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In this note, we calculate the electronic properties of a realistic

atomistic model of amorphous graphene. The model contains

odd-membered rings, particularly five and seven membered

rings and no coordination defects.We show that odd-membered

rings increase the electronic density of states at the Fermi level

relative to crystalline graphene; a honeycomb lattice with semi-

metallic character. Some graphene samples contain amorphous
regions, which even at small concentrations, may strongly

affect many of the exotic properties of crystalline graphene,

which arise because of the linear dispersion and semi-metallic

character of perfectly crystalline graphene. Estimates are given

for the density of states at the Fermi level using a tight-binding

model for the p states.
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1 Introduction Graphene has lately received a great
deal of attention as a novel material. Graphene is a two-
dimensional (2D) network of carbon atoms arrayed in a
honeycomb lattice, with the nearest neighbour distance
being about 1.42A. The band structure of graphene has been
studied by a number of workers. The electronic structure of
the material is easy to understand in a tight-binding picture.
States near the Fermi level arise from the carbon pz orbitals
perpendicular of the graphene (taken to be in the x–y plane).
This valence p band has a width of order 8.5 eV [1, 2]. States
with energies deeper into the valence or conduction bands
involve sp2 hybridization.

Since the graphene network is 2D, it exhibits some
features of basic interest. A primary example is the linear
dispersion in the energy bands, which makes graphene
electrons analogous to relativistic spin-1/2 particles as
treated with the Dirac equation. Consistent with a zero
effective mass from the graphene band structure, the
experimental carrier mobility is high. Such unusual proper-
ties have led to a variety of proposed applications ranging
from nano-ribbons to bio-devices.

Most theoretical work on graphene has been carried out
for the ideal crystalline material. However, as with most
other materials, defects are unavoidable during the prep-
aration of graphene and can play a key role in many
observables, and particularly electronic properties.
The consequences of topological and other types of
defects on electronic and transport properties of graphene
has been studied recently [3]. It has been found that ring
disorder is sufficient to introduce gap states. However, these
states are localized and their effect on conductivity is limited.
In addition, the defects scatter massless Dirac fermions, and
that leads to a decrease in the conductivity [4, 5]. The impact
of edges on density of states strongly depends on its type –
zigzag or armchair. Only zigzag edges lead tomid gap states,
which do not contribute to conductivity as are localized on
the edges [3].

The purpose of this article is to discuss the electronic
properties of amorphous graphene using a large and realistic
model. We adopt a simple but physically transparent
approach to the electronic structure; a tight binding
Hamiltonian that is valid near the Fermi level, which is the
energy range of primary interest.

2 Methods and models
2.1 Model of amorphous graphene Model of

amorphous graphene was prepared using the Wooten–
Weaire–Winer (WWW) method [6, 7]. It was generated by
introducing Stone–Wales defects [8] into perfect honey-
comb lattice. The resulting network is presented in Fig. 1. It
contains 800 atoms, each of them three-coordinated, similar
to the honeycomb lattice but topologically distinct, with
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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34.5% of the elementary rings being pentagons, 38%
hexagons, 24% heptagons and 4.5% octagons. Since the
average size of rings is six, according to Euler’s theorem,
such a system can exist as a flat 2D structure with some
distortions of bond lengths and angles. This computer
generated model is small and certainly much larger models
with tens of thousands of atoms can and should be built, to
study the effect of varying the ring statistics etc. However we
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Figure 1 (online colour at: www.pss-b.com) An 800-atom model
of amorphous graphene used in the paper, with periodic boundary
conditions. Bonds that are greater than 1.05 times the average length
are in blue and less than 0.95 times the average length in red. The
remaining bonds are shown in green. Adapted from H. He [7].
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do expect the main result of this paper, that odd rings lead to
additional states near the Fermi level, to be robust. This will
also lead tomore accurate numbers for the dependence of the
density of states at the Fermi level on the presence of odd
rings, especially five-fold rings, in the network.

Periodic boundary conditions were imposed and the
entire network was relaxed with the Keating-like
potential [9]:
V
 ¼
X
k
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Here a¼ 1.42 Å and b/a¼ 0.2. For the structure in Fig. 1, the
root-mean-squared (rms) deviation of the bond length is 5%
and rms angle deviation is 168. Figure 1 also shows
distribution of bond lengths. Bonds greater than 1.05 times
the average length are in blue and shorter than 0.95 times the
average length in red. The remaining bonds are shown in
green. The important observation here that blue and red
bonds do not alternate as onemight have expected, but rather
form short chains with blue bonds tending to be associated
with large rings (less dense regions), as seen in recentwork in
other systems [10, 11]. One could notice an asymmetry: there
are some 6 and 5 long blue chains, but red chains are no
longer than 3.

The disorder of the network is gauged from the radial
distribution function (Fig. 2), which has a typical shape for
liquids and amorphous materials. The first peak is very sharp
and it corresponds to the bond distance 1.42 Å. Two
subsequent peaks can be also distinguished but oscillations
of g(r) vanish at distances greater than �4 Å.

2.2 Tight-binding approximation In this paper we
compare electronic densities of states for crystalline and
amorphous graphenes. The first theoretical description of the
www.pss-b.com
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Figure 2 The radial distribution function g(r) of the model of
amorphous graphene, calculated with a bin size 0.1 Å for distances
less than 3 and 0.2 Å for larger distances.
p and p� electronic bands of crystalline graphene was given
by Wallace in 1947 [12]. He developed the tight binding
approximation with including nearest- and next-nearest
neighbours. The tight-binding Hamiltonian has form
www
H ¼ �g
X
i;jh i

aþi bj þ H:c:
� �

� g 0
X
i;jh ih i

aþi aj þ bþi bj þ H:c:
� �

; (2)
where aþi ðaiÞ are creation (annihilation) operators acting on
the A or B sublattice, g � 2.8 eV is the nearest-neighbour
hopping energy and g’� 0.2g is the next nearest-neighbour
hopping energy. Using Bloch’s theorem gives the analytical
expression for the band structure:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Figure 3 (online colour at: www.pss-b.com) Density of states of
crystalline (solid lines) andamorphousgraphene fromFig.1 (dashed
red line). The DOS of the crystal with periodic boundary conditions
were solved numerically for an 800 atom super-cell (black line) and
by Brillouin zone integration for an infinite lattice (green line), The
solid blue line is the DOS of 800 piece on crystalline graphene with
free boundaries.
where a is the lattice constant, and g and g’ are elements of

Hamiltonian matrix projected on 2pz atomic wave functions;
often treated as fitting parameters. The tight binding
approximation for graphene was compared recently with
an ab initio calculation [2], and found to be qualitatively
correct, especially near the Fermi level of interest here, but
to get a good agreement at all energies, at least a third-
nearest neighbour approximation is necessary especially
because of more the complex hybridization several eV away
from the Fermi level.

For a description of topologically disordered solids we
will use the tight binding theory [13]. This simplified
formulation needs only the information about coordination
of nearest neighbours and is valid for both crystalline and
.pss-b.com
amorphous materials. It is based on the Hamiltonian:
H ¼ �g
X
i;jh i

aþi bj þ H:c:
� �

; (4)
which also has only one basis function per atom and only the
single parameter g from Eq. (2); and the sum is taken over
nearest neighbours. The parameter g’ could also be
incorporated into this approach, as it is also purely
topological, but makes little sense as there would be
significant positional dependence based on the local bond
angle etc., that would introduce the geometry and add little
in terms of understanding close to the Fermi level. The
calculation of density of states based on Eq. (4) is simple and
reduces the computation of eigenvalues of the connectivity
matrix [14]. The Hamiltonian (4) was used in study of
electronic structures of amorphous semiconductors [15],
where it was concluded that topological disorder does not
eliminate the energy gap, present in the crystalline
materials, which is in agreement with experimental data
and many subsequent calculations.

3 Results The main result of the paper, comparison of
densities of states of crystalline and amorphous graphene,
using Eq. (4) is presented in Fig. 3. The solid line, which
corresponds to pristine graphenewhich is semi-metallic. The
black linewas calculated for honeycomb lattice of 800 atoms
with periodic boundary conditions, and corresponds to
electronic states with zero wavevector in the Brillouin zone
of the 800 atom super-cell. The result is almost identical to
the infinite lattice calculation (using Eq. (3) with g’¼ 0)
denoted by the solid green line, where a full Brillouin zone
integration is done using all wavevectors of the super-cell.
The ripples on the solid black line are therefore due to finite
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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size effects and serve as an estimate of the error introduced
by using an 800 atom super-cell with only the strictly
periodic states being counted. The role of free boundary
conditions is illustrated by the blue line. Dangling bonds at
the boundary of an 800 atom piece of honeycomb lattice give
rise to states near Fermi level. However, their number is
proportional to the number of atoms at the boundary and,
therefore, vanishes in the thermodynamic limit as 1=

ffiffiffiffi
N

p
.

The result presented by the dashed red line is calculation for
the amorphous system with an 800 atom super-cell shown in
Fig. 1. In marked and interesting contrast to amorphous bulk
semiconductors like silicon, the topological disorder in
graphene leads to a significant increase in density of states at
the Fermi level. Odd rings are evenmore effective in creating
states at the Fermi level than dangling bond defects.

The localization of electronic states can be quantified
using the inverse participation ratio, p, defined as
Figu
800
cond
for a

� 20
p�1 ¼
X
i

’ij j4; (5)
where wi is a normalized eigenfunction, and i is the atom
index. This gives the participation as a function of energy. If
the wave function is 1=

ffiffi
r

p
on just r atoms and zero

everywhere else, then p¼ r gives an indication of the
localization of the wave function. Figure 4 shows the inverse
participation ratios per atom calculated for an 800 atom
piece of crystalline graphene (panel a), an 800 atom piece of
crystalline graphene with free boundary conditions (panel b)
and amorphous graphene (panel c). In the absence of defects
all wave functions are highly delocalized with broad
distribution of p/N between 0.33 and 0.66. As we have
already mentioned, there are no states at the Fermi level for
crystalline graphene as shown in panel a. The free
boundaries introduce highly localized surface states, which
fill in the mid-gap as shown in panel b, and also lead to
re 4 Inverse participation ratio per atom; all calculated for
atom sample. Panel (a) for crystalline graphene with periodic
itions, (b) for crystalline graphene with free boundaries and (c)
morphous graphene.
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significant narrowing the distribution p/N. Finally, panel c
demonstrates that topological defects cause a significant
localization of all the wave functions, and especially those
around the Fermi level. These results are consistent with
previous studies done on systems with small number of
defects [4, 16].

4 Conclusions The electronic structure of an 800
atom model of amorphous graphene with periodic boundary
conditions has been studied within the tight-binding
approximation, which is realible near the Fermi level. The
presence of odd rings in amorphous graphene lead to a very
significant increase in the density of states in the vicinity of
the Fermi level. It is shown that these states are highly
localized. It has recently been shown that such amorphous
regions can exist in graphene [17], where they would be
expected to have a significant effect in blurring or
eliminating some of the exotic effects found in graphene
due to the linear dispersion and semi-metallic character of
perfectly crystalline graphene.
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