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Recently, the prospects for amorphous phases of graphene (a-g)

have been explored computationally. Initial models were flat,

and contained odd-member rings, while maintaining threefold

coordination and sp2 bonding. Upon relaxation, puckering

occurs, and may be traced to the existence of pentagons, in

analogy with the situation for fullerenes. In this work, we

systematically explore the inherent structures with energy close

to the flat starting structure. As expected, the planar symmetry

can be broken in various ways, which we characterize for 800-
atom model of a-g, always using local basis density functional

techniques. The classical normal modes of various structural

models are discussed, with an emphasis on imaginary modes

indicating the evolution from flat to puckered. We also discuss

very low energy conformational fluctuations akin to those seen

previously in amorphous silicon, and reflect on the nature of the

amorphous ‘‘ground state’’ within a network of fixed topology.

For completeness, high energy modes were also computed, and

are found to be associated with strained parts of the network.
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction Akey feature ofmatter in a disordered
state is the existence of large numbers of conformations with
essentially degenerate energies, which may also be mutually
accessible with small energy cost. This is in contrast with
crystals, which possess long range order, few polymorphs
and typically a deep energy minimum and large energy
barrier. The ground state is thus sharply defined, and the only
low energy excitations are phonons – transitions to other
structures are prohibited. Where realistic models of dis-
ordered systems are concerned, few attempts have been
made to quantitatively characterize the number, energetics,
and proximity (in the sense of barrier) of these states. In his
inherent structure formulation of statistical mechanics,
Stillinger argued that the number of minima scales like
N!expðaNÞ [1], whereN is the number of atoms in themodel,
and a is a positive system-dependent constant. a was
estimated to be around 0.8 in a monatomic liquid [2], and
flexible organic molecules exhibit larger a, as in the fragile
glass former ortho-terphenyl where a is around 13.14 [3].
For temperatures well below the melting point, these local
energy minima are denoted inherent structures.

To further motivate this work, consider the following
gedanken experiment. Consider a sequence of molecules
withN atoms. It iswell known that asN increases, the number
of minima accessible to the molecule also increase, and such
conformations are extensively studied in chemistry [4–7].
While it is unlikely that a rigorous theory quantifying these
minima as a function of N can be formulated, it is clear from
computer experiments that the number of minima grow
drastically with N. For most molecular systems it is difficult
to be certain that the global minimum structure has been
found in a simulation as there are so many metastable
minima in which the system can be trapped. In this paper,
we are concerned with the even more intractable problem
of characterizing the minima, or potential energy surface
of a disordered condensed matter system in both two-
dimensional (2D) and three-dimensional (3D) cases. For a
3D crystal, if one introduces small random distortions and
relaxes the disturbed system, it returns to exactly the same
structure. This is not true for disordered systems. For 3D, we
find there exits a continuum of metastable minima for a-Si,
in which a number of tiny distortions of bond angles (and to
a much lesser extent bond lengths) yield a distinct energy-
degenerate conformation, which reveals the existence of
an extraordinarily flat potential energy landscape (PEL).
Fedders and Drabold showed that starting from a well-
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 1 Comparison between crystalline and relaxed amorphous
phases of graphene. Periodic boundary conditions are employed.
relaxed a-Si:H model, quenching a set of ‘‘snapshots’’
during a constant-TMD simulation never returns to the exact
initial state, instead they fall intominima that are topologically
equivalent (e.g.,with the samenetwork connectivity), butwith
small variations in bond angles and bond lengths [8]. We find
that the behavior in a-Si is consistent with a-Si:H. The case
of a-g [9] is different in the following sense. Like a-Si, we
find a continuum of essentially energy degenerate states in
which minute (but ‘‘real’’) variations in bond angles and bond
lengths are displayed. Of course, such states retain identical
connectivity since their energies are identical to within a few
meV. However, a-g also exhibits a variety of local energy
minima associated with different puckering. These structures
usually have similar energies (within �10meV), but a
significant barrier separating them. Thus, the picture that
emerges of the a-g energy landscape is a variety of inherent
structures (with varying puckering) with slightly varying
energies but substantial barriers between them, and in each of
these basins (associated with a particular puckered state),
an ambiguously defined minimum with small variations in
bond angles and bond lengths accessible as we describe in
detail below in Section 4.2. The structure of sp2 amorphous
carbon has been much discussed [10–12]. Our networks are
quite different because of their strictly 2D nature, though this
is not obvious in gross features such as the radial distribution
function. Another class of potentially relevant structures
are the ‘‘schwarzites’’, 2D negative curvature versions of the
graphene materials [13].

Beside the work described above on ultra-low energy
excitations, we also discuss other phenomena peculiar to
a-g. There has been intensive study in understanding the
properties of crystalline graphene, but little is securely
understood about amorphous phases. Recent electron
bombardment experiments have revealed the existence of
amorphous graphene [14, 15]. Clear images of regions of
amorphous graphene have been published by Meyer [16]. In
previous work, we observed that planar amorphous graphene
is extremely sensitive to out-of-plane distortions [17].
Similar behavior has been verified in amorphous graphene
by experiment and other calculations [18, 19]. We have
found that very slightly different initial conditions (e.g., in
the transverse coordinates) lead to very different puckering
after relaxation [17]. These states exhibit little or no
difference in topological properties, i.e., ring statistics and
coordination number. However, the total energy difference
between these metastable states is around 0.02 eV per atom,
and the full width of the puckering along the transverse
direction (between extrema) is around 6–7 Å.

A natural complement to these studies is an exploration
of low-frequency classical normal modes. These modes turn
out to be rather delocalized. As presented for two level
systems, the tunneling between two equilibrium states
triggers a number of low-energy excitations [20–22]. Details
are discussed in Section 4.3. In Section 5, we summarize
our findings about the degenerate states and localized
imaginary-, low-, and high-frequency vibrational modes of
amorphous graphene.
www.pss-b.com
2 Models To approach this problem computationally,
we employ an 800-atom amorphous graphene model
(800 a-g) due to He and Thorpe generated by introducing
Stone–Wales defects into a perfect honeycomb lattice and a
WWW annealing Scheme [23]. This model has perfect
threefold coordination with varying concentration of 5, 6,
and 7 member rings [9] and is a practical realization of the
continuous random network (CRN) concept proposed by
Zachariasen [24]. The comparison between crystalline and
amorphous graphene is shown in Fig. 1. We have relaxed
the 800-atom a-g model, and while small rearrangements
occurred, planar symmetry was preserved. We found that
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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by very slightly breaking the planar symmetry (by randomly
moving each atom by �0.01 Å) and again carrying out the
minimization, the resulting structures were always puckered
[17].

The amorphous Si model we employ is a realistic
64-atom model (64 a-Si), generated by Barkema and
Mousseau using a modified form of the WWW algorithm
[25]. This model has ideal fourfold coordination and within
the significant limitations of its small size, to our knowledge
is not in significant contradiction with any experiment.

3 Procedure Our calculations are performed with the
ab initio program SIESTA [26], using pseudopotentials and
the Perdew–Zunger parameterization of the local-density
approximation (LDA) with a single-z basis and Harris–
Functional at a constant volume. Earlier simulations are
described in Refs. [27] and [28]. To investigate the nature
of minima on the potential energy surface, we employ a
method proposed by Fedders and Drabold [8] similar to
the conformational space annealing approach mentioned in
Ref. [29], which has been used in locating and predicting
low-energy conformations of various proteins [30–33]. First,
starting with a perfectly relaxed model (in our case 800 a-g
and 64 a-Si), we run a sequence of four parallel simulations.
We let the network evolve for 8.0 ps at four different
mean temperatures of 20, 500, 600, or 900K. The
target temperatures are achieved by velocity rescaling (a
‘‘Berendsen thermostat’’). From these simulations, we relax
these to find the metastable minimum (or inherent structure)
associated with the initial snapshots.

To investigate the structural changes between these
minima (quenched configurations from snapshots), we use
two autocorrelation functions as defined by Fedders and
Drabold [8]:
� 20
Du t1; t2ð Þ ¼
X
i

ðuiðt1Þ � uiðt2ÞÞ2=N
� �1=2

; (1)
and
Dr t1; t2ð Þ ¼
X
i

ðriðt1Þ � riðt2ÞÞ2=N
� �1=2

: (2)
Figure 2 (online color at: www.pss-b.com) Correlation between
the total energy per atom and magnitude of puckering for constant
temperature MD simulations. Zero total energy refers to the total
energy of original flat 800 a-g model.
In Eq. (1) the index i runs through all the bond angles where
ui is the ith bond angle. In Eq. (2) the index i runs over all
nearest-neighbor pairs where ri is the ith is the distance
between a pair. The times t1 and t2 refer to the quenched
snapshots. These autocorrelation functions provide a close
view of how thermal MD simulations induce transitions
between different energy basins.

4 Discussion We break the discussion into three parts.
First, the nature of pentagonal puckering, next, low-energy
conformation fluctuations, and finally an analysis of the
classical vibrational modes.

4.1 Symmetry breaking As conjectured by Cataldo
et al. using purely topological analysis, fullerene-like
13 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
structure may be expected in these films [34]. As we have
shown in Ref. [17], the original flat 800-atom a-g model
is exceedingly sensitive to transverse distortion, and then
loses planar symmetry lowering the total energy of the
supercell. In every case, even at T¼ 20K, the planar
symmetry breaks and the system puckers: thermal disorder
is sufficient to induce puckering. Figure 2 shows the relation
between the total energy of the system and maximum
separation of atoms along the normal direction (magnitude of
puckering) in constant-T MD simulations at the indicated
temperatures. In the language of PEL, starting from the flat
800 a-g, fourMD simulations overcome tiny energy barriers
and take a down-hill path to configurations with lower
energy. Thus the flat 800 a-g model can be considered as an
exceptionally shallow basin on the PEL. The barrier between
flat and puckered is a few meV for this Hamiltonian.

4.2 Conformational fluctuations The quenching
procedures at sequential timesteps yield basins on the PEL.
Here we show the calculations at average temperatures of
500, 600, and 900K. These results of MD runs at different
temperatures exhibit consistency with each other. Figure 3
shows how these two autocorrelation functions vary with
time. Since temperatures of all the MD simulations achieve
equilibrium after 6.0 ps, here the autocorrelation functions
are calculated with t1¼ 6.0 ps. It appears Duðt1; t2Þ and
Drðt1; t2Þ from three MD runs at different temperatures are
qualitatively similar. They increase linearly and eventually
fluctuate about a constant. The continuity of the curves in
Fig. 3 suggests that there is a continuum of states, accessible
albeit structurally varying only in very modest ways.

The total energy distributions of all the quenched
supercells fromMD runs at different temperatures are shown
in Fig. 4. For temperatures other than 20K, the total energy
distributions exhibit several peaks. Theminor peaks in Fig. 4
correspond with the annealing process of MD runs. The
www.pss-b.com
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Figure 3 (online color at: www.pss-b.com) Time variation of two
autocorrelation functions. This figure shows autocorrelation func-
tions of Duðt1; t2Þ and 100Drðt1; t2Þ for t1¼ 6.0 ps and t2 varying
from 6.0 to 7.95 ps. The temperatures are 500, 600, and 900K.
The functions appear to be continuous.

Figure 4 (online color at: www.pss-b.com) Total energy distribu-
tion functions of quenched supercells from MD runs under 20,
500, 600, and 900K. The total energy of original flat 800 a-g is
considered as 0 eV. Distinct structures correspond to different
puckered states, broadeningwithin eachmajor peak fromconforma-
tional variations. Three major peaks from MD runs at 600, 500,
and 900K are labeled as 1, 2, and 3 respectively.

Figure 5 (online color at: www.pss-b.com) Side view of two
quenched configurations. Gray balls and sticks show the configu-
ration from 900KMD, and blue lines represent the one from 500K.

Figure 6 (online color at: www.pss-b.com) Time variation of
two autocorrelation functions for a-Si. This figure shows auto-
correlation functions of Duðt1; t2Þ and 100Drðt1; t2Þ for t1¼ 6.6 ps
and t2 varying from 6.6 to 8.0 ps. The temperatures are 20, 300,
and 500K. The piecewise linear appearance is an artifact of coarse
time sampling. The results are similar to Ref. [8].
major peaks (labeled 3, 2, and 1 in Fig. 4) are derived from
different puckering configurations sampled in the process
of equilibration to constant T. Correspondingly as shown
in Fig. 3, the fluctuations of autocorrelation functions (after
Table 1 Average value and standard deviation of Etot/Natom, Drðt1;
time period from 3.6 to 8.0 ps, where t1¼ 1.05 ps.

T (K) Etot=Natom (eV) sEtot=Natom
(eV) Drð1; t2Þ

500 �9.595� 10�2 8.855� 10�5 4.907� 1
600 �9.435� 10�2 9.917� 10�5 7.503� 1
900 �9.716� 10�2 2.091� 10�4 2.516� 1

www.pss-b.com
thermal equilibrium is reached) reach an asymptotic state
after of order 7.0 ps (1 ps from the initial equilibrated state).
Each of the three peaks in Fig. 4 demonstrates a basin on
the PEL of a-g. These nearly degenerate quenched equi-
librium states are trapped in distinct basins on the PEL,
and quenched minima within one basin form a continuum
metastable state around inherent structures. Details of
variations in bond angles, bond lengths, and total energies
of these metastable states are shown in Table 1. The
total energy variation between the basins corresponding to
the major three peaks are averaged as 1.405� 10�3 eV,
which is one order of magnitude higher than the energy
of fluctuations within a basin. In spite of their different
energy scales, these quenched configurations belonged
to distinct basins share identical local bonding. The only
difference is that they pucker in distinct ways, as shown in
Fig. 5.
t2Þ, and Duðt1; t2Þ of quenched configurations from MD runs in the

(Å) sDr (Å) Duð1; t2Þ (8) sDu (8)

0�2 2.551� 10�4 3.736 1.814� 10�2

0�2 1.973� 10�4 4.181 6.464� 10�2

0�2 8.08� 10�3 1.725 0.146

� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 7 (onlinecolor at:www.pss-b.com)Sideviewofpucker-up
and -down 800 a-g models. Gray balls and sticks illustrate pucker-
up model, and pucker-down supercell is represented by blue lines.

Figure 8 (online color at: www.pss-b.com) VDOS of 800 crystal-
linegraphene, pucker-upand -downa-gmodels.Note thedistinctive
feature at v ffi 1375 cm�1 for a-g.
For comparison, we repeat parallel calculations using
64 a-Si model quenched from MD runs at 20, 300, and
500K. The autocorrelation functions are shown in Fig. 6.
The results are in agreement with Fedders and Drabold [8].
We see fora-Si systems, there exists one general basin on the
PEL (for a particular network connectivity), and the paths
lowering the total energy on the PEL will eventually go into
this basin, leading to inherent structures with minor changes
in bond angles and lengths, and tiny energy scale.

Comparison between results of a-g and a-Si suggests
that PEL of 3D system (a-Si) is smooth and inherent
structures are contained in one general basin. a-g is similar
within one puckered state.

For a-g, an MD run at higher temperature (annealing)
can overcome the energy barrier, and hop to a basin
associated with a different puckered state. Also by
investigating the correlation between topology and energy
scale of these quenched supercells, it is revealed that
lower total energy (stabler state) is associated with more
puckered (higher surface roughness) configurations with
small variation in bond lengths and angles from the original
flat 800-atom model.

4.3 Classical normal modes To investigate the
vibrational modes in these supercells, we perform calcu-
lations of the dynamical matrix, its eigenvalues and
eigenvectors, for the original flat 800 a-g model, and two
quenched configurations with certain regions puckering in
opposite directions, designated ‘‘pucker-up’’ and ‘‘pucker-
down’’ models, as shown in Fig. 7. The dynamical matrix
was constructed from finite difference calculations (using
six orthogonal displacements of 0.04 Bohr for each atom).
We also perform the phonon calculation for an 800-atom
crystalline graphene model (for related calculations on
very large fullerenes, see Ref. [36]). The vibrational density
of states (VDOS) of 800 crystalline model, pucker-up and
-down 800 a-g models are shown in Fig. 8. The VDOS
result of crystalline graphene shows good agreement with
a published calculation [35]. In Fig. 8 at a frequency near
1375 cm�1, the spectrum of crystalline graphene has a
minimum. In contrast the spectrum of two puckered
supercells achieve a local maximum. Thus Raman scattering
experiments are expected to provide a way to distinguish
crystalline and amorphous graphene. There is no difference
in the spectrum between pucker-up and -down 800 a-g
models. In a mixed sample containing 3D amorphous
carbon, this discernible difference from ordered graphene
near 1375 cm�1 is probably unhelpful because of the many
modes seen in various phases of a-C (with varying sp2/sp3

ratio) near the relevant energy [37–39].
In the original flat 800-atom a-g model, the eigenvectors

with imaginary eigenvalues have large components along
the normal direction of the graphene plane (at least four
orders of magnitude higher than longitudinal components).
These imaginary-frequency modes are localized on penta-
gons in the network: two example are shown in Fig. 9.
As shown in Fig. 9c and d, these imaginary-frequencymodes
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
are localized near structures that lead to puckering. As
shown in Ref. [17], it is pentagons that lead to puckering
and symmetry breaking. Thus these imaginary-frequency
modes are an indicator of the instability of the flat 800 a-g
model.

In the puckered models, we observe modes with a low
frequency, around 14–20 cm�1, reminiscent of ‘‘floppy
modes’’ proposed by Phillips and Thorpe [40, 41]. The
structures of these low-frequency modes are quite complex,
as shown in Fig. 11. These modes are rather extended, and
have significant weight on pentagonal puckered regions
and large rings, analogous to what Fedders and Drabold
have seen in a-Si:H [8]. The observed energy scale of these
low-frequency modes is around a few meV, almost half of
the lowest frequency of the acoustic phonon modes in a
crystalline graphene with same size. As proposed in the
theory of ‘‘two-level systems’’, there exists a distribution
of low-energy excitations, caused by tunneling of atoms
between nearly degenerate equilibrium states [21, 22].
Goldstein pointed out that the dynamics could be separated
into two categories: vibrational motion about a minimum
on PEL and transitions between minima [42]. Then these
low-frequency modes might be triggered by transitions
between degenerate minimawithin one basin on the PEL. As
shown in Section 4.2, the energy variations between minima
within one basin is in the order of 10�4 eV, and the energy
difference between basins is in the order of 10�3 eV. The
energy scales of these low-frequency modes (�meV) are
www.pss-b.com
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Figure 9 (online color at: www.pss-b.com) Two examples of imaginary-frequency modes in flat 800 a-g model. The contour plot
represents thecomponentof eigenvectoralong thedirection transverse to theplane. (a) Imaginary-frequencymode inflat800a-gmodelwith
frequency v ¼ 283:843 i cm�1 (referred as im-mode1). (b) Imaginary-frequency mode in flat 800 a-g model with frequency
v ¼ 272:661 i cm�1 (referred as im-mode2). (c) Side view of the region where im-mode1 is originally localized. (d) Side view of the
region where im-mode2 is originally localized.
sufficient to drive conformational fluctuations, but not high
enough to overcome the energy barrier between different
basins (quenched states) on the PEL.

In the high-frequency domain, there also exist highly
localized high-frequency modes in the puckered configur-
ations. These modes are triggered by the pentagonal defects
Figure 10 (onlinecolorat:www.pss-b.com)Temperaturedepend-
ence of C(T) of pucker-up and -down 800 a-g models.

www.pss-b.com
and are highly localized, as shown in Fig. 12. This result is
consistent with Biswas et al. [43] and Fedders et al. [44], who
have shown strain and topological defects are active at
highest frequencies.

We also compute the specific heat C(T) using VDOS
information [45]:
CðTÞ ¼ 3R

Z Emax

0

E

kBT

� �2 eE=kBT

ðeE=kBT � 1Þ2
gðEÞdE; (3)
where g(E) is normalized VDOS. For room temperature
(300K), specific heat of flat, pucker-up and -down 800 a-g
models are 25.151, 18.879, and 18.702 JK�1mol�1,
respectively. The temperature dependence of C(T) is shown
in Fig. 10. This is presumably an academic result as it is
currently hard to imagine an experiment for C(T) for this
2D system.

5 Conclusions In conclusion, we have found that a-g
has a rich and interesting energy landscape. We observe
distinct energy scale of basins (�10meV) associated with
different puckered configurations and then within such a
configuration, an ambiguous energy minimum with a
continuum of bond angles and bond lengths with energy
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 11 (online color at: www.pss-b.com) Examples of low-
frequency modes in pucker-down and -up 800 a-g models. The
contour plots represent the intensity of eigenvectors on each atom.
The blue atoms illustrate the ‘‘most puckered’’ (with largest local
curvature) atoms, and the green atoms represent ‘‘flat’’ atoms. (a)
Low-frequencymodeinpucker-down800a-gmodelwithfrequency
v ¼ 19:167 cm�1. (b) Low frequency mode in pucker-up 800 a-g
model with frequency v ¼ 17:318 cm�1.

Figure 12 (online color at: www.pss-b.com) Examples of local-
izedhigh-frequencymodes inpucker-downand -up800a-gmodels.
The contour plots represent the intensity of eigenvectors on each
atom. The blue atoms illustrate the ‘‘puckering-most’’ atoms, and
the green atoms represent ‘‘flat’’ atoms. (a) High-frequencymode in
pucker-down 800 a-g model with frequency v ¼ 1642:073 cm�1.
(b) High-frequency mode in pucker-up 800 a-g model with
frequency v ¼ 1629:252 cm�1.
scale (�few meV) and a nearly flat PEL. Within a given
puckered configuration, this continuum is much like what
was seen for a-Si:H in 1996 [8].

Vibrational calculations reveal the existence of localized
imaginary-frequency modes in flat 800 a-g model. These
modes are localized on pentagons and play the key role in
losing planar symmetry and forming pentagonal puckering
structures. We find delocalized low-frequency phonon
modes, similar to floppy modes, which have substantial
weight on defects and share the same energy scale as the
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
energy difference between adjacent basins on the PEL. Thus
these low-frequency modes are triggered by the transition
between adjacent energy minima. Some high-frequency
modes are detected and highly localized on puckered regions
and large rings.
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