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For a group of charged particles obeying quantum mechanics

(QM) and interacting with an electromagnetic field, the charge,

and current density in a pure state of the system are expressed

in terms of the many-body wave function. Using these as

sources, the microscopic Maxwell equations can be written

down for any given pure state of a many-body system. By

employing semi-classical radiation theory (SCRT) with these

sources, the microscopic Maxwell equations can be used to

compute the strong radiation fields produced by interacting

charged quantal particles. For a charged particle, three

radiation fields involve only the vector potential A. This is

another example demonstrating the observability of the
vector potential. Five radiation fields are perpendicular to the

canonical momentum of a single charged particle. For a group

of charged particles, a new type of radiation field is predicted.

This kind of radiation does not exist for a single charged

particle. The macroscopic Maxwell equations are derived from

the corresponding microscopic equations for a pure state by

the Russakoff–Robinson procedure which requires only a

spatial coarse graining. Because the sources of fields are also

the responses of a system to an external field, one also has to

give up the temporal coarse graining of the current density

which is often supposed to be critical to the kinetic approach of

conductivity.
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction This paper discusses three closely
related problems for a group of non-relativistic charged
particles obeying quantum mechanics (QM): (1) the radiation
fields produced by the current density in a pure state of the
many-body system; (2) derivationof themacroscopicMaxwell
equations from the corresponding microscopic equations in a
given pure state; and (3) the consequence of the averaging
procedureused in (2), for computing the electrical conductivity.

In condensed phases, there exist abundant radiation
related phenomena. Cherenkov radiation and transition
radiation are two prominent examples [1]. Although
quantumelectrodynamics (QED) is believed to be applicable
to all radiation problems, it is only feasible to calculate the
weak field (a few photons) produced by a few charged
particles with perturbation theory [2–7]. QED is difficult for
the long time evolution [8], the reaction of the atom on
the applied field [9, 10], the effect of boundary conditions
[11], bound states, and coherent radiation from many
charged particles. To further explore radiation phenomena
in condensed phases, we need an alternative method for
computing the radiation field.

The ‘‘neoclassical’’ or semi-classical radiation theory
(SCRT) of Jaynes [12] is concerned with the strong radiation
of a relativistic or non-relativistic charged particle. The
motion of the particle is treated quantum mechanically
while the electromagnetic field is treated classically [8–12].
The SCRT has succeeded in treating spontaneous emission,
absorption, induced emission [13, 14], photo-dissociation,
Raman scattering [15], radiative level shifts [16], and
absorption of radiation by a diffusive electron [17]. Thus it
is natural to extend SCRT to the radiation field caused
by a current-carrying pure state of many non-relativistic
charged particles. In this paper, we merge results from the
microscopic responsemethod (MRM) [18, 19]with concepts
of SCRT to extend the latter to many-particle systems.

Since the pioneering work of Lorentz [20], many
schemes have been suggested to derive the macroscopic
Maxwell equations from the corresponding microscopic
equations [21–23]. To obtain the macroscopic fields and
sources, usually both temporal coarse graining and spatial
coarse graining are taken in addition to an ensemble average.
By assuming that the motion of charged particles obeys
classical mechanics (CM), Russakoff [24], and Robinson
[25] (RR) proved that (i) only the spatial coarse graining is
relevant; (ii) the spatial coarse graining is compatible with
the ensemble average [26]. Since the motion of conduction
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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electrons in solids is described by QM, it is desirable to
extend the RR procedure to such a situation.

Dropping the temporal coarse graining has a profound
consequence. In both microscopic and macroscopic Max-
well equations, current density and charge density are the
sources of electromagnetic field. On the other hand, current
density is also the response of a system to an external field.
Therefore Russakoff-Robinson’s procedure means that the
temporal coarse-grained average is irrelevant to derive the
irreversibility caused by a conduction process.

In Section 2, we write out the microscopic Maxwell
equation for a pure state. In Section 3, we apply SCRT to
analyze the radiation fields from the current density caused
by one and many charged particles. For a quantal charged
particle, three radiation fields involve only the vector
potential. Here we have one more example demonstrating
the physical reality and potential measurability of vector
potential. In contrast to the classical radiation field, five
radiation fields are found to be perpendicular to the canonical
momentum of the particle. For a group of charged particles
obeying QM, one of its radiation fields is perpendicular to
Aðxj; tÞ � ½r � ðrjC

0Þ�, where C0 is the many-body wave
function, and A (xj,t) is the vector potential felt by the jth
particle at time t. This kind of radiation does not exist for
a single charged particle. In Section 4, we apply the RR
procedure to derive the macroscopic Maxwell equations for
a group of charged particles obeying QM. We show that
without temporal a coarse grained average, the irreversibility
of conduction process is still included in the present theory.

2 Microscopic Maxwell equations for a pure
state Consider a system (S) withNe electrons andN nuclei
in an external electromagnetic field (F ) described by vector
and scalar potentials (A, f). Denote the coordinates of Ne

electrons as r1; r2; � � � ; rNe , and the coordinates of N nuclei
asW1;W2; � � � ;WN . In the external field (A, f), the state C0

(t) of the system is determined by the many-body
Schrödinger equation
Hf

www
i�h@C0=@t ¼ H0C0; (1)
jC

where H0(t)¼HþHfm(t) is the total Hamiltonian for
S þ F , H is the Hamiltonian of system, Hfm(t) is the
field–matter interaction:
mðtÞ ¼
XNe

j¼1

(
i�he

2m
½Aðrj; tÞ � rj þrj � Aðrj; tÞ�

þ e2A2ðrj; tÞ
2m

þ efðrj; tÞ
)

þ
XN
L¼1

(
� i�hZLe

2ML
½AðWL; tÞ � rL þrL � AðWL; tÞ�

þ ðZLeÞ2A2ðWL; tÞ
2ML

� ZLefðWL; tÞ
)
:

(2)
.pss-b.com
The time dependence of Hfm(t) comes from the external
field. The arguments of C0 are ðr1; r2; � � � ; rNe ;
W1;W2; � � � ;WN ; tÞ.

In QM, the state of the system at time t is described by the
solution C0(t) of Eq. (1): the microscopic charge density rC

0

and current density jC
0
in state C0 are completely determined

by C0(t). The microscopic charge density rC
0
in state C0 is

rC
0 ðr; tÞ ¼

R
dtC0�brðrÞC0, where brðrÞ ¼ P

j edðr� rjÞ�P
L ZLedðr�WLÞ is the charge density operator of the

system, dt ¼ dr1dt
1 is the volume element in the whole

configuration space, dt1 ¼ dr2 � � � drNedW1 � � � dWN . Carry-
ing out the integrals and using the antisymmetry of C0 for
exchanging the coordinates of two electrons,
C0 ðr; tÞ ¼ Nee

Z
dt1C0C0� �

X
L

ZLe

Z
dtLC0C0�; (3)
where dtL ¼ dr1 � � � drNedW1 � � � dWL�1dWLþ1 � � � dWN ,
the arguments of the C0 in the first term are ðr; r2 � � � rNe ;
W1 � � �WN Þ, the arguments of the C0 in the second term are
ðr1; � � � ; rNe ; W1; � � � ;WL�1; r;WLþ1 � � � ;WN ; tÞ.

2.1 Microscopic Maxwell equations in a pure
state If the system is in a state C0(t), the microscopic
Maxwell equations are
� bC
0
¼ 0; r� eC

0 ¼ �@bC
0
=@t (4)
and
� eC0 ¼ rC
0
=e0; c2r� bC

0
¼ jC

0
=e0 þ @eC

0
=@t; (5)
where eC
0
and bC

0
are the microscopic electric field and

magnetic induction at (r, t) in pure state C0.
Applying @=@t on the first inhomogeneous equation in

(5), and 5� on the second, one has the continuity equation
for a pure state C0 [27]:
C0 ðr; tÞ=@t þr � jC0 ðr; tÞ ¼ 0: (6)
Equation (6) helps us find the microscopic current density
[18, 19] jC

0
from rC

0
:

0 ðr; tÞ ¼ i�heNe

2m

Z
dt1ðC0rC0� �C0�rC0Þ

� Nee
2

m
Aðr; tÞ

Z
dt1C0�C0

�
XN
L¼1

i�hZLe

2ML

Z
dtLðC0rC0� �C0�rC0Þ

�
XN
L¼1

ðZLeÞ2

ML
Aðr; tÞ

Z
dtLC0�C0;

(7)
where the arguments of C0 in the 1st and 2nd lines
are ðr; r2; � � � ; rNe ; W1; � � � ;WN ; tÞ, the arguments of the
C0 in the 3rd and 4th lines is ðr1; � � � ; rNe ;
W1; � � � ;WL�1; r;WLþ1 � � � ;WN ; tÞ. The current density
(7) is valid for an arbitrary gauge. In Eq. (7), the
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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contribution to jC
0
from nuclei is similar to that from

electrons; we will not keep the last two terms.
In the derivation of Eq. (7) by either the principle of

virtual work [39] or the MRM [18, 19], we deal with a
specified external field in an arbitrary gauge. Therefore the
current density (7) is valid for an arbitrary gauge. Because
(f,A) directly appear in Schrodinger Eq. (1), the many-body
wave function depends on the chosen gauge. When we
discuss radiation problems with coupledMaxwell Eqs. (4, 5)
and Schrodinger Eq. (1), it is natural to inquire whether
fields, charge density and current density are affected in
different gauges. If one makes gauge transformation for
potentials from (f1, A1) to (f2, A2):
brda
� 20
f2ðr; tÞ ¼ f1ðr; tÞ �
@xðr; tÞ

@t
(8)
and
A2ðr; tÞ ¼ A1ðr; tÞ þ rxðr; tÞ; (9)
one has to replace
i�h
@C0

1

@t
¼ H0½f1;A1�C0

1 (10)
with
i�h
@C0

2

@t
¼ H0½f2;A2�C0

2; (11)
where
C0
2ðr1; r2; � � � rN ; tÞ ¼ C0

1ðr1; r2; � � � rN ; tÞ

� exp i
XNe

j¼1

ejxðrj; tÞ=�h
( )

:
(12)
Noticing that the potentials felt by the jth particle are
f2ðrj; tÞ ¼ f1ðrj; tÞ �
@xðrj; tÞ

@t
(13)
and
A2ðrj; tÞ ¼ A1ðrj; tÞ þ rrjxðrj; tÞ; (14)
one can easily reduce Eq. (11) into Eq. (10). With the help of
Eqs. (12–14), we can directly prove that charge density (3)
and the current density calculated from Eq. (7) are the same
for any two different gauges. Since the sources of fields
ðrC0

; jC
0 Þ in Eqs. (4, 5) do not depend on gauge, the fields

ðeC0
; bC

0 Þ do not depend on gauge.

2.2 Current density and dipole moment
density The ath (a¼ x, y, z) component of the dipole
density operator is defined as
ðrÞ ¼
XNe

j¼1

erjadðr� rjÞ �
XN
L¼1

ZLeWLadðr�WLÞ: (15)
13 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
We may extract the polarization PC0
a ðr; tÞ in state C0 from
daðtÞjC0 ¼
Z
drPC0

a ðr; tÞ; (16)
where daðtÞjC0 is the ath component of the induced dipole in
state C0:
daðtÞjC0 ¼
Z
dr

Z
dtC0�brdaC0;a ¼ x; y; z: (17)
The time dependence of the induced dipole in state C0(t)
results from the time dependence of C0(t). The time
derivative of the polarization can be found from
@daðtÞjC0=@t:
@

@t
daðtÞjC0 ¼

Z
dr

@

@t
PC0

a ðr; tÞ: (18)
Combining Eqs. (1, 17, 18) and integrating by parts, one has:
@PC0

a ðr; tÞ
@t

¼ Nei�he

2m

Z
dt1 C0 @C

0�

@ra
�C0� @C

0

@ra

� �

�Nee
2

m
Aaðr; tÞ

Z
dt1C0�C0

�
XN
L¼1

i�hZLe

2ML

Z
dtL C0 @C

0�

@ra
�C0� @C

0

@ra

� �

�
XN
L¼1

ðZLeÞ2

ML
Aaðr; tÞ

Z
dtLC0�C0;

(19)
where the arguments of C0 in the 1st and 2nd lines are
ðr; r2; � � � ; rNe ;W1; � � � ;WN ; tÞ, the arguments of the C0 in
the 3rd and 4th lines is ðr1; � � � ; rNe ; W1; � � � ;WL�1;
r;WLþ1 � � � ;WN ; tÞ. Comparing Eq. (19) with Eq. (7), we
find that the current density in state C0 is related to the time
derivative of polarization in state C0 by:
jC
0

a ðr; tÞ ¼ @PC0

a ðr; tÞ
@t

; a ¼ x; y; z: (20)
Since both the free carriers and the bound electrons are
included in Eq. (15), the polarization PC0

a defined in Eq. (16)
contains the contributions from both carriers and bound
electrons.

2.3 Radiation field The state of S þ F is determined
by the coupled Eqs. (1, 4, 5) [14]. In ordinary circumstances,
the inducedmotion of the charged particles caused by aweak
external field is non-relativistic, and the energy radiated by a
particle is much smaller than the mechanical energy of that
particle. Using direct product jC0i � je; bi to represent the
state of S þ F is then allowed.

Although the vector potential appears in the expression
(7) of current density, Eq. (7) is correct for arbitrary gauge
[18, 19]. In the same spirit, we present a method for
www.pss-b.com
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calculating the field which does not refer to potentials. To
obtain the wave equation for bC

0
, one applies 5� to the

Ampere–Maxwell law, and invokes the magnetic Gauss
theorem and the Faraday–Lenz laws. One finds that [14]
r

r

�

r

r

bCv

eCv

bCv

4p

þ

www
2bC
0
� 1

c2
@2bC

0

@t2
¼ �m0r� jC

0
: (21)
The wave equation for eC
0
can be obtained by applying5�

to the Faraday–Lenz’s laws, and noticing the electric Gauss
theorem and the Ampere–Maxwell law. One has
2eC
0 � 1

c2
@2eC

0

@t2
¼ rrC

0

e0
þ m0

@jC
0

@t
: (22)
The temporal Fourier transformations of Eqs. (6, 21, 22) are
ivrC
0

v þ jC
0

v ¼ 0 (23)
and
2bC
0

v þ k2bC
0

v ¼ �m0r� jC
0

v ; k ¼ v=c; (24)
and
2eC
0

v þ k2eC
0

v ¼ rrC
0

v

e0
� ivm0j

C0

v : (25)
By means of the Green’s function method [27, 28], the
retarded solutions of Eqs. (24, 25) are
0
ðxÞ ¼ m0

4p

Z
d3x0

eikr

r
rx0 � jC

0

v ðx0Þ (26)
and
0 ðxÞ ¼ 1

4pe0

Z
d3x0

eikr

r

iv

c2
jC

0

v ðx0Þ � rx0r
C0

v ðx0Þ
� �

; (27)
where r¼ x� x0 and r¼ jrj. With an integration by parts and
exploiting Eq. (23), one obtains
0
ðxÞ ¼ m0

4p

Z
d3x0

eikr

r2
jC

0

v � r

r
� ikjC

0

v � r

( )
(28)
and
e0eC
0

v ðxÞ ¼ ik

c

Z
d3x0

eikr

r3
½r� ðjC0

v � rÞ�Z
d3x0

eikr

r3
rrC

0

v ðx0Þ þ 1

cr
½ðjC0

v � rÞr� r� ðjC0

v � rÞ�
� �

:

(29)
To obtain Eqs. (28, 29), traditionally one first introduces
scalar and vector potentials. The wave equations for
potentials are then derived under a given gauge, e.g.,
Lorentz gauge. One arrives at fields by differentiating the
potentials. The results, Eqs. (28, 29) do not depend on
the choice of gauge [28].

Taking the inverse Fourier transformation, the radi-
ation fields produced by a current-carrying pure state
.pss-b.com
C0(t) are [28]:
0

adðx; tÞ ¼
1

4pe0c3

Z
d3x0

@jC
0

@t0 ðx0; t0Þ
h i

ret
� ðx� x0Þ

jx� x0j2
;

(30)
eC
0

radðx; tÞ ¼
1

4pe0c2

�
Z

d3x0
@jC

0

@t0 ðx0; t0Þ
h i

ret
� ðx� x0Þ

n o
� ðx� x0Þ

jx� x0j3
;

(31)
where t0 ¼ t � jx� x0j=c. It is the time derivative
@jC

0 ðx0; t0Þ=@t0 of the current density that determines the
radiation field. Although r� jC

0
v and rrC

0 . .
.

also appear
as the sources of fields in Eqs. (21, 22), making use of the
integration by parts and Eq. (23), they are partly converted
into @jC

0
=@t0 (contributed to radiation field) and partly

converted into jC
0
and r (contributed to the induction field),

cf. Eqs. (28, 29).
Now, denote x00 as the origin of the source distribution, x

0

as an arbitrary point in a localized charge distribution, and x
as the observation point. The integrands of Eqs. (30, 31) can
be expanded in a small parameter e ¼ jx0 � x00j=jx� x00j.
Because the radiation field represents outgoing energy,
it must have asymptotic form proportional to jx� x00j�1

[27,
28]. The electric field and the magnetic induction in the far
field region are
bC
0

rad ¼ �n� pC
0
; eC

0

rad ¼ cn� ðn� pC
0 Þ; (32)
where n ¼ ðx� x00Þ=jx� x00j, the arguments of eC
0

rad, b
C0
rad

and pC
0
are (x, t) [29, 30]. The vector field pC

0
is given by
pC
0 ðx; tÞ ¼ 1

4pe0c3

�
Z

d3x0
X1
q¼0

jx0�x00j
c cosu

� �q

q!

@qþ1jC
0 ðx0; t � s0Þ
@tqþ1

;

(33)
where u is the angle between ðx� x00Þ and ðx0 � x00Þ. The
q¼ 0 term gives the dipole approximation, the q¼ 1 term
gives the quadrupole and magnetic dipole approximation,
etc. [29, 30].

3 Radiation fields computed from @@@jC
0
(x0; t0)/@@@t0

3.1 A moving electron Let us consider the motion
of an electron in an electromagnetic field (A, f) and
another external field U0(x). An alkali atom in a dilute
alkali gas is an example. Denote the single particle wave
function of the particle as c0(x, t), the average velocity
vðtÞjc0 ¼ d

R
d3xc0�rc0� �	

dt in state c0(x, t) can be found
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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from Schrödinger equation [14, 18]:
@jc
0

þ e

� 20
vðtÞjc0 ¼ i�h

2m

Z
d3xðc0rc0� � c0�rc0Þ

� e

m

Z
d3xc0�Aðx; tÞc0:

(34)
þ e

The average acceleration aðtÞjc0 ¼ dvðtÞjc0=dt in the state
c0(x, t) is [14, 18]
þ

þ �h

þ i�h
aðtÞjc0 ¼ m�1

Z
d3xc0�½eE�rU0�c0

þ e

m2

Z
d3xc0�ð�i�hr� eAÞc0 � B

� i�he

2m2

Z
d3xc0�c0ðr � BÞ;

(35)
þ i�h

þ i�h

2

where the arguments of the fields are (x, t). The first term in
Eq. (35) is the acceleration caused by the electric field and
external field U0, the second term is the magnetic force.
They are expected from CM. The third term is a quantum
effect: an additional small component along the average
direction of5�B. The ratio of the third term to the second
is �a/L, where a is the characteristic length of wave
function c0, L is the characteristic length scale in which
magnetic field changes.

For a single electron, Eq. (7) reduces to:
jc
0 ðx; tÞ ¼ i�he

2m
ðc0rc0� � c0�rc0Þ

� e2

m
Aðx; tÞc0�c0:

(36)
Comparing Eqs. (34) and (36), we have:
vðtÞjc0 ¼ e�1

Z
d3xjc

0 ðx; tÞ: (37)
The average acceleration and the time derivative
@jc

0 ðx; tÞ=@t of current density are related by:
aðtÞjc0 ¼ e�1

Z
d3x

@jc
0 ðx; tÞ
@t

: (38)
From Eqs. (33, 38) we can see that in the dipole
approximation the quantal acceleration aðtÞjc0 is the source
of radiation. The radiation fields produced by the first two
terms in Eq. (35) are already known in CM. The last term in
Eq. (35) is a new feature of a quantal charged particle. The
corresponding radiation fields are perpendicular to (5�B),
and they should be detectable for a charged particle moving
in a non-uniform magnetic field. By testing the polarization
of scattered fields, it may also be observed in the scattering
phenomenon.

Let us consider more general radiation fields produced
by a quantal charged particle moving in an external field
(f, A). Since we consider only non-relativistic motion,
the effect of self-fields of the particle on its motion can
13 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
be neglected. Taking the time derivative in Eq. (36), one
finds
ðx; tÞ=@t ¼ e2

m
Ec0c0� � e

m
rU0ðxÞc0c0�
2 3
m2
½c0ði�hrc0�Þ þ c0�ð�i�hrc0Þ�� B� e

m2
ðA� BÞc0c0�
2
3

Aðr � jc0 Þ � e

m2
c0c0�ðA � rÞA
m

i�he2
m2
c0½ðrc0�Þ � r�A� c0�½ðrc0Þ � r�Af g
2
2
e

m2
½c0rr2c0�þc0�rr2c0�ðrc0�Þr2c0�ðrc0Þr2c0��
4

2
e

m2
c0½A � r�ðrc0�Þ � c0�½A � r�ðrc0Þ�f g
2
2
e

m2
ðrc0�ÞA � rc0 � ðrc0ÞA � rc0�½ �
2

e2

m2
ðc0rc

0� � c
0�rc0Þr � A; (39)
where Eðx; tÞ ¼ �rfðx; tÞ � @Aðx; tÞ=@t and Bðx; tÞ ¼
r � Aðx; tÞ are the electric field and magnetic induction,
the arguments of A, B, E, and c0 are (x, t). Integrating
Eq. (39) over space

R
d3x, one can check sum rule (38) using

integration by parts. However, one observes that, according
to Eqs. (30, 31), the radiation field is determined by the time
derivative of @jc

0 ðx; tÞ=@t current density rather than by the
average acceleration aðtÞ.

The radiation fields produced by the first three terms are
perpendicular to the electric force, external force of U0, and
magnetic force respectively. They are well known in the
classical description [27–29].

The remaining terms of Eq. (39) result from the quantum
features of the microscopic current density jc

0
in a pure state

c0. According to Eqs. (30, 31), the radiation fields produced
by the 4th term are perpendicular to (A�B), the radiation
fields produced by the 5th term are perpendicular to A. The
radiation fields produced by the 6th terms are perpendicular
to (A �5)A. The ratio of the 4th term to the second term is
l/a, where l is the characteristic length of A. The 5th term
is the same order of magnitude as the third term. The ratio of
the 5th term to the second term is A=ð�h=eaÞ, for ordinary
magnetic field this is a small number. The 6th term is the
same order of magnitude as the 4th term.

The radiation fields produced by the 7th term are
perpendicular to ½ðrc0Þ � r�A. The ratio of the 7th term to
the second term is � ð�h=ea2Þ=B. The radiation fields
produced by the 8th term are perpendicular to the canonical
momentum rc0. The ratio of the 8th term to the second
term is �1. Classically, no such radiation field exists. The
radiation field produced by the 9th terms are perpendicular to
½A � r�ðrc0Þ. The ratio of the 8th and the 9th terms to the
second term is l/a.
www.pss-b.com
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The radiation fields produced by the 10th term of
Eq. (39) are also perpendicular to ðrc0ÞA � rc0�, where
�i�hr ¼ mvþ eA is the canonical momentum operator. In
contrast to the 8th term, which does not depend on the vector
potential, the 10th term depends on A � rc0. The ratio of
the 10th term to the 5th term is �1. Both the 5th and
the 10th terms exist for a constant vector potential. The
radiation fields produced by the 11th term are perpendicular
to ðc0rc0�Þr � A. The 11th term is the same order of
magnitude as the 7th term.

Before the Bohm–Aharonov effect was discovered, it
had been assumed that any (f0, A0) is indistinguishable from
(f, A) if they satisfy A0 ¼Aþ5L and f0 ¼ fþ @L=@t,
where is L is an arbitrary scalar function of time and
coordinate. The Bohm–Aharonov effect gives the first
example that beside B¼5�A, the vector potential can
be detected in another way: the phase shift e

�h

H
A � dx. The

radiation fields produced by the fourth, fifth, sixth, ninth,
tenth, and 11th terms involve either A or5 �A. They further
demonstrate the observability of the vector potential.

Equation (39) is a resolution of @jC
0 ðx0; t0Þ=@t0. It directly

results from the time dependent Schrodinger equation and
Eq. (36). One may wonder whether a regrouping the terms
in Eq. (39) leads to a different explanation for the radiation
fields. The answer is no: because Eqs. (30, 31) are linear in
@jC

0 ðx0; t0Þ=@t0, a recombination of terms only results to a
different choice of the basis of fields. The new basis of
field is a superposition of the old fields.

In a pure state c0, the fields produced by the 11 terms in
Eq. (39) are coherent: during the whole motion of particle,
all the 11 field components are in phase. But for a mixed
state (e.g., vapor of Na atoms in the same excited state),
the various terms in Eq. (39) are no longer coherent for
a given atom. However for the long wave scattering, the
same type term for neighboring atoms is coherent. This is
similar to the scattering produced by a group of classical
charged particles.

3.2 A group of charged particles Taking the time
derivative in Eq. (7), we obtain
@jc

þ e

þ e

�

þ i

www
0 ðr; tÞ=@t ¼ e2

m
Eðr; tÞn0ðr; tÞ
Z X X" #
Ne

m
dt1C0C0� �

k

rUðr; xkÞ �
a

rU0ðr;WaÞ
2 Z� �

Ne

2m2
dt1½C0ði�hrC0�Þ þC0�ð�i�hrC0Þ� � Bðr; tÞ
3 3
e
2
½A� B�n0 þ e

m
Aðr; tÞðr � jC0 Þ � e

m2
½ðA � rÞA�n0
m

2 Z

�he Ne

2m2
dt1fC0½ðrC0�Þ � r�Aðr; tÞ
0� 0
�C ½ðrC Þ � r�Aðr; tÞg
.pss-b.com
2 Z

�h eNe

4m2
dt1½C0rr2C0� þC0�rr2C0
0� 2 0 0 2 0�
� ðrC Þr C � ðrC Þr C �

2 X Z
i�he Ne

2m2
j

dt1fC0½Aðxj; tÞ � r�ðrjC
0�Þ
0� 0
�C ½Aðxj; tÞ � r�ðrjC Þg

2 X Z
i�he Ne

2m2
j

dt1½ðrC0�ÞAðxj; tÞ � rjC
0

0 0�
� ðrC ÞAðxj; tÞ � rjC �

2 Z X
i�hNee

2m2
dt1ðC0rC0� �C0�rC0Þ

j

rj � Aðxj; tÞ
2 Z X
i�he Ne

2m2
dt1

j

Aðxj; tÞ � f½r � ðrjC
0�Þ�C0
0 0�
� ½r � ðrjC Þ�C g; (40)
where5r is abbreviated as5. Here n0ðr; tÞ ¼ Ne

R
dt1C0C0�

is the number density of electrons in stateC0.U andU0 are the
interaction between two electrons and the interaction
between an electron and a nucleus. Because the contri-
butions from nuclei are less important and do not have any
new features for visible light, they are not included in
Eq. (40). Of course the nuclear contributions are important
for infrared radiation.

There are 12 terms in Eq. (40). The first to 11th terms are
a many-body generalization of the corresponding single-
particle terms in Eq. (39). Coherent scattering in CM is
produced by several particles in which their positions are
correlated in the range of one wavelenth [27, 28]. This
feature is also inherited by the first to eleven terms.We do not
have sum rules for the system with more than one charged
particles.

The 12th term of Eq. (40) exits only for a system with
more than one charged particle which obey QM, and
represents a new feature of the radiation field produced by
the motion of many charged particles. If there is only one
particle, r� ðrjC

0Þ ¼ 0, Eq. (40) is reduced to Eq. (39).
The radiation fields emitted by the 12th term of Eq. (40) are
perpendicular to Aðxj; tÞ � ½r � ðrjC

0Þ�, and are different
to those emitted by the first to the 11th terms. The ratio of
the 12th term to the magnetic force is l/a0, where a0 is the
characteristic length of C0. It should be detectable for the
scattering of visible light by particles smaller than 100 nm.

In QED, the coupling between electromagnetic field and
charged particles is treated as a perturbation. The observable
photons are expressed by external lines. To calculate a
process with n photons, one needs a nth order transition
amplitude [2, 3]. This is impractical for a strong field (many
photons) produced by a large number of interacting charged
particles. In SCRT, Hfm is treated at zero order. Because no
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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high energy photon appears in the usual state of a condensed
phase and nanoscale system, Eqs. (30, 31, 40) are suitable for
the emission and scattering of light [12–16].

If a systemhas only a fewcharged particles (or only a few
charged particle play an important role), the coherence of
radiation is the same as the situation for a single charged
particle: i.e., for a pure state, all the terms are coherent; for a
mixed state, various terms in Eq. (40) are no longer coherent.
But for long wave scattering, the neighboring molecules are
coherent for the same type of term in Eq. (40). If a large
number of charged particles contribute to radiation, the
macroscopic many-body pure state itself cannot persist
for a long period [44]. The coherence between the terms in
Eq. (40) cannot be maintained for a macroscopic time scale
(above microsecond). For each term in Eq. (40), one may
have super-radiation phenomenon [45].

4 Macroscopic Maxwell equations For a nanos-
cale system or a macroscopic system, we usually cannot
specify the initial condition of the system precisely in the
sense that the state of the system in the future can be
predicted to the maximum extent allowed by QM [36].
The results obtained in Section 3 are not directly applicable.
To explore radiation fields produced by a macroscopic or
nanoscale system, we have to average the above results
over a representative ensemble. In other words, we need
the macroscopic Maxwell equations for a group of charged
particles obeying QM.

Suppose that the system is in a good thermal contact with
a reservoir (B) such that after a short equilibration time, the
system reaches a steady state: the thermodynamic state of
the system is specified by the intensive parameters of B
(temperature, chemical potential, etc.). The heat evolved is
transferred to the bath [31–33]; Themotion of system has the
same frequency as the external field.

4.1 Spatial coarse grained average To describe
the finite spatial resolution in a macroscopic measurement,
for each microscopic quantity jC

0 ðr; tÞ defined in pure state
C0 (t), one introduces [24, 25] a truncated quantity jC

0
:

� 20
jC
0 ðR; tÞ ¼

Z 1

�1
d3r jC

0 ðR� r; tÞf ðrÞ; (41)
where the scalar weight function f(r) satisfies two
conditions: (i)

R1
�1 d3r f ðrÞ ¼ 1; and (ii) FðkÞ ¼R1

�1 d3r e�ik�rf ðrÞ ! 0 for k> k0. k0 is solely determined
by the type of problem and calculation we have in mind [25].
Condition (ii) means that the spatial Fourier components of
the field variables are irrelevant above a cut-off wave vector
k0. j

C0
is rC

0
or any Cartesian component of e, b, and jC

0
.

Using the truncated quantity jC
0 ðR; tÞ is stricter than the

simple coarse grained average V�1
R

R
r2VR

d3rjC
0 ðr; tÞ for

solids [25], where VR is a physical infinitesimal volume
around point R.
13 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
The Maxwell equations for the truncated fields are
rR � bC
0
¼ 0; rR � eC

0 ¼ �@ b=@t (42)
and
rR � eC0 ¼ rC
0
=e0; c2rR � bC

0
¼ jC

0
=e0 þ @eC

0
=@t:

(43)
The arguments of eC
0
, bC

0
, jC

0
, and rC

0
are (R, t), the spatial

differential 5R is respect to the spatially coarse gained
coordinate R. Because the spatial coarse graining (41) is a
linear map, and Eqs. (4, 5) are linear, Eqs. (42, 43) are also
linear about all truncated quantities appear in them.

If one distinguishes the free charges and bound charges
in rC

0
and jC

0
, various order electric and magnetic

moments of the bound charges also appear as the sources
of fields [24, 25]. Such a description appears in textbooks
[27, 28], and is convenient for the crystalline metals,
alloys (where there is a clear distinction between free
carriers and bound charges) and insulators at low frequency.
In amorphous semiconductors, the hopping probability
for localized carriers is [34] �1012–1013 s�1. On a time
scale shorter than 10�12 s, one cannot distinguish a localized
carrier from a bound charge. Therefore for (i) metals, alloys
and insulators at high frequency (inter-band transition);
and (ii) plasma [35] and amorphous semiconductors [18, 19,
32, 33] at any frequency, it is convenient not to distinguish
the contributions from carriers and from bound electrons
in rC

0
and jC

0
a , i.e., not to make the multipole expansion.

For the following three reasons, we do not need [24, 25,
27] to take an additional temporal coarse grained average
over fields and sources at any stage. First of all, Eqs. (4, 5)
are linear in all quantities appearing in them: all the
quantities are additive. Therefore for typical cut-off
wave vector k0¼ 106 cm�1 and number density of particles
n¼ 1022 cm�3, the relative fluctuation of a truncated quantity
is small [27]/n�1=2k

3=2
0 � 10�2. The spatial average (41) is

enough. Secondly, the time v�1k�1
0 spent by a particle with

speed v� 106m s�1 traversing a distance k�1
0 is 10�14 s, is

still in the range of atomic or molecular motions [27],
averaging over such a time period after spatial average (41)
is pointless. Third, before the spatial average (41), if one
averages over a time period shorter than the time scale of
atomic and molecular motions, one cannot eliminate fast
fluctuation [27]. On the other hand, if one averages over
a time period longer than the time scale of atomic and
molecular motions, one smeared or even eliminates the
scattering phenomenon [1].

To obtain a macroscopic observable from the corre-
sponding microscopic quantity in the pure state, we first
truncate the microscopic quantity in a given pure state and
then take an ensemble average. For a group of charged
particles interacting with an electromagnetic field, we can
replace the ensemble average with an average over all
possible initial pure states. Since for a given external field,
the coupling between field and the system can be included
www.pss-b.com
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with additional terms [represented byHfm(t) in Eq. (2)] to the
system Hamiltonian H, the state C0 (t) of system at time t
is completely determined by the value of C0 at a previous
moment through Eq. (1). If we adiabatically introduce an
external field, then the ensemble average is changed into an
average over various initial values C0 (�1) of state C0.
Denote
www
jðR; tÞ ¼
X
C0

W ½C0ð�1Þ�jC0 ðR; tÞ; (44)
jC
0

a

where jC
0
is any truncated quantity: rC

0
or any Cartesian

component of eC
0
, bC

0
, and jC

0
. W [C0 (�1)] is the

probability that the system is initially in state C0 (�1). W
[C0 (�1)] depends only on the energy of C0 (�1), can be
taken as either a canonical or a grand canonical distribution
(p. 678 of [31]). Then j (R, t) is the usual macroscopic
observable [32].

Because Eqs. (42, 43) are linear, we can average the
fields and sources over all possible initial pure states of the
system.Thenwe obtain themacroscopicMaxwell equations:
r � B ¼ 0; r� E ¼ �@B=@t (45)
and
r � E ¼ r=e0; c2r� B ¼ j=e0 þ @E=@t: (46)
Here we used the familiar symbols E and B to denote the
ensemble average of eC

0
and bC

0
. The arguments of E, B, j,

and r are (R, t),5 represents the operator respect to R. The
macroscopic sources (r and j) and fields depend on the
intensive parameters of a chosen ensemble.

In view of facts that (i) the microscopic Eqs. (4, 5) are
linear; and (ii) both the ensemble average and truncation (41)
are linear maps of the microscopic fields and sources, to
obtain Eqs. (45, 46), we can actually first take the ensemble
average over the microscopic quantities, and then truncate
the ensemble averaged quantities.

The derivation suggested in this section differs from
previous ones [21–23, 35] in two aspects: (i) to describe
the electromagnetic phenomena in macroscopic media,
temporal coarse graining is unnecessary [27]. Only a
spatial coarse-grained and ensemble average are needed;
(ii) because for a given external field, the interaction of the
system and field can be written with additional terms in the
Hamiltonian of system [37]. Then for each wave function C0

which satisfies Eq. (1), one may introduce the microscopic
response jC

0
for that state. Thus the ensemble average

Eq. (44) can be delayed to the final stage [18, 32] rather than
taking at the outset [21–23, 37].

Since Eqs. (4, 5) have the same structure as Eqs. (45, 46),
to obtain the radiation fields produced by a mixed state, we
only need to replace @jC

0 ðx0; t0Þ=@t0 with @jðx0; t0Þ=@t0.

4.2 Polarization, current density, and the
source of radiation field For a group of charged
particles obeying CM, the induced dipole moment is
determined by the displacement of charges. The current
.pss-b.com
density is proportional to the velocities of charges. The
radiation field is caused by the accelerations of charges. We
will show that for a group of charged particles obeying QM,
there exist similar relations among polarization, current
density, and the source of radiation field: the current density
is time derivative of polarization, and the source of radiation
field is time derivative of current density.

Equations (20, 30, 31) have shown that the time
derivative relation is correct for the microscopic quantities
in a pure state. It is easy to see that the time derivative relation
is also correct for the macroscopic quantities. For the
truncated quantity PC0 ðR; tÞ ¼

R1
�1 d3rPC0 ðR� r; tÞf ðrÞ

and the macroscopic polarization PðR; tÞ ¼P
C0 W ½C0ð�1Þ�PC0 ðR; tÞ, Eq. (20) implies
ðR; tÞ ¼ @PC0
a ðR; tÞ
@t

and jaðR; tÞ ¼
@PaðR; tÞ

@t
: (47)
Sometimes, the second equation in (47) is taken as a
redefinition of polarization [35, 38]. Since Eqs. (45, 46)
have the same structure as Eqs. (4, 5), the macroscopic
radiation field is determined by @jaðR; tÞ=@t.

4.3 Current density as the response of system
to an external field In Section 4.1,we have seen that (i) if
we average themotion of particles over themicroscopic time
scale v�1k�1

0 , the averaged charge and current density still
oscillate in frequency k0v; (ii) if we average fields and
sources over longer time scale (e.g., several periods of
external field), the scattering phenomena are smeared [1, 27].
Therefore, we should not take temporal coarse-grained
average even for describing the electromagnetic phenomena
in a mixed state of a macroscopic system.

On the other hand, the induced charge density r and the
current density j are also the macroscopic responses of the
system to an external field. Therefore both the procedure in
Section 4.1 and the time derivative relation requires that
temporal coarse graining should not be taken in the
macroscopic charge density and current density either as
the sources of fields or as the responses to external fields.

The MRM used this fact as the starting point to calculate
conductivity and Hall mobility [18, 19, 32]. The entropy
production is reflected in the existence of a steady state of the
system, which is in good contact with a heat and material
bath. Because the system is in a good thermal and chemical
contact with a bath in an external field, after a short transient
period, the system will eventually reach a steady state which
oscillates at the same frequency as the external field. In the
steady state, the parameters characterizing the ensemble do
not change: the evolved or absorbed energy are transferred to
or taken from the bath. For a classical charged oscillator
undergoing forced oscillation, it is well-known that if the
input energy is completely dissipated, the system will
eventually reach a steady state. With perturbation theory,
one can show that a solid in good thermal contact with a bath
will reach a steady state in an external field [33, 39].
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Temporal coarse graining is a key step in the kinetic
descriptions of the irreversibility [31, 37]. For the processes
caused by mechanical perturbations, temporal coarse
grained average can be avoided. Faber [40] and Mott [41]
conjectured an expression for the ac conductivity for strong
scattering based upon assumptions: (i) in the Kramers–
Heisenberg dispersion relation for Raman scattering, put
the final state and initial state the same; (ii) require the
zero frequency limit consistent with the Greenwood’s dc
conductivity formula [42], this was realized by taking long
time limit (i.e., temporal coarse graining) in the contracted
Kramers–Heisenberg relation. If the second step was not
used, the first step would end up with the conductivity
formula (expressed by the single electronic states) derived
by the MRM in which no temporal coarse graining is
taken [18, 19, 32, 39]. For crystalline metals, such a formula
was written down without derivation, cf. Eq. (13.37) of
Ref. [43].

5 Summary According to SCRT, the radiation
fields are determined by the time derivative of the
current density. For a pure state of a many-body system,
a strict current density expression has been obtained
from the MRM. Thus we have established microscopic
Maxwell equations for a pure state. For a charged
quantal particle, three radiation fields involve vector
potential only. This is a new example demonstrating
the observability of the vector potential. Five radiation
fields are perpendicular to the canonical momentum
of the particle. In a many-body system, one radiation field
is predicted which does not exist for a single charged
particle. We predict that this form of radiation can be
detected.

We have extended the RR ansatz to a group of charged
particles obeying QM to derive macroscopic Maxwell
equations. Only the spatial coarse graining is required. The
charge density and current density as sources or responses
is well-defined for a pure state. Every macroscopic quantity
can be obtained from the corresponding microscopic
quantity by taking spatial coarse graining and ensemble
average, cf. Eqs. (41, 44). Temporal coarse graining is
inadequate for the macroscopic fields, sources, and the
responses of system to field. The consistency among the
induced displacement, the current and the acceleration
requires that one should not take temporal coarse graining
in the current density (transport coefficients). This agrees
with the MRM [18, 19, 32, 33]. The entropy production is
reflected by the existence of a steady state of the system in
thermal connection with a bath. If temporal coarse graining
is taken in the transport coefficients obtained by the MRM,
one can recover the corresponding results obtained by the
kinetic approaches.
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