured with photocells. Since
the intensity2 was proportional to the interstellar forces,
the time evolution of a galactic collision could then be
simulated, and Holmberg was able to see spiral arms and
learn something about capture probability. This study was
the ancestor of all MD simulations since [43].

For disordered solids, the simulation paradigm is real-
ized by attempting to model the transition from a liquid to
a disordered solid on a computer. One begins by forming
a well-equilibrated computer model of the liquid [44], and
then applies some form of dissipative dynamics to “cool”
the liquid through something analogous to the glass tran-
sition. We name this the “melt-quench” method.

Empirically, there have been successes for the melt-
quench method, as demonstrated for silica [45] and certain
chalcogenide glasses [46,47]. Advocates of the method as-
sert that it is unbiased (not forcing the system toward any
a priori preferred result). This is not entirely true, since
the method is clearly biased to incorporate too much liq-
uid character into the solid state.

It is reasonable to conjecture that melt-quench should
work when (1) the structure of the liquid is essentially
similar to the structure of the glass, (meaning that sim-
ilar fundamental units or building blocks are present in
both) and (2) the ordering is quite local (which amounts
to saying that the building blocks from which the glass
(and liquid) is composed are quite small). The failure of
the method to produce realistic models (that is, with a
small concentration of coordination defects) of Si is prob-
ably connected to the fact that the liquid is ∼6-fold coor-
dinated and a metal [48], whereas the amorphous phase is
a tetrahedral insulator with a concentration of non four-
fold atoms less than 0.01%. Also, experimentally, a-Si is
not a glass. Rapidly quenching the liquid does not produce
a-Si, which is formed with ion bombardment or chemical
vapor deposition techniques. For a recent analysis of the
point, see reference [49]. In g-GeSe2, a classic stoichiomet-
ric chalcogenide glass, we have seen that quench from the
melt does a respectable job, though it leaves signatures
of excessive liquid-like character in the static structure
factor [46,47]. Because it is such a conceptually straight-
forward scheme for making models, it is always the first
technique to try on terra incognita.

4.2 Landscape methods; activation-relaxation
technique

Away from the melting temperature, many materials ex-
plore a sequence of metastable states separated by energy

2 Holmberg used selenium photocells to measure the light
intensity. We may hope that they were amorphous.
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barriers much larger than kBT , the typical excitation
energy scale at the atomic level. For long periods of
time, the configuration vibrates around a given metastable
state, then, due to rare energy fluctuations, it will find
enough energy to jump over a barrier and move to a new
metastable state. The dynamics of these materials is there-
fore dominated by the rates controlling the jumps from
one metastable state to another.

It is possible to do better by directly focusing on the
rare events. To a first approximation, these are fully de-
termined by the activation energy, i.e. the energy needed
to bring a configuration from a local configurational mini-
mum to a nearby saddle point. A low temperature charac-
terization of the dynamical properties of a disorder system
can therefore be made by reducing the configuration en-
ergy landscape to a network of local minima connected by
paths going through first order saddle points. Recently,
Barkema and Mousseau have proposed such a procedure,
the activation-relaxation technique (ART), which provides
a local prescription for moving from one minimum to an-
other one with a trajectory passing by a shared saddle-
point (event) [50].

The advantage of ART is that it defines moves directly
in the configurational energy landscape, which really con-
trols the dynamics, instead of trying to map events into
complicated real-space moves. ART is independent of the
details of the interaction potential and the specificity of
a given material and requires only a local and continuous
description of the energy landscape.

An event in ART is defined as a move from a local en-
ergy minimum M(0) ≡ R(0) to another nearby minimum
M(1) ≡ R(1)

1 following a two-step process mimicking a
physical activated processes:

(i) the activation during which a configuration is pushed
from a local minimum to a nearby saddle-point;

(ii) the relaxation which brings the configuration from
this saddle-point to a new local minimum.

The details of how the saddle point is reached, and other
technical points concerning the implementation may be
found in the literature [50].

ART has already been applied with success to a se-
ries of static problems in metallic glasses, a-Si [50] and a-
GaAs [52,53]. A slightly different version of the algorithm
was also developed independently by Doye and Wales and
applied to map the full energy landscape of a 13-atom
Lennard-Jones cluster [54]. In reference [55], ART was ap-
plied to Lennard-Jones clusters and it was demonstrated
that ART converges on saddle points using a Lanczos [56]
scheme.

Because it necessitates only the calculation of the
force, ART is scalable with the size of the systems studied.
In general, about a 1000 force evaluations per event are
necessary. This means that ART will be useful for acti-
vated processes with barriers significantly larger than the
temperature of the material studied. In this case, though,
it provides a unique tool for the description of rare events
such as diffusion and relaxation mechanisms in disordered
materials.

5 Information paradigm

5.1 Reverse Monte Carlo

A different approach to structural modeling begins with
the manifestly sensible principle that a model should agree
with experiments. So, rather than making a model by im-
perfectly mimicking the process of glass formation, the
idea is to construct the model using known experimental
facts. The method appears to have been first adopted by
Kaplow and co-workers [57] as a means to make atomistic
models of vitreous Se consistent with their X-Ray diffrac-
tion measurements. The idea was greatly extended and
developed by McGreevy and Puzstai [58] who named it
the Reverse Monte Carlo (RMC) method. A popular re-
cent outgrowth is the EPSR [59] method for dealing with
partial structure factors.

The MD method is a direct approach: a simulation
procedure is adopted that results in a structural model
that is then compared to experiment. RMC proceeds in
the opposite direction, and produces models directly from
information implied by experiment. To implement this,
the goal is find a set of coordinates that minimize the
difference between model and experiment:

χ2(R) =
∑

ηi{FE(Qi) − Fm(R, Qi)}2 (6)

where the sum runs over all data points Qi, FE(Qi) is
the value of an experimental observable at that point,
Fm(R, Qi) is the value of the observable given by the
model at the data point and for a given collection of
atomic coordinates R. The η are non-negative weights for
the data points, possibly associated with experimental er-
ror. By construction χ2 ≥ 0, with equality if and only if
the model and experiment exactly coincide at all the data
points Qi. We face an optimization problem of finding a
set of R satisfying χ2 = min. Evidently χ2 is a measure
of goodness of fit (between experiment and model), as is
well known from elementary error analysis. This is the
simplest version of RMC: the method has been general-
ized in many ways, to include joint analysis of multiple
experimental data sets, and the inclusion of constraints
(requiring specified coordination of atoms, for example).
Note that the method has the attractive feature that no
interatomic potential is required.

This approach is much like a structural refinement
method, in which atomic positions are tuned to be consis-
tent with scattering or spectroscopy data. For amorphous
materials, the data are smooth from structural averag-
ing, and there is no unit cell, as in a crystal. The data
constrain the structural models for amorphous materials,
but far less rigorously than for a case like protein crystal-
lography. Thus, in analogy with the problem of minimiz-
ing the potential energy in a MD quench, RMC faces the
problem of too many minima (the possibility of a mini-
mization procedure getting stuck at a configuration that
makes χ2 = min, but for a poor fit). This can usually be
overcome with a Monte Carlo minimization [61]. More se-
riously, many highly discrepant configurations produce a
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satisfactorily small χ2. This means that in practice a fur-
ther analysis is required: since many different models fit
experiment (by construction), the “structural degeneracy”
must be broken by some criterion external to the exper-
iment, such as expectations of chemical order, coordina-
tion etc. Current implementations of the RMC method
recognize this, and a very useful C++ code has been re-
leased [60].

The RMC method is particularly useful when we do
not possess interatomic potentials, or the energy is pro-
hibitively expensive to compute. It is also a flexible tool,
allowing one to compare the structural information in one
experiment relative to another, and even to determine the
structural consequences of one part of a data set relative
to another. It is also an ideal way to create a first model
(that might, for example, locally constrain desirable chem-
ical and topological order) that may be analyzed or further
relaxed by other methods.

5.2 Including Φ

Consistent with the information-based logic of the pre-
ceding section, it is desirable to include all the informa-
tion available in the process of model construction. This
should include experimental information and information
inherent to accurate interatomic interactions. The intu-
itive means to accomplish this is to add a term to the
RMC function:

ξ(R) = χ2(R) + ΛΦ(R), (7)

where Λ > 0. Then one minimizes the generalized penalty
function ξ, finding a configuration satisfying:

∂ξ/∂Rα = 0;α = 1, 2, . . .N. (8)

This has been carried out for models of amorphous car-
bon [62] with an empirical potential and a Monte Carlo
minimization of ξ, and before that, for biomolecules [63].
For an ab initio Hamiltonian this is expensive, since Monte
Carlo minimization of equation (7) requires a very large
number of energy/force calls. Also, the parameter Λ is
essentially a weight factor indicating the relative impor-
tance of experiment (first term) and energy (second term).
Within this picture, there is no well-justified way to spec-
ify Λ.

An alternative, Experimentally Constrained Molecular
Relaxation (ECMR), employs a self-consistent iteration
scheme: (1) starting with an initial generic conguration
R1, minimize equation (7) to get R2; (2) steepest-descent
quench R2 with an ab initio method to get R3; (3) subject
the resulting conguration to another RMC run (minimize
again); repeat steps (2) and (3) until both the force field
relaxed model and RMC models no longer change with
further iteration. For the RMC component of the itera-
tion, one makes the conventional choice of using Monte
Carlo for the minimization. This is easily implemented
and does not require gradients (and thus allows the use
of non-analytic terms in Eq. (7), if desired). This method
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Fig. 1. Neutron structure factor of g-GeSe2: experiment,
647-atom ECMR model and 216-atom quench from the quench
from melt model (designated “Cobb” [47]). Note the improved
agreement on the first sharp diffraction peak (near Q =1 Å−1)
for the experimentally constrained molecular relaxation calcu-
lation. From [65].
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Fig. 2. Vibrational density of state of g-GeSe2: experi-
ment [66], decorate and relax [76] and ECMR models [65].
Note the middle band, associated with a tetrahedral breathing
mode. From [65].

has produced satisfactory results on g-GeSe2 [65], the first
application of such a technique on a network glass. The re-
sults for this glass are shown in Figure 1. In Figure 2, the
vibrational power spectrum is presented, with the char-
acteristic “three hump” structure; the middle band being
associated with the tetrahedral breathing modes [66].

ECMR has also been applied to a-Si:H [67].

5.3 A Bayesian approach

An appealing approach that has recently been applied to
biomolecules might establish these methods on a more rig-
orous basis. Bayesian probability theory [68] offers a rig-
orous and fundamental approach to the Model Selection
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Problem, which for our purposes can be stated as: given
information (experimental data and possibly other a pri-
ori information), what model best describes this state of
knowledge?

We reproduce the argument here in a simplified form,
and suggest that the reader should read the original pa-
pers [70]. If R denotes a structural model (a set of coor-
dinates) then the probability that R is valid given exper-
imental data D is provided by Bayes theorem:

P (R|D) ∝ P (D|R)P (R). (9)

This statement relates the probability that a model de-
scribes the data to a product of probabilities: the prob-
ability that the data is reproduced from the model (the
likelihood) times the a priori probability that the model
is valid (e.g., based upon considerations other than the
data D). A quantitative evaluation of P (R|D) is valuable,
since it allows one to quantify the credibility of different
models, and provides a measure of quality on the space of
structural models, which we may then seek to maximize.
The sharpness of the maximum is a measure of confidence
in the model (or information content in the data). With
some additional assumptions, Habeck et al. [70] argue that
the prior P (R) ∝ exp(−Φ(R)/kT ), and P (D|R) is related
to χ2 leading to the conclusion that maximizing P (R|D)
is achieved by minimizing the functional:

ξB(R) = n/2 logχ2(R) + Φ(R)/kT (10)

where n is the number of data points, k is Boltzmanns con-
stant and T is the temperature. Minimizing equation (10)
modifies the model (changes the coordinates) to minimize
the energy while also reproducing experiment. Indeed, the
gradient of the first term is essentially a fictitious force
that pushes the system toward agreement with experi-
ment. The form (Eq. (10)) quantifies the relative impor-
tance of the data and the potential energy, and clarifies
the role of the temperature.

6 Specialized methods

6.1 Wooten-Weaire-Winer

For the peculiar case of tetrahedral amorphous insula-
tors a-Si and a-Ge, the finest models are made with
the “WWW” technique, due to Wooten, Winer, and
Weaire [5]. This technique is essentially a Monte Carlo
modeling approach with inspired moves. In the origi-
nal version, one starts with a perfect diamond structure,
and then adopts the WWW bond transposition or bond
switch. For a bonded pair of atoms BC a pair of nearest
neighbors A and D is chosen, so that A is the neighbor of B
and not the neighbor of C, and D is the neighbor of C and
not the neighbor of B. Then bonds AB and CD are broken
(deleted from the bond lists for atoms B and C) and new
bonds AC and BD are created (added to the appropriate
bond lists), i.e. atoms B and C exchange neighbors. This
procedure effectively introduces five- and sevenfold rings –

which are a characteristic structural feature of the CRN –
while preserving four-fold coordination. The method was
extended to binary glasses by Mousseau and Barkema [71].

Monte Carlo moves are accepted in Metropolis [61]
fashion with Keating springs as the interatomic potential.
In practice, the method is not trivial to implement, as
one needs to introduce sufficient disorder (so that the sys-
tem does not return to a crystalline state) and a proper
simulated annealing scheme to produce an optimal net-
work. Mousseau and Barkema [72] have shown that it is
not necessary to start with diamond – a completely ran-
dom configuration leads ultimately to topologically identi-
cal networks as those obtained from the randomized crys-
tal. Carefully devised WWW networks are in remarkable
agreement with experiment on structure, electronic struc-
ture and dynamics. The method is successful for two rea-
sons: (1) the moves identified by WWW are in fact quite
physical, as shown by the Activation Relaxation Tech-
nique (ART) [72] (Sect. 4.2), and (2) the method com-
pels the system to retain four coordination, and indeed to
force bond angles close to be near the tetrahedral angle
(through the bond angle springs in the potential). This
second condition amounts to constraining the optimiza-
tion of the network to satisfy a priori information (which
can be inferred from optical and other measurements).
In the spirit of my “paradigm” subdivision of methods,
WWW involves aspects of simulation (Metropolis anneal-
ing) and information (imposition of constraints on net-
work topology). The method is flexible, and has been used
for heterogeneous phases of a-Si with crystalline inclu-
sions [73] (these appear to be important for photovoltaic
applications).

6.2 Decorate and relax

In this section, I present an approach for modeling cer-
tain binary glasses. We begin with a WWW model of a-
Si. This model is strictly four-coordinated, and has bond
angles tightly centered on the tetrahedral angle. We deco-
rated the Si–Si bonds with a bond-centered atom from
column VI, and rescaled the coordinates to the exper-
imental density of the glass desired (eg, SiO2, GeSe2,
etc.). Then we relax the resulting model with an ab initio
method (Sect. 3.4). We name this scheme “decorate and
relax” [76]. It is somewhat surprising that the resulting
models are often very realistic (compared to experiments).
Such models are easy to generate, and preliminary work
with Chubynsky and Thorpe suggests that the approach
may be extended to off-stoichiometric compositions. Vink
and Barkema have also explored similar methods in sil-
ica [77]. The concept of bond-decoration certainly pre-
dates our work [74], though ab initio relaxation seems to
begin with reference [76].

Here, I review 192 and 648-atom Decorate and Relax
models of g-SiO2. By taking the Fourier transform of
the pair-correlation function we compute the neutron
static structure factor SN (Q), which may be directly com-
pared to experiments. The structure factor of these mod-
els, along with experiment is plotted in Figure 3. The
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Fig. 3. Calculated total neutron structure factor S(Q) of
glassy SiO2: dashed lines are for 192-atom model and solid lines
are for 648- atom model compared to experimental data [79]
(filled circles). We used scattering lengths of bSi = 4.149 and
bO = 5.803 fm. From [76].

discrepancy between the 192 and the 648-atom mod-
els arises from finite size effects, since the same method
was used to generate both models. It is of some interest
that the only substantial difference between the 192 and
648 atom models was near 2.0 Å−1 in the minimum after
the first diffraction peak. The only remaining discrepancy
between theory and experiment appears near 12 Å−1, and
is similar for both models (and so is not due to a finite-size
effect).

Another measure of the credibility of any amorphous
silica model is the distribution of the O–Si–O and Si–O–Si
bond angles in the network. The FWHM of the former
distribution is 9◦, and of the latter 25◦. These numbers are
in reasonable agreement with experiments and excellent
models made with empirical potentials, and the width of
the Si–O–Si distribution is near available experiments [78].
The distribution of bond angles for the models are give in
Figure 4.

Decorate and Relax is a simple idea that spares us
from the expensive melt-quench technique. The scheme
is faster than the traditional methods (at least 10 times
faster for a given interatomic interaction). We have seen
that the scheme produces a satisfactory ab initio model of
amorphous silica involving a reasonable number of atoms
(648) and accurate forces (from SIESTA [35]).

6.3 Building blocks [80]

We have emphasized the limitations of quench from the
melt methods. The prime deficiency is one of time scales
– the method seems to work if the liquid that is being
quenched is topologically akin to the glass. One can under-
stand this situation as one in which there are fundamental
structural units, call them building blocks (BB) that exist
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Fig. 4. Bond angle distributions for decorate and relax model
of g-SiO2. Top: O–Si–O angle; bottom: Si–O–Si. From [76].

in both the liquid and the glass3. If the BBs are simple,
such as Si–O tetrahedra, it is not difficult to equilibrate
the liquid long enough to produce these. If the BBs of the
liquid and glass are different, or if the BBs are very com-
plex, it is likely that melt-quench approaches will be foiled
by the limitation of short times. For a general multinary
glass, it is likely that the BBs will be complex.

Thus, we have tried to grapple directly with the ques-
tion of determining energetically reasonable BBs. The
idea is to start with a small supercell with enough atoms
present to reflect the composition (so that the small cell
has the same chemical composition as the glass). Then, we
do an extended annealing on the cell to find a minimum
energy conformation. The resulting structure forms a crys-
tal with an energetically preferred topology and chemical
order. Since the cell is small, we can thoroughly explore
the energy minima to find the best candidate BB. While
there is no fundamental justification for it, we have so
far used only cubic cells for this purpose. Once the pre-
ferred small cell is found, we stack several such cells to-
gether, melt them (by construction, they have the right
stoichiometry), and then we quench the resulting liquid.

We illustrate the static structure factor for a 200-atom
model of the ternary glass Ge2As4Se4, along with a com-
parison to experiment in Figure 5 [81]. This model also

3 Of course this is only an assumption. It is conceivable that
there are cases in which the BBs do not exist.
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Fig. 5. Radial distribution function for Ge2As4Se4 glass, made
using the building block method (see text). Experiment [81],
open circles, model solid line. From [80].

produced a state-free optical gap of about 0.8 eV [80].
By contrast, a calculation with the same Hamiltonian
(FIREBALL [36]) based on the melt-quench approach was
completely unsatisfactory, with essentially no optical gap,
and an unsatisfactory structure factor. A curious feature
of the BB model is that it has limited respect for Mott’s
8-N rule [2], as Ge and Se is mostly three-fold rather than
four fold and two fold. Interestingly, As is almost perfectly
three-fold as Mott would predict. The a priori expectation
would be that this material should satisfy the 8-N rule,
but this is not certain, since, for example, boron regularly
violates the rule in a-Si [82]. More work is needed to draw
firm conclusions on the BB method, but preliminary signs
show some promise.

7 Example: study of a solid electrolyte

Chalcogenide glasses (glasses involving column VI
species S, Se or Te) have long held interest for applica-
tions, and probably the example of greatest ubiquity is the
ternary telleuride material used for phase-change optical
memory: “Digitial Versatile Disks”. Chalcogenide glasses
are employed for applications requiring IR-transparent op-
tical windows. The “optomechanical effect [83]” in arsenic
sulfide glasses is the only known mechanical manifestation
of the polarization of light.

Materials with high ionic conductivity and high electri-
cal resistivity are designated solid electrolytes. These ma-
terials are used as solid-state batteries and chemical sen-
sors [1]. The best-known example is the lithium “button
battery”. Flexible, polymer-based solid electrolytes have
even been proposed for automotive (electric car) applica-
tions [84]. Chalcogenide glasses in a wide range of com-
positions become fast ionic conductors with the addition
of sufficient quantities of Ag or certain other metals. The
Ag+ ions assume a variety of different coordination pat-
terns in the glassy host with tiny energy differences, and
this is the basic reason why Ag+ is mobile. From a mate-
rials point of view it is interesting that an amorphous ma-
terial should allow rapid motion of a transition metal ion
through the network, and a great deal of energy has been
devoted to understanding this phenomenon. Such diffusive
processes in glasses have been studied for decades with a
variety of experimental methods. There have been several
approaches to modeling diffusive behavior.

Silver doped chalcogenide glasses are usually made
by photodiffusion (shining light of a suitable (UV) wave-

length on a thin Ag layer deposited on the glass surface).
Kawaguchi, Maruno and Elliott [85] have studied vari-
ous Ag/Ge/Se (and analogous sulfide) films, and explored
photo-induced surface deposition (in which light induces
segregation of small Ag particles at the surface). They
also discussed the structure of Ag rich films and discuss
phase separation and showed that the maximum Ag con-
centration was about 40% for amorphous GeSe films. The
photodiffusion depends on several external factors includ-
ing light intensity, wavelength, temperature, pressure, and
external electric fields.

Recently, Kawasaki et al. [86] explored the composition
dependence of the ionic conductivity in Agx(GeSe3)1−x

glasses and found a maximum conductivity near x = 0.3.
Iyetomi, Vashishta and Kalia [87] used MD with empirical
potentials to make models for Ag4Ge3Se9, and observed
a tendency toward Ag phase separation consistent with
the neutron diffraction data of Moss and Price [88]. Their
interatomic interaction is simple, physically transparent,
and appears to capture significant aspects of the material,
especially the important tendency of Ag to phase sepa-
rate. In different glasses, such as Li2SiO3, a novel time
series analysis method, the “singular spectrum method”
has been employed with empirical potential MD simula-
tions to detail Li+ motion [89].

In heavily Ag-alloyed glasses (of order 50% Ag), there
is another fascinating effect: photodeposition [90]. Here,
shining light on the “virgin” surface causes Ag metal to
appear. These surface Ag clusters are negatively charged.
Lithography can then be used to control the surface prop-
erties. For optical recording the best materials are As-
based glasses, but the effect is also strong in the GeSe sys-
tem [91]. These effects occur only for an amorphous host.
Recently, it was shown that related glasses are phase sep-
arated into a “backbone” phase and a Ag-rich phase [92].
It is quite possible that Ag segregates into Ag2Se regions
for the glasses we model here.

The solid electrolyte memory device of Axon
Technologies Corp.4 is schematically represented in Fig-
ure 6. Application of the bias shown creates electro-
deposition of Ag metal starting at the cathode, and the
filament grows to reach the anode at which point there
is metallic conduction through the cell and a commen-
surately low resistance. Bias voltages are low (of order
0.25 V). Because the Ag ions diffuse quickly, the switching
can be rapid (with a 10 nm bridgeable path switch time
is estimated to be less than 10 ns) [93]. For a TEM study
of these processes in thin films, see the work of Romero
and co-workers [94]. A related device, based upon Ag2S,
has been explored by Terabe and colleagues [95].

While the essential operation of the cell is under-
stood, there is limited microscopic understanding of the
ion dynamics in an electric field, the role of the amor-
phous network, the electro-deposition process and asso-
ciated chemistry, or the reverse biased case, which in-
jects ions. Despite serious (and successful) experimental
efforts to optimize the chalcogenide host for ion mobil-
ity, simulation and modeling may further improve upon

4 US Patent 5,761,115, and many others.
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Fig. 6. Schematic representation of Programmable Metallization Cell [93]. Left: initial high resistance state (Ag exists in the
form of ions); Right: the cell is biased to grow metallic Ag filaments between cathode (bottom electrode) and oxidizable (Ag)
anode (top). The resistance is nearly zero, because of the metallic filament. Figure courtesy of Kozicki and Mitkova, Arizona
State University and Axon Technologies Corp.

the composition as the atomistics of the process are elu-
cidated.

7.1 Model formation

The models of the silver chalcogenide material were gen-
erated using the melt quenching method [96] with the
efficient local basis density functional code FIREBALL
designed by Sankey, Lewis and coworkers [36]. We ran-
domly placed atoms in a cubic supercell according to
the correct stoichiometry [for (GeSe3)0.90Ag0.10 54 ger-
manium atoms, 162 selenium atoms and 24 silver atoms;
for (GeSe3)0.85Ag0.15 51 germanium atoms, 153 selenium
atoms and 36 silver atoms]. The size of the cubic cells
was chosen to make the density of these glasses close to
experimental data. The box size of the 240 atom super-
cell of (GeSe3)0.90Ag0.10 and (GeSe3)0.85Ag0.15 are respec-
tively 18.601 Å and 18.656 Å with corresponding density
4.98 g/cm3 and 5.03 g/cm3 [98]. The structures were an-
nealed and we obtained well-thermalized melts at 4800 K.
We took three steps to cool down the cells. First, the cells
were equilibrated and cooled to 1100 K for 3 ps; then they
were slowly cooled to 300 K for approximately 5 ps. As
final step, the cells were steepest descent quenched to 0 K
with forces smaller in magnitude than 0.02 eV/Å. All cal-
culations were performed at constant volume using the Γ
point to sample the Brillouin zone in order to compute
energies and forces.

7.2 Structure

Figure 7 shows the calculated static structure factors for
(GeSe3)0.90Ag0.10 and (GeSe3)0.85Ag0.15 and the compar-
ison with the experimental data from reference [98]. A
feature of interest seen in many glasses is the so called
“first sharp diffraction peak” (FSDP [1]) exhibited in both
models at about 1.07 Å−1. In this system, for both the-
ory and experiment, the FSDP is more like an oxymoronic
“First sharp diffraction shoulder”. Piarristeguy et al. [98]
show that this peak varies as a function of Ag content. As
Ag concentration increases, the FSDP intensity decreases.
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Fig. 7. Calculated total structure factor S(Q) of
(GeSe3)0.90Ag0.10 and (GeSe3)0.85Ag0.15 glasses compared to
experimental [98] data. From [96].

Thus the introduction of Ag atoms induces shorter length-
scale density fluctuations than the GeSe3 glass. Moreover
it disturbs the GeSe4/2 network formation that leads to
the fragmentation of GeSe4/2 tetrahedra. From analysis of
the partial structure factors it is apparent that the FSDP
has contributions from all of the partials [96].

Where the Ag is concerned, to minimize the system
energy, the Ag atoms sit preferentially near the midpoint
of a line connecting (Ge or Se) atoms separated by about
5.0 Å, and we name these “Trapping Centers” or TC [97].
About 61% of Ag sites reside between a pair of Se, the rest
involve one Ge. The distances between host pair atoms is
between 4.7 to 5.2 Å and the bond length of the Ag to the
atoms of the pair is in the range 2.4–2.6 Å. About 17%
of Ag have a 2-fold Se neighboring pair, the rest of the
Ag host pairs are under-coordinated. To verify the exis-
tence of these traps in an independent way, we introduced
unbonded Ag at a variety of locations in a 64-atom amor-
phous Se model [99] at T = 300 K, so that the Ag could
“probe” the energy landscape in an unbiased fashion and
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without exception, the Ag became trapped between two Se
host atoms with distances in the range we indicate above
for the ternary glass.

7.3 Electronic features

A byproduct of any ab initio calculation are the
Kohn-Sham [31] eigenvalues and eigenvectors, as in equa-
tion (4). Since structural and electronic properties are
intimately related, an examination of electronic density
of states provides additional insight about the proper-
ties of these materials. The electronic density of states
(EDOS) of both models are calculated and analyzed by
the inverse participation ratio (IPR), which provides a
measure of spatial localization (the higher the IPR the
more compactly localized the state). The EDOS are ob-
tained by convolving each energy eigenvalue with suitably
broadened Gaussian. In Figure 8 we report the calcu-
lated EDOS and the species projected density of states
of (GeSe3)0.90Ag0.10 and (GeSe3)0.85Ag0.15 glasses. With
the addition of Ag into g-GeSe3, an intense peak, due to
the Ag 4d electrons appears at about −3.47 eV as shown
in Figure 8. The valence band exhibits three features. The
two lowest bands between −14.8 eV and −7.0 eV originate
from the atomic 4s-like states of Ge and Se partially hy-
bridized to form bonding states to Ag atoms. The next
band lying between −7.0 and 0.0 eV contains p like bond-
ing states of Ge and Se and d like bonding states of Ag.
The peak in the topmost valence region is due to the lone-
pair 4p electrons of Se atoms. The Γ point optical gaps of
g-(GeSe3)0.90Ag0.10 and g-(GeSe3)0.85Ag0.15 are respec-
tively of the order of 1.20 and 1.26 eV. As the Ag content
increases, the optical band gap slightly increases.

7.4 Dynamics of silver in GeSe3:Ag [97]

The dynamics of the Ag in the matrix is the special scien-
tific interest of these materials. We used the code “Vienna
Ab initio Software Package” “VASP” [37] for the MD sim-
ulations. Similar approximations have been used with suc-
cess on GeSe2 liquid and glass [46]. We carried such a cal-
culation out earlier with the much faster code FIREBALL.
We found that the two codes based on the same principles
but differing vastly in detail gave very similar results both
for the structure of the relaxed models and for dynamical
simulation, always a reassuring sign for someone perform-
ing simulations. We use VASP to elucidate the nature of
the TCs and associated silver dynamics [97].

Above T = 300 K, there is hopping between the TCs,
but this is spatially non-uniform. We find that the TCs are
non-uniformly distributed in space. Volumes with a high
concentration of TCs have longer trap lifetimes than vol-
umes with few or no TCs. The barriers between TCs that
are close together tend to be small, enabling rapid hopping
within the high density region, but the effect of a collec-
tion of TCs in close proximity is to create a strong barrier
for the Ag to escape to another volume. Thus, one can
introduce the notion of “supertraps” or cages built from
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Fig. 8. Electronic density of states and species projected elec-
tronic density of states for Se, Ge, and Ag for (GeSe3)0.90Ag0.10

(top panel) and (GeSe3)0.85Ag0.15 (bottom panel) glasses.
From [96].

more than one fundamental TC. The collective behavior
of a set of TCs in close proximity is very different than the
case of an isolated TC. The simulations reveal dynamics
reminiscent of supercooled colloids [108] and diffusion of
Li ions in silicate glass [109–111].

Silver dynamics was studied by constant-temperature
Nosé-Hoover dynamics at 300 K and 700 K. Extended tra-
jectories of 20 ps were obtained. At 300 K, silver is largely
trapped: only 6 hopping events were observed. The silver
traps fall into two categories. Type 1 (32%) are strongly
bound: 4 Ag atoms sit at single TC with no neighboring
TC within a radius of 2.0 Å, and 7 Ag occupy two overlap-
ping TCs with the host pairs making an angle of about 90◦
to each other. Type 2 (68%) are oscillating between two
or three closely spaced TCs. Figure 9 reveals the dynam-
ics of the two types of Ag. In the top panel of Figure 9,
dynamics of Ag213 (type 1) relative to the three TCs is
shown. Initially it is trapped at TC(11-202) (between Ge11

and Se202), the gradual decrease in the Ge11-Se202 distance
pushes the Ag out and it is eventually trapped at two over-
lapping TCs [TC(60-202) and TC(11-98)]. Note the sta-
bilization in the Se60–Se202 and Ge11–Se98 distances after
Ag is trapped between the host atom-pair. The bottom
panel of Figure 9 illustrates type 2 Ag motion. Ag228 is
initially trapped at TC(107-142). It becomes unstable due
to the motion of TC(142-150), (initially at 1.8 Å from
Ag228), and then a decrease in the Se107-Se142 distance
moves it out of its initial TC. Eventually Ag228 is trapped
between the two TCs [TC(142-150) and TC(32-129)] with
an average distance of about 1.6 Å between them. The
trajectory of Ag228 shows cage or “super-trapping” be-
tween two TCs. Note the larger fluctuations in the position
of Ag as compared to type 1 Ag (trajectory of Ag213). The
hopping lengths between one TC to other TCs, in general
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Fig. 9. Characteristic examples of silver dynamics: top: “Type
1” trap, bottom “Type 2” (see text). The inset shows the tra-
jectories of Ag sites (blue) with the trajectories of neighboring
TCs (grey, green and red). The motion is crudely oscillatory
within a TC, and much more ballistic between traps. From [97].

depend upon the concentration of neighboring TCs. A
larger number of neighboring TCs tends to confine the
Ag in a smaller region (1.0 Å) as in the two cases dis-
cussed above, while larger jumps are observed for Ag with
lower concentration of neighboring TCs.

The mean-squared displacement of Ag at 700 K shows
a linear increase with time, illustrating the diffusive na-
ture of the Ag dynamics, consistent with the previous
studies [96]. The Ag dynamics consists of a gradual drift
away from the initial (fully relaxed) TC configurations,
followed by hops between cages. There are 20 jumps ob-
served, much larger than that for 300 K, as expected, with
an average time period of ca. 7 ps between the hops. The
hopping lengths vary between 1.5–4.0 Å. We character-
ize such hopping dynamics in terms of the variation in
the concentration of TCs nTC around Ag sites. Figure 10
shows the displacement of Ag213 at 700 K. The hopping
is apparent in the form of abrupt changes in the displace-

Fig. 10. Displacement of Ag213 from its initial starting po-
sition, and the average number nTC of trapping centers sur-
rounding Ag213 (within a radius of 4.0 Å around the Ag atom).
The shaded regions highlight the hops. The trajectory of Ag213

(blue) is shown along with those of three neighboring TCs (yel-
low, green and grey) in the time during which Ag is trapped
after making a ‘jump’. Observe the creation and annihilation
of TCs at 700 K. From [97].

ment. To understand these jumps, we counted the number
of TCs surrounding the Ag site in a radius of 4.0 Å. In
Figure 10, the concentration of neighboring TCs is also
plotted with the displacement. A correlation between the
hops and the decrease in nTC is apparent. The jumps tend
to occur at times when either nTC is low or exhibits a
sudden decrease. Also, the figure reveals the significant
impact of thermal fluctuations on the TCs and their den-
sity. The trajectory of Ag213 along with the trajectories
of three neighboring TCs (inset) in the trapped region
gives further insight into the nature of the trap. At higher
temperature, the Ag sites are more unstable because of
thermal fluctuations in the neighboring network and their
higher thermal energies. It would require a higher density
of TCs to confine the Ag dynamics. The hops can be con-
sidered as a spontaneous event, which may be triggered
by a decrease in the concentration of neighboring TCs.

Figure 11 illustrates Ag motion at both temperatures.
In equilibrium, the Ag at 300 K are confined on or in be-
tween the dense regions spanned by the TCs. Note that
the volume fraction containing no TC is large at 300 K. At
700 K, TC are less concentrated owing to the thermal fluc-
tuations in the host network, thus enhancing Ag diffusion.
The Ag jumps between dense TCs regions (cages) is appar-
ent. Such dynamics is quite similar to the hopping dynam-
ics suggested for Li ions in silicate glasses [109,110], where
the high mobility of Li ions is correlated with the decrease
in the volume fraction of voids, which decreases the local
atomic density around ion [108,111]. At 300 K, the TCs
are relatively more stable and are distributed randomly
as shown in Figure 11 in the form of dense and dilute re-
gions, similar to the Scher-Lax-phillips traps [106]. One
can view Figure 11 as a revealing a percolative process:
at the higher temperature the trapping basins become
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Fig. 11. Trajectories of TCs (orange) and all Ag (aqua) from
MD simulation of about 6 ps length at (a) 300 K and (b)
700 K. Concentration of Ag sites around dense regions of TCs is
apparent at 300 K and the Ag hops between the dense regions
of TCs are clear at 700 K. Note the increase in the fraction
of volume in the cell with TCs at 700 K relative to 300 K.
From [97].

more extended and overlapping, until transport through
the glass becomes possible.

8 Consequences of structural disorder
on electrons

Thus far, we have discussed the “nuts and bolts” of how
to form models, and we gave a few examples of specific
materials. As an example of a different type of scientific
question, we discuss the impact of structural disorder on
the character of the electron states. We do this using cur-
rent structural models (especially WWW models of a-Si),
and the available electronic structure codes, including spe-
cial techniques needed to handle large models.

8.1 Historical background

We begin with a tincture of historical context. Thanks to
the celebrated work of Anderson, Mott and others, it be-
came apparent in the late 1950’s that disorder could local-
ize electrons. Here, localization means that electrons are
confined to a finite volume of space. The relevant contrast
is to crystals, for which Bloch’s theorem demonstrates
that translational invariance implies extended states – for
all the bands in the crystal. Anderson [115] initiated the
mathematical study of localization due to disorder with
the introduction of a tight-binding “Anderson model”:

H =
n∑

i=1

εi|i〉〈i| +
∑

i,j(nn)

V |i〉〈j| (11)

in which, εi are random diagonal energies selected from
a uniform distribution of width W and hopping param-
eter V is a (site-independent) constant. The second sum
usually is restricted to nearest-neighbors. This diagonal
disorder is more akin to “alloy disorder” than topological
disorder in an elemental system for which the εi are iden-
tical for all sites and the disorder modulates V alone. In
equation (11) the ratio W/V characterizes the degree of
disorder of the model. Owing to the tools available at the

time, the pioneers of the field carried out their work an-
alytically. The calculations were mathematically difficult,
and showed that for sufficient disorder in three dimen-
sions, electronic states could be localized with sufficient
disorder. The study of localization has been remarkably
fruitful, and has proven to be important in the study
of nonlinear dynamics [116], scattering of electromagnetic
waves [117], the study of Bose-Einstein condensation [118],
among others. The concept has even been invoked to ex-
plain the atmospheric phenomenon of Ball Lightning [119].
Thus, while the concept of localization was born in the
context of disordered solids, it has taken on a life of its
own and is now a mainstay of many scientific fields.

For the case of an amorphous semiconductor, such as
a-Si, it was recognized early on that there is a localized-
to-delocalized (LD) [2,115,120] transition near both the
valence and conduction band tails in a-Si, since midgap
defect states are known to be bound states (manifestly lo-
calized), and likewise, states well into the valence or con-
duction bands (beyond the mobility edges) are extended.
While conceptually fundamental, this picture is qualita-
tive, and offers limited assistance in interpreting experi-
ments. The need for realistic calculations was made plain
in Mott’s Nobel lecture [121], in which he states:

There is an extensive literature calculating the posi-
tion of the mobility edge with various simple models, but it
has not yet proved possible to do this for acontinuous ran-
dom network such as that postulated for SiO2, As2Se3,
amorphous Si or any amorphous material where the co-
ordination number remains the same as in the crystal.
This problem is going to be quite a challenge for the the-
oreticians – but up till now we depend on experiments for
the answer, particularly those in which electrons are in-
jected into a non-crystalline material and their drift mo-
bilities measured [121].

8.2 Formulation

Such an undertaking requires (1) atomic level structural
models of amorphous materials (eg., atomic coordinates)
that faithfully reproduce experimental probes of structure,
and (2) an ab initio or tight-binding prescription for com-
puting the Hamiltonian H in some matrix representation,
and finally means to at least partially diagonalize H in the
chosen representation. Then we study the character of the
eigenvectors of H for energies around the optical gap.

The WWW [5] models of a-Si appear to satisfy struc-
tural and vibrational experiments on the materials, and
WWW models with as many as 105 atoms are now avail-
able. The WWW models use periodic boundary condi-
tions, so that it is desirable to work with large models
so that we can infer the properties of the localized states.
Among the empirical Hamiltonians available for silicon, we
adopt the tight-binding Hamiltonian of Kwon et al. [122].
Consistent with the spirit of the tight-binding approxima-
tion, this scheme allows for one s state and three p states
per site. Here, we will report the spectral properties of
a 4096 atom model of a-Si (which therefore has a tight-
binding Hamiltonian matrix of dimension D = 16 384).
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Fig. 12. Left: (a) electronic density of states of a-Si, (b) localization (from inverse participation ratio) and (c) conductivity
from Kubo-Greenwood formula. Right: charge densities of the states indicated in (b) of left panel. Each atom shown is colored
according to the fraction of total charge: black >1/16, red >1/64, yellow >1/256, green >1/1024, and white (>1/1024, such
that at least 75% of the total charge is shown). The electronic states evolve from tightly localized (midgap) states (a) to
filament-island localized (tail) states and finally to extended valence states (f). From [129].

With the H matrix in hand, we have to diagonalize
it in some way. Numerical algorithms for “full diagonal-
ization” (computing all eigenvalues and eigenvectors) are
robust and mature. Modest computers can routinely com-
pute all the eigenvalues and eigenvectors to machine pre-
cision (typically 10–15 digits) for matrices with dimen-
sion well into the thousands in minutes. At a practical
level, these methods are so reliable that we recommend
their use whenever possible. Their only limitation is that
asymptotically (for large systems) CPU demand scales
as D3 and memory use scales as D2, at least. Approxi-
mate estimation of the global density of states is possible
with recursion [123], maximum entropy [124] and kernel-
polynomial [125] methods.

For our D = 16384 matrix, it is possible, but not easy,
to use full diagonalization methods. It is also unneces-
sary, since we only care about a few hundred states near
the Fermi level for this calculation. The power method,
or the Lanczos [56,126] scheme, is an excellent choice for
estimating eigenstates conjugate to extremal eigenvalues
(meaning at the extreme low or high energy edges). How-
ever, for density-functional and tight-binding calculations,
our interest does not lie with these extremal states, instead
we require the eigenstates near the middle of the spectrum
(around the optical gap). The trouble is that elementary

methods work very well for isolated states, but converge
with impractical slowness for parts of the spectrum involv-
ing states nearly degenerate in energy (rather than giving
a single state, one obtains a mixture in the nearly degen-
erate energy subspace). An effective approach is to work
not with H, but instead with the energy-dependent oper-
ator [127] Ĝ(E) = (E − Ĥ)−1; this spreads the spectrum
out effectively near energy E so that a simple Lanczos
scheme becomes effective5. Other successful approaches
exist [128].

In Figure 12, we illustrate the results of a calcula-
tion revealing many aspects of the Localized-Delocalized
(LD) transition in a-Si [129]. The model used is a real-
istic 4096-atom WWW model due to Djordjevic, Thorpe
and Wooten [130]. The model possesses a radial distri-
bution function in agreement with experiment, and is en-
tirely four-coordinated (thus, it exhibits no three-fold dan-
gling bond defects). In the left panel of the figure, we
plot the density of states, inverse participation ratio and
a crude estimate of the electrical conductivity using the
Kubo-Greenwood [131] formula. Highly localized defect
states arising from large bond-angle distortions exist near

5 This approach, pioneered by engineers might have been dis-
covered by physicists: G is the the electronic Green’s function!
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mid-gap, and valence and conduction band tails arise from
the details of the structure of the model. The energies
(and inverse participation ratios, which gauge the degree
of localization), labeled by letters in the left panel are as-
sociated with the states that appear in the right panel.

To discuss the LD transition, let us begin with midgap
state (a). Since it is localized, this state has a specific elec-
tronic energy and a restricted spatial extent. For energies
incrementally closer to the mobility edge, two-island states
appear: states (b) and (c), of Figure 12. Note also that the
charge densities of states (b) and (c) are strikingly simi-
lar, though the states are orthogonal. Indeed, if one com-
putes symmetric and anti-symmetric linear combinations
of states (b) and (c), it is found that these approximately
yield one island or the other. This hints that one can ex-
press the eigenstates near the gap as linear combinations
of the islands. For energies closer yet to the mobility edge,
the eigenstates may be decomposed into a large number
of islands. Of course, the localization of the eigenstates
decreases for an increasing number of islands until, even-
tually, the state becomes extended at the mobility edge.

These results lead to a qualitative and easily under-
stood picture of the localized-to-extended transition. The
island states arise from structural irregularities in the net-
work sufficient to induce a localized island state with en-
ergy E and localization length ξ. If an island with en-
ergy E overlaps another spatially adjacent island with a
similar energy, then perturbation theory implies that the
system eigenstates near E are linear combinations of the
island states with comparable energies. This also shows
that eigenstates with similar energies tend to be spatially
correlated, since an island with energy E may (by reso-
nant mixing) contribute to other system eigenstates near
E. The islands can be computed from the eigenstates,
and have the interesting property that the island local-
ization length ξ is only weakly dependent upon the en-
ergy. Thus, while there is a modest increase in ξ as one
approaches the mobility edge, the decrease in localization
in the eigenstates arises primarily from increasing num-
bers of islands, not from the islands becoming larger. At
the mobility edge, the eigenstates consist qualitatively of
islands extending through the entire cell, with large fluc-
tuations in local charge density and as suggested by other
work implying a multifractal character.

A byproduct of realistic (rather than model) calcu-
lations is that one can make detailed comparisons with
experiments on the density of states, or quantities related
to it. In a-Si, it has been shown that the existence of 1D
filaments of connected short (long) bonds are associated
with the valence (conduction) tail, and the existence of
the filaments has been associated with the exponential
(Urbach) form for the density of states known from ex-
periments [132]. In a-Si, the correlation between structure
(anomalous bond lengths) and band-tail electron states is
pronounced as we show in Figure 13. Good quality models
of a-Si are found to possess structural filaments, and their
positions are strongly spatially correlated (short bonds
tend to be connected to short bonds, and a similar state-
ment for long bonds), as we illustrate in Figure 14 [133]. In
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Fig. 13. Charge-weighted bond-lengths in a-Si, revealing that
valence band-tail states arise from short bond-lengths, and con-
duction band-tail states from long bond-lengths. A 512-atom
model was used with a density-functional Hamiltonian [132].

Fig. 14. Position of longest and shortest bonds in 512-atom
WWW model [130]. (A) 1%, (B) 2%, (C) 3%, (D) 4%, (E) 5%
and (F) 8% shortest (dark) and longest (light) bonds. Note
that short and long bonds are strongly spatially correlated
(there is, for example, obvious filamentary connectivity in D).
From [133].

the language of the Anderson model [115], this would be
an example of correlated disorder. Aoki [135] predicted a
filamentary character and fractal self-similarity at the mo-
bility edge in Anderson models. In realistic calculations for
a-Si at least, the filamentary character of states seems to
persist for energies well beyond the mobility edge into the
gap, and in fact is strongest near the middle of the gap.

8.3 Universality

In this section we briefly consider some generic spec-
tral manifestations of disorder, beyond electrons [136].
By directly computing the eigenstates for energies around
spectral gaps for electrons in a topologically disordered
network, Anderson models, classical lattice vibrations for
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models with mass and topological disorder, it has been
shown that the qualitative nature of the localized-to-
extended transition is universal in the sense that all these
systems have important features in common: the most lo-
calized states are single island states, and for energies ap-
proaching the mobility edge, the number of constituent
islands increases until they inhomogeneously fill space at
the mobility edge. This work justifies the many studies of
Anderson models, which indeed capture many qualitative
features of localization and the localized-to-extended tran-
sition. Detailed, system-specific properties (such as the na-
ture of defect and tail states) require accurate calculation
on large, realistic structural models.

The universal picture of the internal structure of lo-
calized eigenstates leads to the conclusion that different
localized states tend to be correlated with each other (es-
pecially for those with near-adjacent eigenvalues) as a re-
sult of the same islands of charge density (or vibrational
amplitude) appearing in different eigenstates. Correlations
between localized states (particularly near the mobility
edge) had been anticipated, but this work is the first to
demonstrate unambiguously the structural origin of such
correlations and its occurrence for diverse realistic models.
The existence of such (strong) correlations has a number
of consequences for the physical behaviour associated with
localized eigenstates.

The LD transition appears in diverse contexts in dis-
ordered systems. To see how general is the picture of lo-
calized eigenstates comprised of bare island states that
was found in the study of electron states in a-Si, we have
also considered a simple-cubic-lattice Anderson electron
model, atomic vibrations in a force-constant-disordered
FCC lattice model and in a realistic, topologically dis-
ordered model of a-Si and, to explore the role of long-
range (Coulombic) interactions, in a 1650-atom realistic
model of a-SiO2. In Figure 15a, we show three superposed
critical eigenstates, adjacent in energy, for the Anderson
electron model. This figure illustrates that even critical
eigenvectors are still clearly composed of islands. Three
adjacent-energy localized vibrational eigenvectors show-
ing island structures are shown for the model of a-SiO2 in
Figure 15b, of a force-constant-disordered FCC lattice in
Figure 15c and for the model of a-Si in Figure 15d. It is
evident, therefore, that systems with highly distinct types
of disorder possess qualitatively similar island-like internal
structures of localized eigenstates. For all the model sys-
tems discussed in this paper, states in the gap, far from the
band edge, are highly localized single-island states, while
for energies in a band tail multi-island localized states
appear; these eigenvectors may be decomposed into prim-
itive islands, which may appear at the same position in
several different adjacent-energy eigenvectors. The islands
become more numerous, but only slightly spatially larger
as the energy approaches the critical LD energy. More-
over, these conclusions appear to hold for either long-range
or short-range interactions, for electronic and vibrational
eigenstates, and for diverse manifestations of disorder in
both realistic and toy models.

Fig. 15. Universality of localized-eigenstate structure for sets
of three localized eigenstates (red, green and blue) for various
systems, showing spatial overlap of islands. Regions where two
islands overlap are shown with secondary colors and overlap be-
tween three islands is shown in white: (a) three adjacent-energy
eigenvectors taken from the band centre for the electronic An-
derson model on a simple cubic lattice with the critical ratio
of the range of on-site disorder of width W to the off-diagonal
interaction, V , i.e. W/V = 16.5, sufcient to localize all states
in the band. These are critical eigenvectors of the model, and
are clearly constructed from islands. The appearance of the
same islands in consecutive eigenstates is clearly evident. (b)
Three adjacent-energy vibrational eigenvectors of a 1650-atom
vitreous silica model. Three regions, that are mainly red, green
and blue, can be seen, and each of these has a white centre,
indicating overlap of the three eigenvectors at these points.
(c) Three adjacent-energy vibrational eigenvectors on a 48-site
FCC lattice with force constants taken from a uniform distri-
bution of width 2.0 and average value 1.0 (the crystal has a
force-constant value of unity). The overlapping island states
are less isotropic because of the underlying lattice. (d) Three
adjacent-energy vibrational eigenvectors (red, green, blue) of
a 104-atom model of a-Si, again showing strongly overlapping
islands. From reference [136].

8.4 Wannier functions and density matrix
for disordered systems

Wannier [137] introduced a real-space localized represen-
tation of electrons, now called the Wannier representa-
tion in 1937. Until recently, the orbitals enabling this, the
Wannier functions, were mostly used in formal develop-
ments, and in transport theory. With the introduction of
Kohns Principle of Nearsightedness [6], the electronic lo-
cality of the insulating state has become recognized as
a fundamental feature of matter, and the Wannier rep-
resentation has taken on a new significance. Prodan and
Kohn [138] have shown that the local electronic proper-
ties arise from the potential only at nearby points, clarify
why Pauling’s concept of the chemical bond [139] is so
useful, and offer the mathematical link between band and
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Fig. 16. Orthonormal Wannier functions: left panel, from a 512-atom model of diamond within the (110) plane; right panel:
one function from a 4096 atom model of amorphous silicon. In both panels, maximum charge is indicated by red, minimum by
blue. Note the bond charge near the center of both images. The dark blue or black lines are nodal lines. The complex nodal
structure is required to enforce orthogonality between distinct functions. From references [142,144].

bond pictures. The mathematical tools required to quan-
tify these notions are the Wannier functions and the den-
sity matrix. In the last fifteen years, there has been a sepa-
rate resurgence of interest in Wannier functions [140] as an
efficient tool for computing materials properties, includ-
ing amorphous materials. Boys molecular orbitals [141] in
quantum chemistry are conceptually similar to the Wan-
nier functions.

Wannier functions are a unitary transformation of the
Bloch states in crystals. For a given crystal, the Wannier
functions are not unique: different unitary transformations
yield Wannier functions with different spatial decay prop-
erties. A breakthrough for the practical use of Wannier
functions was the creation of a method to compute the
most-localized Wannier functions [140]. These functions
are exponentially localized in space for insulators. The
utility of the Wannier functions arises from their decay:
in the Wannier representation, matrix elements between
well-separated parts of an insulator vanish. The same is
not true of Bloch states! This is useful for computations
requiring large models, such as amorphous insulators or
biomolecules: because the band energy can be written as
a trace: Eband = Tr(ρH), the range of the energy (and
forces) are determined by the range of the density ma-
trix (or Wannier functions): only that subset of Wannier
functions overlapping a given site are required to compute
the local energy or the force at that site. For amorphous
materials, it has also been argued that the network de-
fined by the centers of Wannier functions is a preferred
way to define coordination – better than simple, but ar-
bitrary, geometrical criteria [143]. Technically, since there
are no Bloch states, by definition, in an amorphous mate-
rial, these are called generalized Wannier functions.

Wannier functions have recently been obtained in
amorphous diamond, and a-Si, by direct construction from
the electronic eigenstates [143], and also using order-N
projection methods [144]. It has been demonstrated that
Wannier functions in a-Si decay exponentially, and with
a rate close to that of crystalline Si (diamond). In Fig-

ure 16, we show a 2D slice of selected Wannier functions
computed for amorphous Si and diamond. These states
are orthonormal:

∫
d3xw∗

n(x)wm(x) = δmn, where wn is
the nth Wannier function, and the integral extends over
all space, with δnm being Kroneckers symbol. Elements of
both the chemical bond and band picture can be observed.
First, there is clearly bond charge displayed, and this is
quite concentrated between two atoms. However, there is
also complex diffuse charge in the state extending out over
several neighbor distances. In the case of the crystal, it is
found that the decay rate is weakly anisotropic (a slower
decay along the bond than orthogonal to it). One could say
that the utility of the bond picture arises from the large ac-
cumulation of bond charge, whereas the solid state nature
is associated with the long-range decay. Note the inter-
esting symmetries in the crystal absent in the amorphous
case. For Wannier functions centered on highly irregular
sites (with especially anomalous bonding), the behavior
of the function is distinctive near the defect [142], yet the
asymptotic decay of all functions far from the center is
similar to typical functions, and exponential in character.

A representation-independent gauge of the locality of
quantum mechanics in any material is the decay of the off-
diagonal elements of the density matrix in position repre-
sentation [146]:

ρ(x,x′) = 〈x|ρ̂|x′〉, (12)

where ρ̂ is the single-particle density operator, which can
be written equally well in an energy or Wannier represen-
tation:

ρ(x,x′) = 2
∑

n−occ

ψ∗
n(x)ψn(x′) = 2

∑

n

w∗
n(x)wn(x′).

(13)
It has long been believed for systems with a gap that [145]:

ρ(x,x′) ∼ exp(−γ|x − x′|) (14)

for large |x − x′|.
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The reason for this decay is destructive wave-mechanical
interference [6]. By direct calculation of equation (13), it
has been shown that the density matrix for crystalline Si
and a-Si decay with similar decay rates γ ≈ 0.49 Å−1 for
crystal and γ ≈ 0.45 Å−1 for a-Si). Long ago, Kohn [145]
made a crude estimate for the decay of the density matrix
in insulators, estimating the rate γ (in Eq. (14)) as:

γ = (2Egm/�
2)1/2 (15)

with Eg being the optical gap, and m the electron mass,
in surprisingly plausible agreement with detailed calcula-
tions [146]6. It is surprising at first glance that amorphous
Si and crystalline Si should have such similar decays: one
might naively expect considerably more scattering and in-
terference for the disordered network (and thus expect a
larger γ), but this is not so [144,146]. The calculation was
repeated for diamond and amorphous diamond, with anal-
ogous results. Decay rates γ are fundamental constants of
these materials, gauging the locality of the materials elec-
tronic structure, and suggesting that clusters of at least
5–6 Å in size should capture the gross effects of the elec-
tronic structure, and an accuracy of order 1% would be
expected for local properties at the center of a cluster with
radius � 10 Å. The Wannier functions of Figure 16 decay
at a rate similar to the density matrix. Naturally, the vol-
umes required for electronic calculations depend upon the
material, and can apparently be roughly approximated by
Kohns expression equation (15). These calculations offer
rigorous justification for local approaches in amorphous
semiconductors, the rationale for which was not obvious
even to Ziman [149]. The decay of these functions is also of
significance for computation, since efficient order-N meth-
ods exploit real-space localized representations with either
the density matrix or Wannier functions.

9 Conclusion

The purpose of this paper has been to illustrate several
aspects of the theory of disordered materials. In my view,
the field is a happy convergence of scientifically interesting
problems, often with distinct technological potential. This
area utilizes many of the tools of theoretical and computa-
tional science. This is a field in which modeling and the-
oretical analysis are particularly helpful, as experiments
alone are usually not able to unambiguously determine
even the structure of amorphous materials.

I hope that it is clear that there is room for develop-
ment in practically every aspect of the field touched upon
in this paper. The pressing need for improving amorphous
materials for practical application is a driving force that
will keep researchers active in this field for the forseeable
future.

6 Two more recent calculations giving more detailed func-
tional forms are references [147] and [148].
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