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Abstract
In this paper, we review a host of methods used to model amorphous materials. We particularly
describe methods which impose constraints on the models to ensure that the final model meets
a priori requirements (on structure, topology, chemical order, etc). In particular, we review
work based on quench from the melt simulations, the ‘decorate and relax’ method, which is
shown to be a reliable scheme for forming models of certain binary glasses. A ‘building block’
approach is also suggested and yields a pleading model for GeSe1.5. We also report on the
nature of vulcanization in an Se network cross-linked by As, and indicate how introducing H
into an a-Si network develops into a-Si:H. We also discuss explicitly constrained methods
including reverse Monte Carlo (RMC) and a novel method called ‘Experimentally Constrained
Molecular Relaxation’. The latter merges the power of ab initio simulation with the ability to
impose external information associated with RMC.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Amorphous materials and glasses continue to play an
important role in technology, with applications ranging from
photovoltaics to fiber optics and fast-ion conducting glasses
showing promise for low power non-volatile computer memory
applications. The amorphous state itself poses some of
the most basic questions in solid state physics: the nature
of the glass transition, the origin of anomalies in the
low temperature specific heat, the nature of electronic and
vibrational states in a topologically disordered network and
many more beside. A question of considerable current interest
is the topology and nanoscale ordering of the ‘intermediate
phase’ of Boolchand [1].

For modeling glasses ‘by design’ it is natural to
incorporate a priori information about the material in some
form. We refer to this as a ‘biased’ method below (it is
biased in the sense that the procedure amounts to the external

4 Permanent address: Department of Physics and Astronomy, Ohio University,
Athens, OH 45701, USA.

imposition of some connectivity, local chemistry, etc). We also
present relevant unbiased methods that are useful in obtaining
glasses with particular requirements ‘by design’, though to
obtain the desired properties multiple runs may be necessary.

For many of these questions, the necessary starting point
is an atomistic model of the material. In virtually all
cases, periodic boundary conditions are used to represent bulk
amorphous phases; slab models (periodic in 2D) are used
for modeling surfaces [2, 3]. The modeling requirements
for disordered materials amount to a perfect storm: (1) large
models are required to ensure no overlap between atoms
and their images in adjacent cells, to provide an adequate
sampling of the range of disorder available to the material.
For some problems, such as studies of electron states near the
mobility edge, thousands of atoms are desirable; (2) accurate
interatomic forces are required for simulations. This has been
confirmed in many detailed studies, but it is almost obvious.
After all, interatomic potentials are usually obtained by fitting
to a limited database, often of ordered phases. Amorphous
materials by their very nature manifest a broad range of local
structures that poses a challenge to even the best empirical
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potentials; (3) for questions associated with atomic dynamics,
long MD simulations are needed to get adequate estimates of
vibrational spectra (short simulations provide poorly resolved
densities of state); (4) for the most pressing technological
issues of electronic and optical behavior, one sometimes even
needs accurate approximations for excited states—which is not
easy even for a small system!

Methods to create structural computer models of
amorphous materials fall into two categories.

Direct methods: the use of an interatomic potential (either
empirical or ab initio) to perform an MD, Monte Carlo (or
variant) simulation to find a non-crystalline conformation that
is a local minimum of the energy functional. If the resulting
structure compares favorably with experiment, it is accepted to
be representative of the structure.

Inverse methods: the use of experimental information to
build a model consistent with measurements. Typically these
studies use data from x-ray or neutron diffraction, though
other data and even external constraints can be applied. These
methods usually are labeled ‘reverse Monte Carlo’ (RMC)
methods [4]. They are very easy to implement and do not
require any interaction potential.

The direct methods have the advantage that they are
entirely unbiased—the researcher is not building in any
a priori expectations, imposing a particular microstructure, etc.
Thus, if such a calculation produces a model consistent with
experiment, it is likely that the structures present in the model
echo features of the real material. The direct method has the
disadvantage that it often fails quite spectacularly in producing
experimentally credible models. The most obvious approach
is to simulate a liquid phase of the desired stoichiometry and
‘quench’ it on the computer, by using some form of dissipative
dynamics. With some irreverence, we name this ‘cook and
quench’. Our experience is that such a scheme is valuable
for systems in which the local ordering of the liquid phase
is essentially similar to the amorphous phase (SiO2 [5] and
GeSe2 [6] are good examples). For the archetypal amorphous
solid, a-Si, the method fails badly in part because the liquid
is a sixfold metal [7], which is very different from the highly
tetrahedral amorphous phase. It is worth noting too that a-
Si is not a glass, in the sense that it cannot be obtained
experimentally by a melt quench method, whereas SiO2 and
GeSe2 are classic glass formers. We have also found that
complex glasses like GeSe3:Ag are remarkably well modeled
with the ‘cook and quench’ scheme [8].

The indirect methods hold the advantage that, by
construction, they agree with whatever experiments are
included as constraints. Since a really satisfactory model of
any material must be consistent with all experiments on the
system that we believe, this is a real virtue. On the other
hand, experiments like neutron diffraction should be viewed
somewhat as a ‘sum rule’—the theory must agree with the
diffraction data, but it is obviously impossible to uniquely
invert the scattering data to obtain a structure. The trouble is
that there is a tincture of information in the smooth structure
factors; and this data minimally constrains the topology of
a model. This is in contrast with protein crystallography,
in which case there is a forest of delta functions [9]. In

this case, the information content (as one could estimate
from information entropy [10]) is vastly higher than for the
smooth data for a glass. The RMC method [4] has been
heavily employed, sometimes augmenting the experimental
data with external constraints (for example, to enforce the
desired coordination or chemical order).

Both the direct and indirect methods have important
advantages and problems. It is therefore worthwhile to
explore their validity, and particularly to try to unify the two
approaches in a form more powerful than either in isolation.
In addition, we will also present some other novel modeling
schemes that are very useful for particular materials. The
primary focus of this paper is to discuss novel methods
to model glassy and amorphous materials, with particular
emphasis on semiconducting glasses, using both direct and
indirect methods including the ‘inverse’ methods. We will have
little to say about cook and quench methods in this paper, as
these are extensively discussed in the literature [11–13].

The rest of this paper is organized as follows. In
section 2, we briefly mention the merits and demerits of direct
methods ranging from empirical and semi-empirical to first-
principles density functional approaches. This is followed by a
discussion on emerging direct molecular dynamics approaches
that attempt to include a priori information about the local
structure and bonding environment in the simulation. In
section 4, we discuss a constrained form of RMC as an
illustration of a ‘reverse’ method, and in section 5, discuss
a marriage of RMC with the use of an ab initio interatomic
interaction. A discussion on ‘polymerization’ in the As–
Se glassy system is then presented in section 6. Finally,
in section 7, we briefly discuss first-principles modeling
hydrogenated amorphous silicon, with particular emphasis
on hydrogen microstructure in relation to nuclear magnetic
resonance (NMR) experiments.

2. Direct methods: an overview

One of the key choices needed for simulation of a disordered
system is that of the interaction potential. Accurate ab initio
interactions are vastly more computationally expensive, but
are far more reliable, especially in uncharted topologies. The
choice is thus dictated by the question under consideration and
the complexity of the energetics of the amorphous material
being modeled.

Empirical potentials have been devised for a limited
number of systems, mostly elemental. Thus, reasonable
interactions exist for carbon, silicon and many metals. A
handful of potentials are available for binary systems such
as GeSe and SiO. To test these potentials, it is usual to
compare accurate calculations from phase diagrams (giving the
energy as a function of density for many crystalline phases,
some hypothetical) obtained from accurate calculations. More
stringent tests are possible, usually associated with forces
or the phonon. Many such simulations have been reported:
possibly the most thorough are the simulations of a-SiO2 due
to Kob and coworkers [14].

Practical ab initio simulation usually refers to a density
functional approach in which the electronic density function
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ρ(r) is the basic variable rather than the many-electron
wavefunction. For a given atomic configuration, an intricate
mean field theory for the electrons is solved self-consistently,
as prescribed by Kohn and Sham [15]. The result is an estimate
of the electronic ground state energy. After computing ‘Kohn–
Sham orbitals’ from an effective time-independent Schrödinger
equation, the density matrix is easily obtained and any ground
state properties are readily computed. The nonlinear nature
of the Kohn–Sham equation means that this process must be
self-consistently iterated to convergence. These methods are
reliable for systems that are weakly correlated and reasonably
small in size. Even in the limited context of ab initio methods,
a choice must be made for efficient local orbital methods
with potentially rather inflexible basis sets or plane wave
methods with essentially complete basis sets, which are far
more expensive for large systems. Asymptotically (for large
numbers of electrons, n), all ab initio methods scale as n3 or
worse, unless order-n methods are used. The latter exploit
a local implementation of quantum mechanics using either
Wannier functions or a truncated density matrix. These are
frankly tricky for disordered systems as we discuss here, and
such methods are impractical in metallic systems since the
density matrix then decays as a power law. An advantage of
all ab initio methods is that they automatically provide some
electronic information, though only the ground state can be
discussed with rigor. From a practical point of view, many
picosecond simulations are easily carried out on systems with
several hundred atoms for local basis methods, and a few
hundred atoms seem to be the current limit for plane wave
methods. An authoritative review of these topics is available
in the books by Martin [15] and Finnis [16].

The so-called ‘tight-binding’ molecular dynamics pro-
vides a compromise between the first-principles density func-
tional and empirical approaches at an intermediate level of
complexity. The idea here is to form an empirical tight-binding
Hamiltonian, and use it to compute total energies and forces.
These calculations range from fairly sophisticated approaches
with explicit local orbitals and a serious attempt to approximate
the Kohn–Sham orbitals to two-center Hamiltonians of an en-
tirely empirical nature (no explicit basis functions, only rules
for computing matrix elements for a given set of coordinates).
This approach makes it relatively simple to obtain the Hamilto-
nian (and, in non-orthogonal representations, overlap) matrix,
but the next step is still a matrix diagonalization, or some other
scheme to avoid direct diagonalization.

In summary, it is probably good advice to study a new
material with ab initio methods at least until a detailed
knowledge of the topology and energetics of the network is
available. Then it may become possible to build an adequate
empirical potential or tight-binding Hamiltonian that ‘mimics’
the essential behavior of the ab initio interactions. This is
usually harder than it sounds, and for most purposes we find
it advisable to work with ab initio interactions.

3. Biased methods

In the first part of this section we discuss ‘biased’ methods—
that is, schemes for which we build in some pertinent a priori

information, such as a preferred local coordination or chemical
order. We show that judicious inclusion of such information at
the start of the simulation can greatly improve the quality of
models.

3.1. Molecular dynamics simulation of g-GeSe2 and local
building blocks

Molecular dynamics simulation of overconstrained complex
glasses at compositions far from stoichiometry is a notoriously
difficult problem [17]. For complex glasses, it often happens
that the ‘cook and quench’ technique fails to produce the
correct structure. In the absence of a priori information,
models obtained either contain too many defects or their
structures are very poor compared to experiments (for example,
incorrect static structure factor S(Q) at large Q). Despite the
fact that ab initio methods describe the interaction between
electrons and ions accurately, such failures can be attributed
to unphysical quench rate and inadequate length of simulation
time that constrains the system to access the full configuration
space. As a result, models obtained from direct MD
simulations lack the essential geometrical and topological
structure, which are very important in determining the physical
properties of the models. One approach to tackle this problem
is to use the notion of inferring complex ‘building blocks’
in the model construction. We illustrate this technique with
complex GeSe1.5 glass as an example. The idea is based on the
following assumptions: the local short-range chemical order
does not change drastically between large system and small
system; the chemical order of a small cell of a material can be
correctly obtained by long ab initio MD simulation. One can
therefore use accurate ab initio MD to produce a small nearly
perfect subunit cell, the ‘pseudo-crystal’, by a very extended
annealing for a particular composition. This optimized
structure, which includes the appropriate chemical ordering
for the given composition (and should also satisfy known
experimental information about coordination and chemical
order for that glass), may be used to make a larger supercell,
which can then be melted and quenched.

We implemented this idea for glassy GeSe1.5 as a test
case using FIREBALL, a density functional code in the
local density approximation (LDA) developed by Sankey and
coworkers [18]. This is an approximate ab initio local
density approach to electronic structure, force and dynamical
simulation that was derived from density functional theory
using the Harris functional [19] and a minimal basis set.
Because the code employs the Harris functional, no self-
consistent field iterations are required, which is of great
benefit to the code’s efficiency. This is a relevant point
for glassy materials which require the use of large supercell
models [20]. The basis set is minimal (for these systems,
one s and three p slightly excited pseudoatomic orbitals per
site or ‘single zeta’ in the language of quantum chemistry).
In its original form only weakly ionic systems may be
treated; self-consistent versions have been developed recently
by Lewis and coworkers [18, 21]. This improved version
uses separable pseudopotentials and allows for double-zeta
numerical basis sets and polarization orbitals. The calculation
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is undertaken entirely in real space which provides substantial
computational efficiency. Hamiltonian and overlap matrix
elements are precalculated on a numerical grid and the specific
values needed for a particular instantaneous conformation are
extracted from the tabulated values via interpolation. Naturally,
the integral tables need to be generated only once, for a given
set of atomic species, rather than performing quadratures ‘on
the fly’ during a MD run. These approximations perform
exceptionally well for chalcogenide systems.

We made models of GeSe1.5 by randomly placing small
numbers of atoms in a cubic supercell according to the desired
composition (8 germanium and 12 selenium atoms) with the
minimum acceptable distance between atoms of 2 Å. The size
of the cubic cell, 8.37 Å, was chosen to make the density of
the glass close to the experimental data [22], 0.0341 Å

−3
. The

cell was annealed and we obtained a well-thermalized melt at
3500 K. We took three steps to cool the cell. First, the cell
was equilibrated to 1436 K for 2.5 ps; then it was slowly
cooled to 300 K for approximately 7 ps. In the final step,
the cell was steepest-descent-quenched to 0 K and maximum
forces smaller in magnitude than 0.02 eV Å−1. The final
configuration obtained played the role of the ‘pseudo-crystal’
for the bigger cell. To build a larger supercell we repeated the
pseudo-crystal over two periods and obtained a system of 540
atoms. We then melted the large cell at 1500 K for 4 ps, cooled
over 300 K for 8 ps and quenched to 0 K. All calculations were
performed at constant volume using the " point to sample the
Brillouin zone to compute total energy and forces.

Figure 1 shows the neutron static structure factor and pair
correlation function for GeSe1.5 from our simulation along with
the experimental data [23] and the results from our ‘cook and
quench’ method. Our calculations show good agreement with
experiment. Some points of discrepancy are to be expected for
different reasons. The most obvious is the size of our models
(540 atoms), which is compared to the thermodynamic limit. In
figure 1 we also highlight the differences between experiment,
a quench from the melt model and the building blocks model.
The FSDP is well reproduced (close in width and centering,
and more improved from the melt and quench model in height).
Another substantial difference between the quench from the
melt and the building blocks models is near 2.5 Å

−1
, at the

minimum after the second peak. The first peak in g(r) occurs
at a higher r value than for the other compositions (GexSe1−x ,
0 ! x ! 0.4). This can be understood in terms of the
disappearance of Ge–Se and Se–Se bonds, and the appearance
of additional homopolar Ge–Ge bonds. The composition of
GeSe1.5 glass is such that, on average, one Ge–Ge bond will be
present per Ge site.

In figure 2 we illustrate the partial structure factor and
partial pair correlation function for the building block and
the cook and quench models. The Ge–Se pairs provide the
dominant contribution to the first shell of the pair correlation
function with an average bond distance of 2.36 Å. In table 1,
we list the averaged bonding distances present in the models
and compare them to experiment [23]. Our results are in good
agreement with the neutron diffraction measurements.

Where coordination is concerned, we note that, in the
building blocks model, about 67.60% of Ge are fourfold-
coordinated and 31.48% are threefold-coordinated whereas

Figure 1. (Top) Neutron-weighted static structure factor, comparing
the building blocks model, a ‘cook and quench’ model with the same
Hamiltonian, and experiment [23]. (Bottom) The pair correlation
data for the same models along with experimental data as indicated.

Table 1. Average bond lengths in g-GeSe1.5 (in Å).

Bond type Building block Cook and quench Petri 2002 [23]

Ge–Ge 2.43 2.44 2.42
Ge–Se 2.36 2.36 2.36
Se–Se — 2.33 —

67.60% of Se are twofold-, 26.54% are threefold- and 5.56%
are onefold-coordinated. The cook and quench model is a
different story: about 73.61% and 25.0% of Ge are respectively
fourfold- and threefold-coordinated; 60.20%, 30.56% and
9.26% of Se are respectively twofold-, threefold- and onefold-
coordinated. We have also noted the presence of fivefold and
twofold Ge in the cook and quench model. Where chemical
order is concerned, the building blocks model has 93.91% of
Ge–Se bonds and 5.43% of Ge–Ge bonds compared to the
cook and quench models with 88.38% Ge–Se, 8.88% Ge–Ge
and 2.74% Se–Se. The significant amount of Se–Se wrong
bonds in the cook and quench model explains the presence
of a significant peak in the Se–Se partial pair correlation
function. In the building blocks model a negligible fraction
is observed. This result is in accordance with the chemically
ordered continuous random network model which predicts that,
in Ge-rich glasses, Se–Se homopolar bonds are non-existent.
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Figure 2. (Top) Partial pair correlation function and partial structure
factor, comparing the building block model. (Bottom) Partial
structure factors for a ‘cook and quench’ model of g-GeSe1.5.

By integrating the pair correlation function we obtained the
average coordination number n. In the building blocks model
we found n to be 2.80 compared to 2.81 in the cook and
quench model. In EXAFS experiments Zhou et al [24] found
a coordination number of 2.80 while Petri et al obtained a
value of 2.81. Our results are consistent with the presence of
Ge2Se6/2 ethane-like units in glassy GeSe1.5. The electronic
density of states of the building blocks model shows a state-free
optical gap consistent with experiments [25, 26], of the order
of 1.67 eV and the usual limitations of the LDA for predicting
the gap.

The notion of inferring building blocks was used by a
few authors to model amorphous materials. Ouyang and
Ching [27] constructed a model of amorphous Si3N4 based on
a judicious choice of elementary subunits which satisfy local
bonding. The subunits were then connected carefully to meet
the bonding requirements of the corner atoms. The randomness
was introduced through the random distribution of different
subunit types. Although appealing by its simplicity, this
approach suffers from long-range crystalline correlations and
consequently cannot lead to satisfactory models of amorphous
materials [28]. Our method is different from theirs. In our
approach the subunit cell, called a ‘pseudo-crystal’, was built
from first principles and the unphysical correlations between
the subunit cell were destroyed through the melting process.

Overall the structural properties of the building blocks
model are in excellent agreement with experimental data. The
discrepancy in the height of the FSDP in S(Q) is probably
linked to the model size. There is no evidence that a better

Hamiltonian will reproduce the first peak correctly. This
pattern has also been observed in GeSe4. In the cook and
quench model, the FSDP is less pronounced and the model
contains more structural defects.

The approach of inferring building blocks has proven to be
successful and can easily be applied to non-stoichiometric and
complicated glasses. In their work, Zhang and Drabold [29]
made drastically improved models of Ge–As–Se glasses.
The models had a state-free optical gap and a satisfactory
vibrational spectrum. In contrast a direct quench from the
melt approach with the same total energy functional starting
with the atoms placed randomly in the cell produced highly
unrealistic results, for the pair distribution and with far too
many electronic defects [30].

3.2. Molecular dynamics simulation via decorate and relax

Decorate and relax (DR) is designed to overcome the
limitations of MD, especially the profound limitations of
timescales, and for the quench from the melt in particular,
the problem of freezing in too much liquid-like character [5].
We have found it to be useful to include primitive a priori
information about the chemical order and coordination in
model construction [29, 31]. This section demonstrates the
utility of such an approach for binary glasses. The use of such
starting points for ab initio modeling puts the simulation in
the ‘right part’ of configuration space (which is of extremely
large dimension and complexity). We believe that this ‘hunting
in the correct subspace’ is needed for current simulations
with their few several picosecond timescales (with consequent
severely limited access to configuration space). There is a
pressing need for successful schemes for modeling disordered
materials of arbitrary composition.

Using DR, we made models of glasses of composition IV–
VI2. The starting point of the method is a defect-free (fourfold-
coordinated) supercell model of column IV (Ge and Si)
amorphous materials made with the WWW method [32, 33].
Characteristic of an amorphous column IV material, this model
has bond angles tightly centered on the tetrahedral angle,
and has a topology presumably unrelated to g-IV–VI2. The
method consists of decorating all the IV–IV bonds with a bond-
center VI and rescaling the coordinates to the experimental
density of the corresponding glass. The obtained model of
g-IV–VI2 is then quenched to the nearest minimum with an
ab initio code. The peculiarity of the DR is the presence of
a strong, sharp prepeak in the static structure factor of the
starting models. This prepeak is very similar to the prominent
first sharp diffraction peak (FSDP) feature of glasses. The
existence of this peak shows that the starting models already
exhibit the intermediate range order associated with the FSDP.
In addition, the decorated scheme is much faster than the
traditional methods (at least 10 times faster for a given
interatomic interaction). To the extent that no scheme can be
claimed to mimic the physical process of glass formation, this
method should be evaluated by its success in reproducing the
known experimental information.

The method has been applied to generate several models
of binary IV–VI glasses, such as g-GeSe2, g-SiSe2 and g-
SiO2 [5]. The resulting models are in some ways superior to the
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Figure 3. Total neutron static structure factor S(Q) of glassy SiO2
for the DR models (the dashed line is for the 192-atom model and the
solid line is for the 648-atom model) compared to experimental data
from [34] (filled circles). The scattering lengths bSi = 4.149 and
bO = 5.803 fm were used to compute the scattering data.

best models in existence, and are remarkably easy to generate.
For example, for g-SiO2, we have used DR to produce a 648-
atom model starting with a defect-free 216-atom model of a-Si.
The static structure factor of this model along with experiment
and a 192-atom model is illustrated in figure 3, in essentially
perfect agreement with experiment [34]. The discrepancy
between the 192-and the 648-atom models (especially near
2.0 Å−1) arises from finite size effects, since the same
Hamiltonian and procedure was used to generate both models.
Where chemical order is concerned, the ‘decorated’ models
have 100% heteropolar bonding, as one would expect from the
chemistry of silica. Moreover, the models are characterized by
the presence of a chemically ordered bond network in which
Si-atom-centered tetrahedra are linked by corner-sharing O
atoms.

We have also computed the bond angle distribution. In
table 2 we compare our results with experiments [35, 36] and
theoretical results [37] for the tetrahedral angles O–Si–O and
Si–O–Si. The location and the width of the peaks are in good
agreement with experimental values. The O–Si–O angle has
a mean value of 109.5◦, which is near the tetrahedral angle
#T = 109.47◦, and the full width at half-maximum (FWHM)
of the order of 9.0◦. On the other hand, the Si–O–Si angle
distribution is much broader, with an average value of 140◦

with an FWHM close to 25◦. In their experiment [38], Pettifer
et al obtained an average value of 142◦ for the angle Si–O–Si
with an FWHM of the order of 26◦.

Preliminary work with Chubynsky and Thorpe suggests
that the approach may be extended to off-stoichiometry
compositions. Such networks have been recently introduced
and explored by Chubynsky and Thorpe to study the
vibrational excitations of chemically ordered networks [39].

3.3. Unbiased method

It is often unclear where impurities atoms are likely to be found
in a disordered network. An ideal example is determining the

Table 2. Location and the FWHM (in parentheses) of the angles
O–Si–O and Si–O–Si obtained from the simulation and experiments.

Theory Experiment

Angle
Decorate
and relax Vollmayr 1996 Mozzi 1969 Coombs 1985

O–Si–O 109.5◦ (9◦) 108.3◦ (12.8◦) 109.5◦ 109.7◦

Si–O–Si 140◦ (25◦) 152◦ (35.7◦) 144◦ (38◦) 144◦; 152◦

location of H in a-Si:H. A possible approach is to ‘cook and
quench’ the Si and H atoms in a box with periodic boundary
condition (PBC) and a pre-selected density. However, this
leads to models electronically much inferior to WWW models
of the elemental amorphous material, in clear contradiction
with experiment. Fedders and Drabold used ‘God’s Scissors’
to add H to reduce the defect concentration (both dangling
bonds and strained bonds) [40]. While the scheme could
be justified to some degree by a posteriori agreement with
experiment, it is very highly biased. In this section, we
simply ‘release’ atomic H into the a-Si network and find that
the H selectively attacks strained tetrahedra and coordination
defects (in fact, the method is useful for inferring what the
chemically reactive locations in the network are). We use
the same method elsewhere to track Ag+ dynamics in fast-
ion conducting glasses and, in this paper, to directly study
polymerization in AsSe glasses.

4. Inverse approach to amorphous materials: a case
study of amorphous silicon

In the preceding section we have discussed applications of
‘cook and quench’ and suitably biased MD in structural
modeling of amorphous materials and the remarkable advances
they have brought in this field. While direct MD simulations
(both first principles and empirical) continue to play a major
role in modeling amorphous systems, methods based on
inverse approaches have been increasingly used in recent years.
It is particularly important to note how inclusion of structural
information in the ‘decorate and relax’ and the ‘building block’
approaches significantly improves the quality of the models.
These are indicative of the fact that the method that can suitably
combine or impose useful structural data during the course of
simulation may have the advantage of producing more reliable
configurations. In contrast to direct methods, inverse methods
rely on (1) the availability of useful structural, electronic
and spectroscopic data and (2) the effective incorporation of
these data into structural modeling of materials. A classical
example is reverse Monte Carlo simulation [41]. Unlike the
direct molecular dynamics or Monte Carlo simulation, which
are based on minimization of an appropriate potential energy
functional, the hallmark of the reverse Monte Carlo method is
to make use of available experimental data and some known
topological properties of the material under study.

McGreevy and Pusztai [41–43] were the first to recognize
the potential importance of experimental data, particularly
structural, in modeling amorphous materials. A great
deal of structural information can be obtained from x-ray
and neutron diffraction, and extended x-ray absorption fine

6



J. Phys.: Condens. Matter 21 (2009) 084207 P Biswas et al

structure (EXAFS) experiments, providing information on pair
correlation, coordination and the local bonding environment.
A suitable model can therefore be constructed such that the
experimental data are built into the model. The central idea
is to start with a suitable configuration that satisfies a set of
constraints appropriate for the materials under study. Atoms
are then displaced randomly using the periodic boundary
condition until the input experimental data (such as x-ray
diffraction, neutron scattering and extended x-ray absorption)
and the constraints match with the data obtained from the
generated configuration. This is achieved by minimizing a cost
function (via conventional MC) that consists of experimental
data as well as some additional material properties in the form
of constraints whenever possible. Since the method produces
models that include the desired experimental properties in
its way of construction, it is inverse in nature and can be
used for generating structural configurations to satisfy some
selected experimental properties of the materials. The use
of additional constraints (which can be both geometrical or
topological) restricts the search space, and thereby greatly
reduces the unphysical configurations that are mathematically
correct solutions. Starting with a system consisting of N
numbers of atoms with the periodic boundary condition, one
can construct a generalized cost function for an arbitrary
configuration:

ξ =
K∑

j=1

M∑

i=1

η
j
i {F j

E (Qi ) − F j
c (Qi )}2 +

L∑

l=1

λl Pl (1)

where η
j
i is related to the uncertainty associated with the

determination of experimental data points as well as the
relative weight factor for each set of different experimental
data. The quantity Q is the appropriate generalized variable
associated with experimental data F(Q) and Pl is the penalty
function associated with each constraint. For example, in the
case of the radial distribution function and structure factor, Q
has the dimension of length and inverse length, respectively. In
order to avoid the atoms from coming too close to each other,
a certain cutoff distance is also imposed, which is typically
of the order of interatomic spacing. In RMC modeling, this
is usually obtained from the radial distribution function by
a Fourier transform of the experimentally measured structure
factor. This is equivalent to adding a hard-sphere potential
cutoff in the system which prevents the catastrophic build up
of potential energy.

Despite the fact that RMC has been applied to many
different types of systems [4]—liquid, glasses, polymer and
magnetic materials—the reliability of the method is often
questionable. This is particularly so in the absence of adequate
information (both experimental or otherwise). The method
can produce multiple configurations having the same pair
correlation function which certainly reduces the utility of the
generated structure for further use. This lack of uniqueness,
however, is not unexpected in view of the fact that only
the pair correlation function or structure factor is used in
modeling the structure while there exists an infinite hierarchy
of higher-order correlation functions which are not directly
accessible from experimental data. In the absence of sufficient

Figure 4. Structure factor of a model configuration obtained from
RMC simulation (solid line). The points indicate the experimental
data obtained by Laaziri et al from [44].

information, RMC can only produce the most disordered
structure consistent with a given set of experimental data.

Let us illustrate the method with amorphous silicon (a-Si).
This is an archetypal example of amorphous semiconducting
system, which is very difficult to build via molecular dynamics
simulation. It is neither a glass nor can it be described
as a disordered crystalline silicon network owing to its very
different topological properties. It has been observed that
for realistic modeling one needs to include, at the very
least, information about the two-body correlation (via structure
factor) and a description of the bonding geometry via average
bond angle and its variance. Furthermore, it is also important
to include some information about average coordination of
the network to describe the tetrahedral bonding. However,
the structure factor cannot alone provide such information and
consequently RMC fails to generate configurations having only
the topology of amorphous silicon but a mixture of all those
that are consistent with the structure factor or radial distribution
function used in the simulation. Metallic glasses, on the
other hand, lack directional bonding in the short-range length
scale but can have non-trivial intermediate-range structure that
may not be possible to obtain in reverse Monte Carlo models
unless included explicitly in the model construction. It is
therefore essential that for a predictive study RMC models
must be verified independently by comparing the electronic,
vibrational and optical properties of the model to experimental
data whenever possible.

The results for the model amorphous silicon obtained via
RMC simulation are presented in figures 4–6. The model is
constructed by taking into account pair correlation between
the atoms, average bond angle and its deviation, and average
coordination number of the atoms. The computed radial
distribution is expected to match with the experimental as
it was enforced during the simulation. For the bond angle
distribution (BAD), we compare the RMC model with a model
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Figure 5. The bond angle distribution for the RMC model (dotted
line). The corresponding data from a high quality modified WWW
model (see [45]) is also plotted in the figure for comparison. The root
mean square deviation of the distributions are 12.3◦ and 9.5◦,
respectively.

obtained from an improved WWW algorithm developed by
Barkema and Mousseau [45]. The average bond angle for
the RMC model is found to be 109.12◦ with a root mean
square deviation around 12.3◦. A more stringent test of the
model is look at the electronic and vibrational properties of
the model. The electronic density of states (EDOS) obtained
from the density functional code SIESTA [46] in the local
density approximation (LDA) is plotted in figure 6. The
presence of a gap in the spectrum is very noticeable; the gap
is, however, not very clean due to the presence of structural
defects in the form of dangling bonds. The defects can be
minimized by annealing the sample using a suitable force field.
The details of the model construction and its properties were
studied in [47]. In a similar fashion, one can address other
important semiconducting amorphous materials (such as a-C,
a-Se and a-SiC) by identifying the right constraints along with
sufficient structural data. For multinary systems, one needs
to have the partial structure factor for each of the components
in addition to relevant constraints to determine the structure
unambiguously.

In summary, RMC is a fascinating approach to model
amorphous materials provided an adequate set of experimental
data is available along with a handful of empirical constraints.
The success of the method, however, largely depends on
the choice of an optimal experimental dataset so that the
resulting optimization problem can be solved without much
difficulty. Inclusion of too much information would make
the optimization problem very difficult, whereas too little
information would cause it to produce too many poor
configurations of the material. The identification of an
optimal experimental dataset consistent with a set of suitable
constraints is of utmost important for RMC modeling. For
multinary complex disordered materials, however, a systematic
procedure for obtaining optimal information data (both
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Figure 6. The electronic density of states for the RMC model
obtained from a first-principles SIESTA Hamiltonian within the local
density approximation as described in the text. The presence of a
electronic gap in the spectrum is clearly visible.

experimental and constraints) is still lacking, and therefore one
should be careful in interpreting results of RMC simulation.
RMC models should always be verified by studying further
experimental properties (that are included in the model
construction) before a predictive study of the material can
be done. Until the method can be further generalized, it is
instructive to study materials case-by-case via RMC, and to
compare the same obtained from more traditional approaches.

5. Beyond reverse Monte Carlo: the ECMR method

A closer inspection of the reverse Monte Carlo method
described above immediately reveals a major drawback of the
method. It is apparent that, for realistic modeling of amorphous
materials, one needs to include sufficient information that not
only satisfies the input experimental data but also be able
to predict correctly the other experimental properties of the
materials. This suggests one should enforce all the experiments
available. This might include structural (x-ray diffraction),
electronic (x-ray photo-emission) and vibrational (neutron
diffraction) properties for a well-studied material. However,
the RMC problem is essentially a non-convex optimization
problem and the optimization (of the generalized penalty
function) becomes very difficult to solve for increasing number
of constraints that might be necessary to produce an acceptable
solution. Furthermore, in the absence of any potential energy
function, models obtained via RMC may not be in a suitable
minimum of the total energy surface and therefore unlikely not
to be stable (or metastable) energetically.

The experimentally constrained molecular relaxation or
ECMR has been designed to address some of the problems
above [48]. Instead of relying on experimental information
and a set of constraints only, one attempts to employ
additionally an approximate energy functional to describe
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the dynamics correctly by merging first-principles density
functional (or tight-binding/empirical) as well as experimental
data. The purpose of the energy functional is to guide the
system approximately in the augmented configurational space
defined by experimental data and other constraints. The idea
is to reduce the number of unphysical configurations that
might be mathematically correct but fail to satisfy structural
and dynamical behavior correctly. The approximate energy
functional constrains the system to evolve on a restricted
but hypersurface, and thereby accelerates to converge toward
realistic solutions during the course of optimization. The
configuration obtained from the method is not only a minimum
(or local or global) of an appropriate energy functional but is
also consistent with the input experimental information:

'(Q, r) = ξ(Q) ⊕ γ E(r). (2)

In equation (2), the symbol ⊕ stands for the direct sum of the
configuration space of the penalty function ξ(Q) (consisting of
experimental data) and that of the energy functional E(r). In
the limit γ is infinitesimally small and the method reduces to a
inverse method (RMC in the present case), whereas for a very
large value of γ the method is equivalent to a direct method of
minimizing the total energy.

A possible way to implement this idea is to use minimal
experimental information in conjunction with a knowledge
of interactions between the atoms. For complex materials,
however, such identification of ‘minimal’ constraints is a non-
trivial task, and to a large extent depends on the relative
hierarchy of the constraints used in the simulation. A simple
approach to improve the method is to add a constraint in
RMC (an additional Pl in ξ in equation (2)) to minimize
the magnitude of the force on all the atoms according to
some energy functional or possibly to minimize the total
energy/force. Such an approach is expensive, particularly
for ab initio Hamiltonians, since Monte Carlo minimization
of equation (2) requires a large number of energy/force
evaluations. To reduce the computational burden, one may
therefore employ a simple iterative scheme consisting of
the following steps: (1) starting with an initial ‘generic’
configuration C1, minimize ξ to get C2, (2) total energy
minimization of C2 via an ab initio method to get C3,
(3) subject the resulting configuration to another optimization
via RMC (minimize ξ again), then repeat steps (2) and (3) until
both the force-field relaxed model and RMC models no longer
change with further iterations. For the RMC component of the
iteration, conventional Monte Carlo minimization is used but
other methods such as those based on quasi-Newton techniques
can be used as well.

A schematic representation of the various steps is shown
in figure 7. At the heart of the method lies two self-
consistent loops that are connected with each other to navigate
the system along the multi-dimensional configuration space.
The evolution of the system is then tracked by introducing
two convergence parameters (χrmc and χfp) for minimization
and first-principles relaxation. The parameters dynamically
correct the system to propel along the right part of the
augmented solution space that is both optimally satisfied total
energy and force, and the deviation from the experimental

Starting Configuration 

Generic Configuration 

(Random Configuration) 

(Based on a priori information)

(Experimental information)
RMC

First principles relaxation

C0

C1

C2

C3

C3

Yes NoIf
C2≈C3

Poor convergence

Figure 7. A schematic representation of the ECMR method. Starting
from a generic configuration, the method self-consistently minimizes
the total energy and experimental constraints until an optimum
convergence is achieved.

data. By appropriately choosing a generic configuration,
the convergence of each part can be accelerated by the
other. In the event convergence is not achieved within the
specified iterations, the method automatically generates a new
configuration using a different set of information. Details of
the method can be found in [48]. Since the method directly
uses experimental information in association with total energy
relaxation (either first principles or otherwise), we refer to this
method as experimentally constrained molecular relaxation
(ECMR).

ECMR has been applied recently to amorphous GeSe2

and hydrogenated amorphous Si [48, 52]. The former is a
classic glass former and has interesting physical properties that
are difficult to model via conventional molecular dynamics
simulation [49, 50]. A characteristic feature of GeSe2

is the presence of strong intermediate-range order that
results in a first sharp diffraction peak (FSDP) observed in
neutron diffraction measurements. Models obtained from MD
simulation usually show none or a very weak presence of the
FSDP that is not compatible with experimental data. The
intermediate-range order in this material is generally attributed
to the presence of tetrahedral motifs having edge- and corner-
sharing topology. Raman spectroscopy and neutron diffraction
provide useful information about the topological structure
of the material [53, 54]. The GeSe2 model simulated via
the ECMR method has been discussed at length in a recent
communication by the authors [48]. Here we briefly mention
some of the salient features of the model starting with the
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Figure 8. Neutron-weighted static structure factor for two different
models obtained from ECMR and molecular dynamics simulation
([49] and [50]). The experimental data are taken from [51]. The
result from the RMC is also plotted in the inset.

static structure factor. The neutron-weighted static structure
factor obtained from the ECMR model is plotted in figure 8
along with the experimental data from Petri et al [51] and
the data obtained by Cobb et al in [49]. The computed data
from the ECMR model fits very well with the experimental
data. The network topology of g-GeSe2 is also studied
and is found to be correctly produced via ECMR. Raman
spectroscopy and neutron diffraction measurements [53, 54]
indicated that about 33%–40% of Ge atoms are involved
in forming edge-sharing tetrahedra. An examination of the
ECMR model reveals the corresponding percentage is about
38%. This is remarkable in view of the fact that such
information is not included in the initial configuration. This
observation indeed suggests that imposition of partial pair
correlation functions and first-principles relaxation via ECMR
does produce a model having better topological properties than
MD or RMC can do alone. The network topology can be
further characterized by looking at the partial coordination
numbers (nearest neighbor) providing information on the
plurality of the local bonding environment. The values for
Ge–Ge, Ge–Se and Se–Se obtained from the ECMR model
are 0.17, 0.30 and 3.68 compared to experimental values (from
partial structure factors) 0.25, 0.20 and 3.7, respectively. As a
further check of the reliability of the ECMR model of a-GeSe2,
the electronic density of states are calculated to compare with
experimental data obtained from x-ray photo-emission (XPS).
The electronic density of states of the ECMR model (shown
in the inset) is in good agreement with the x-ray photo-
emission (XPS) [25] and inverse photo-emission spectroscopy
(IPES) [26], and establishes further the credibility of our
method. The electronic density of states for the ECMR, RMC
and DR models along with the experimental data are plotted in
figure 9.

Figure 9. The electronic density of states (EDOS) of the ECMR, DR
and RMC models of glassy GeSe2 (in the inset). The x-ray (XPS)
and inverse photo-emission (IPES) data show the valence and
conduction band of the spectrum, respectively, with the Fermi level
located at E = 0 eV. Note the absence of a gap in the RMC model.

6. Vulcanization in amorphous materials:
applications to As–Se glass

Some amorphous materials, such as amorphous Se, containing
long 1D chain structures can be described as polymeric glasses
because of their similarity in the network structure with real
polymers. Of particular interest is the formation of complex
polymer-like structures these materials exhibit in the presence
of some elemental species (As, for example). Inclusion of such
species can cause the original chain structure to evolve into a
complex 3D random network [55, 56]. This process is often
termed as ‘vulcanization’ in amorphous science. An example
of such a system is As–Se glass at a low concentration of As.
Computational modeling of such systems are of special interest
as it provides an opportunity to study the ‘polymerization’
behavior in real glasses and the corresponding change in the
structural properties of the network.

In this section, we briefly mention our approach to
study ‘vulcanization’ via first-principles molecular dynamics
simulation. Starting with a 64-atom a-Se model, As atoms
were introduced in a controlled manner to study the formation
of such polymer-like chains as the simulation proceeded. For
our purpose, we employed some special strategies during the
course of simulation. Since modeling a-Se itself is a non-
trivial work, we began with a relatively small model of a-Se
developed by one of us [29]. This initial configuration satisfied
both structural and electronic properties of a-Se and had very
low structural defects. Since we are primarily interested
here in the ‘polymerization’ process only via formation of
special vulcanized units, we constrained ourselves to a small
but high quality model of a-Se only. Arsenic atoms were
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(b)

(d)(c)

(a)

Figure 10. (Color online only) Formation of amorphous As–Se
networks at three different concentrations: (a) the initial 64-atom
glassy Se (green) network, (b) Se network with 3% of As (red)
atoms, (c) Se network with 10% of As (red) and (d) Se network with
15% As (red) atoms. The presence of As–Se–As cross-links are
clearly visible in (d).

introduced into the a-Se network at random initial positions
subject to the condition that they were not far away from
the Se chains. The MD simulation then proceeded by using
a plane wave basis set for expanding eigenfunctions and the
ultrasoft Vanderbilt pseudopotential as implemented in the
Vienna ab initio simulation package (VASP) [57]. The system
was equilibrated at 300 K using the NV T ensemble.

The results from our simulation are presented in the
figures 10–12. In figure 10, we have shown the formation
of stable vulcanized units at three different concentrations—
5%, 10% and 15%. It is clear from the figure that, with
increasing concentration, more and more non-bonded As
atoms connected to the network and formed 3D-like structures.
Selenium chains were broken and cross-linking units of As–
Se were formed until the long chains were tightly connected
together. It is apparent from the figure that at 15% there is
significant change in the original structure, particularly via
formation of ‘As–Se–As’ triplets. One can expect that at higher
concentrations such changes might be more prominent and
would cause the 1D chain structure to evolve into a complex
3D continuous network. This might lead to the formation of
new structural units and possibly phase transitions. These units
form the vulcanized units that cross-link between As and Se
atoms. The radial distributions of the resulting As–Se glass
at concentrations 7% and 13% of As atoms are plotted in
figures 11 and 12, respectively. The partial pair correlation
functions for the As–Se system obtained by this method appear
very good.

In figure 13 we have shown the formation of cross-linking
structure. A possible reason for the formation of cross-links
would be as follows: the Se chains in the network are very
flexible; they can twist and fluctuate while bonded to the rest

Figure 11. The partial radial distributions for As–Se and Se–Se at
7% As concentration.

Figure 12. The partial radial distributions for As–Se and Se–Se
at 13% As concentration. The height of the first Se–Se peak has
reduced (compared to that of 7%) due to As–Se–As structure
formation.

of the network. When As atoms move close to Se chains,
the system prefers to form Se–As bonding to minimize the
total energy, and thereby provides a route to cross-link As
atoms to Se chains. The cross-linking makes the resulting Se
chain containing As–Se–As triplets more stable. The process
continues until the Se chains evolve into a more complex 3D
random network.

This method is particularly suitable at low concentrations
of As atoms, and when high quality models of Se are readily
available. In order to avoid the formation of As clusters, As
atoms were introduced close to Se chains and relatively far
away from other As atoms. At high concentration, however,
care must be taken to introduce As atoms step-by-step so
that atoms can get plenty of time to form a network with the
Se chains.
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(b)

(d)(c)

(a)

Figure 13. (Color online only) The various steps in cross-link
formation between As (red) and Se (green) atoms. (a) A non-bonded
As atom in the network, (b) the first bond formation with a
neighboring Se atom in a 1D chain, (c) second bond formation and
(d) the completion of cross-link formation for the As atom in the
network.

7. Hydrogen distribution in amorphous silicon:
a first-principles study

Hydrogenated amorphous silicon (a-Si:H) is a very important
material with a wide variety of technological applications.
Since its first preparation in the late 1960s, the application of a-
Si:H ranges from photovoltaics to memory switching devices,
thin film transistors, solar cells, optical scanners and numerous
other electronic instruments [58]. Experimentally, it is still
one of the most active fields of research in materials science
that continues to produce a large volume of experimental
information. In spite of this, our understanding of the role of
H in a-Si:H from a theoretical point of view is very limited.
Some of the very fundamental processes involving the material
are poorly understood. The creation of metastable defects in
the material upon prolonged exposure to light, the so-called
Staebler–Wronski effect [59], is perhaps the most intriguing
problem in this field that is directly related to H microstructure
in a-Si:H. Nuclear magnetic resonance (NMR) studies have
clearly revealed that H distribution in a-Si:H can be rather
inhomogeneous. A narrow line in the typical NMR spectrum of
a-Si:H signifies the presence of Si–H monohydride along with
a broad line that is generally attributed to clusters of Si–H in the
network. Furthermore, multiple-quantum NMR experiments
suggest that the typical number of H atoms in a cluster is about
5–7 in device-quality a-Si:H. Theoretical efforts to understand
the microscopic origin of NMR linewidths are very limited in
spite of the impressive development of new models in recent
years. There exists a number of important studies on modeling
a-Si:H that mostly focus on structural and electronic aspects of
the material properties. The methods employed to obtain these
models can be broadly divided into two categories: dynamic
and static. As discussed earlier, the dynamic ‘cook and quench’
method consists of direct MD simulation by melting crystalline
Si with H at high temperature and then quenching the system

from the melting point to room temperature in several steps
to arrive at the amorphous phase [60–62]. For a-Si:H, the
method naturally produces too many topological defects (such
as dangling and floating bonds, and liquid-like local structure)
with poor electronic and optical properties. The static approach
involves adding H selectively in the network at some strained
Si sites, and to relaxing and passivating the network to reduce
the defect density [63, 64, 52]. While the latter can produce a
good quality a-Si:H model with low defect density and correct
structural and electronic properties, it is not yet clear to what
extent H microstructure can be correctly described within this
approach. A device-quality model of a-Si:H must satisfy
not only structural, electronic and vibrational experiments but
also conform to NMR studies to take into account correct H
dynamics and its distribution in the network.

In the following we present a first-principles study of
modeling hydrogenated amorphous silicon, with particular
emphasis on the distribution of H atoms in the network. To this
end, we started with a 216-atom model of an a-Si network and
introduced 24 H atoms randomly at a distance of about 2.5 Å
from the host Si atoms. This amounts to having approximately
10% of H in the network by number or about 1% by atomic
weight. Such a low concentration of hydrogenated sample
can be grown experimentally by hot wire chemical vapor
deposition (HW-CVD) [65]. This initial configuration was
then equilibrated using NV T simulation at T = 300 K for
about 4 ps using the first-principles density functional code
VASP [57]. The resulting network reorganized itself and the
H atoms formed bonds with the host Si atoms. The H atoms
were found to be particularly reactive in the vicinity of strained
Si–Si bonds in the network. Strained Si–Si bonds were broken
and new Si–H bonds were formed. This process reduced the
strain of the network and passivated any dangling bonds that
might have been created during the equilibration process. The
movement of the H atoms was tracked during the simulation,
and the nearest-neighbor H–H distances were noted for the last
0.3 ps of the simulation in order to get an idea of H distribution
in the network.

In figure 14 we plotted the distribution of minimum H–
H distances averaged over a time period of 0.3 ps. The first
peak around 2.4 Å is consistent with the average H–H distance
extracted from the analysis of proton NMR-free induction-
decay (FID) signal reported by Hansen et al in [66]. While
direct comparison with experimental data is difficult, one can
nevertheless calculate the approximate NMR linewidth for the
sample (as full width at half-maximum (FWHM)) from a
knowledge of the hydrogen distribution in the network. By
assuming that the lineshape is Gaussian (which is consistent
with experiment at low concentrations of H), and is broadened
by 1H homonuclear dipolar interactions, the linewidth can be
expressed as [67]

σ(kHz) = 190

(
1
N

N∑

i, j=1

1

r 6
i j

)1/2

(3)

where N is the number of spins (H nuclei) and ri j is the
distance between the spins in Å. At 300 K, we observed
σ varied between 15 and 20 kHz which was close to the
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Figure 14. Distribution of minimum H–H distances in amorphous
Si216H24 model averaged over 0.30 ps at T = 300 K.

experimental range of 22–35 kHz for device-quality a-Si:H
samples [68, 69]. The percentage of clustered H configuration
was found to be quite small and was about 20% of the total H
content. This small number of clustered H is probably due to
the short equilibration time and the lower topological defects
present in the a-Si network as clustering is most likely to occur
around vacancies or voids. Nevertheless, such a configuration
is comparable to the device-quality samples grown with a glow
discharge (GD) technique which shows the FWHM for a broad
NMR line below 35 kHz and average spin concentration for
dilute H as 1.5 × 1021 cm−3 compared to 4.2 × 1021 cm−3

in our model [67]. As H configuration in the a-Si network is
largely affected by the preparation conditions (deposition rates,
growth temperatures, etc), it is possible that with this improved
technique one can get a wide range of H configurations by
equilibrating the cell at different temperatures. This is the
first time, using ab initio simulation, H distribution in a-Si is
obtained which is consistent with both the broad and narrow
NMR lines.
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