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A method is presented for computing NMR line shapes at high temperatures for a system of mag-
netically diluted spins interacting via a dipolar Hamiltonian. We specialize to the case of a solid
nonmagnetic host with spin-% impurities randomly placed on a simple-cubic lattice. For low con-
centrations, an iterative procedure is developed to separate the broadening into homogeneous and
inhomogeneous components. We find that, even in the dilute limit, a significant fraction of the spins
contribute to a continuum (homogeneously broadened) band. An information-theoretic maximum-
entropy technique is used to reconstruct the homogeneous component of the line shape from mo-
ments, and a version of the statistical theory is then employed to obtain the inhomogeneous com-
ponent. Implications for hole-burning experiments are briefly discussed. For high concentrations,
theoretical line shapes are obtained by use of configuration-averaged moments and maximum entro-
py, including up to the sixth Van Vleck moment. To test our results, we also calculated a line shape
by diagonalizing the secular dipolar Hamiltonian for several configurations containing up to nine
spins. For low concentrations we find reasonable agreement with the moment analysis. All of these
methods are readily extended to any well-defined lattice structure and to other spin problems with a

1 MARCH 1988

1/r" interaction.

I. INTRODUCTION

There have been many attempts to characterize the
infinite-temperature NMR absorption spectrum for a
magnetically inert host with identical magnetic impuri-
ties interacting via a dipolar spin Hamiltonian. Usually
the investigator makes the additional assumption that
these spins are randomly distributed on a lattice. In all
these approaches, the authors make an (often implicit) as-
sumption at the outset that all the broadening of the reso-
nance line is due to either homogeneous or inhomogene-
ous processes.! =7 It is our contention that for such a spin
system this assumption, while computationally con-
venient, has never been justified. It is the purpose of this
paper to investigate this point and to calculate the line
shape for an arbitrary concentration of spins. To demon-
strate the rationale for expecting both modes of broaden-
ing, consider two limiting types of configurations attain-
able to a randomly diluted spin system in the low concen-
tration limit.

(1) Consider a simple cubic (sc) lattice with a lattice
constant a. Now fill this lattice with spins in a superlat-
tice with a lattice constant ¢ ~!'/3a, where c is the spin
concentration. This system is an attainable, albeit im-
probable, configuration for the dilute lattice of spacing a.
Such a system would exhibit only homogeneous broaden-
ing. By homogeneous broadening we refer to a band of
energies where each spin is associated with all the ener-
gies equally. Indeed, within various scaling factors, such
a sample would exactly reproduce the data of Engelsberg
and Lowe® for CaF, at c=1.

(2) Consider a pair of spins separated by a distance
much smaller than the average interparticle spacing. As
the dipolar interaction falls off as r —3, where r is the
spacing between the dipoles, such configurations exhibit
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an enormous shift in Larmor frequency because of the
comparatively huge local field the pair feels compared to
the effects of all of the other spins. The resonance is thus
so far removed from the other spins in the lattice that it
may be considered completely isolated. Such a pair is in-
homogeneously broadened. By inhomogeneous broaden-
ing we refer to the case where each spin is associated with
a single energy and probing the system at that energy
affects only that spin.

This elementary argument suggests that any real ran-
dom magnetic alloy could have aspects of both
configurations (1) and (2) discernible in the NMR absorp-
tion spectrum. Obviously both of these limiting
configurations are improbable. Nevertheless, it is reason-
able to expect some manifestation of both limits in the
problem. Attempts to obtain line shapes assuming inho-
mogeneous broadening become difficult to justify at high
concentrations where it is well known that homogeneous
processes dominate. Similarly, the rationale for assuming
purely homogeneous broadening becomes invalid for low
concentrations where local configurations are the crucial
determinant of the line shape. While both of these ap-
proaches have validity in extreme limits of concentration,
neither is completely justified for intermediate concentra-
tions, and we show that the assumption of completely in-
homogeneous broadening is not precisely correct for any
concentration, no matter how small.

In the rest of this paper we develop a method which
can handle both modes of broadening and even estimate
how much of the broadening is homogeneous, or inhomo-
geneous. We feel that the most promising approach to
impurity averaging is a technique in which impurity
configurations are simulated on a computer, then aver-
ages are performed on the ensemble so generated. This
form of averaging allows an economical and excellent
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characterization of the possible configurations attainable
at all concentrations. It also gives additional insight into
the contributions to the line shape on a configuration by
configuration basis. To illustrate our approach without
introducing unnecessary complications, we restrict our
attention to spin §, though the method is more general.

In this work we will use moment methods to deal with
homogeneous broadening. The fundamental correlation
or Green’s function relevant to transverse relaxation ex-
periments in dipolar coupled systems is the two-point
linear-response function for sites i, j

Gy(n=(4,,i,nA4],(j0)6(), (1)

where A, (i,t) are irreducible multipole operators’ in the
Heisenberg representation for the site / at time ¢, O(¢) is
the Heaviside step function, and { ---) denotes a
thermal average. The experimentally measurable line
shape is proportional to G (w)= ¥,; G;;, where » means
the Fourier transform of the time function. We find it
convenient to work with the single-site functions
G;=3;G;. The self-energy X, associated with G, is
defined by the relation

Gilw)=i/lo—Z2(w)] . (2)
As discussed elsewhere,”® ! it is possible to completely
characterize G and Z by their spectral functions

A;(w0)=ReG;(w) ,

IN(w)=—Im2,(w) .

(3)

The dispersive and absorptive parts of the Green’s func-
tion and self-energy form Hilbert transform pairs and the
moments of 4; and I'; are given by

= dw

M, )= [ 0" 4;(w), n20

do 4)
L,(i)= f“’ —ﬁ—w"‘zr‘,(w), n>2.

Relations between the self-energy and Van Vleck mo-
ments are readily obtained from the time domain version
of Eq. (2). By forming equations of motion for the
relevant operators, one can express the moments of Eq.
(4) as lattice sums. Explicitly, the single-site moments are

Lyi)=My(i)=3% 3,7}

iy

N
M4(z)=5§g 812_1,.j+54 S JiJk +81 2}‘: JiT
7 Js

ok
k= Jk#
+27 2;: Jy+I )5, (5)
i
Jk#

Ly()=M,(i)—[M,(D)]*,

where J;; =y*i(1—3cos?0,;)/r;; and 6,; is the angle be-
tween the external Zeeman field and the vector r;; which
connects sites i/ and j. All sums are restricted to sites oc-
cupied by a spin, and jk* means that no two indices are
identical.
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We note that there are several advantages to using the
self-energy method. First, all terms in the self-energy
moments scale in the same way with concentration. This
is important for the diluted lattice because there are
terms in the lattice sums for the Van Vleck moments
{M,}, which can dominate other terms in these mo-
ments. This makes it hard to extract more subtle infor-
mation from the smaller terms. (The terms in question
are single-site sums with the form J;;, where n is the or-
der of the moment, and J is the spin-spin coupling in the
dipolar Hamiltonian.) It can be demonstrated that the
self-energy function contains none of these dominating
terms. It has also been shown that a small amount of
structure in the self-energy can lead to a large amount of
structure in the physically measurable quantity G. It
should also be noted that in the concentrated lattice, it
was found that the use of the self-energy as an intermedi-
ate step in the reconstruction led to the best agreement
with experiment.'!

As a preliminary illustration of our method we calcu-
late line shapes in two cases where it is possible to obtain
closed form expressions for the line shape functions.
Consider the probability density P(M,,c)dM,, the prob-
ability that for a given site M, has value in the range
[M,,M,+dM,] for concentration c. Then clearly, for
¢ — 1, this density takes the form

P(Mz,l)ZB(Mz'——MZ’C) )

where M, _ is the second moment at any site in the con-
centrated lattice. The lowest-order maxent approxima-
tion for a line shape in terms of its second moment is

G(w,M,)=(7/2M ;)" ?exp( —w?/2M,) .

We may calculate the configuration average, which in
this case is trivially

Glw)= fo“’ G(w,M)8(My—M, JdAM,=G (0,M, ) .

We see that for c=1 one recovers the familiar Gaussian
fit to the line shape. The case of ¢ —0 is more interest-
ing. In this regime it can be shown that

) ~8%/2M,

P(My,c)=—2 ¢
TV

’

where 6=(2887°c2/243)"%w,, and w;=y*%/a’. The
configuration average integral is easily evaluated and the
result is a Lorentzian

)

Glw)=——.
RIS

This Lorentzian has half width at half maximum
(HWHM)

6=~3.03cwy .

Thus, by using only the second moment, we obtain plau-
sible line shapes in both concentration limits. While
these simple calculations produce reasonable results in
both limits, it is not obvious why the low-concentration
line shape should be even qualitatively correct. As we ar-
gued above, we should expect manifestations of both
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homogeneous and inhomogeneous broadening in the line
shape, yet we have implicitly assumed the broadening to
be purely homogeneous. Indeed, when the fourth mo-
ment is included in the calculation, the natural extension
of the above method yields a completely spurious line
shape with a cusp at the Larmor frequency. This is a
consequence of the fourth moment’s extreme sensitivity
to rare (isolated) configurations. It turns out that the
second moment is essentially insensitive to these same
configurations, and thus yields the reasonable result given
above for the second moment only case. To properly ex-
tend the calculation to the joint second- and fourth-
moment reconstruction, we need to consider the broaden-
ing mechanisms in more detail.

The basic idea is as follows: We start by assuming that
all of the spins in the diluted lattice contribute to the
homogeneous line shape and we construct a line shape
under this assumption. Next we note that certain close
pairs of spins or nearly single spins are inhomogeneously
broadened by so much that their frequencies lie outside of
the homogeneous bandwidth. These spins are then re-
moved from the homogeneous line shape and thus the en-
suing homogeneous line shape is somewhat narrowed.
This, in turn, means that even more spins may have inho-
mogeneous splittings that push them outside of the
homogeneous bandwidth. The above process is iterated
until it converges.

In some ways the above procedure is reminiscent of the
real space renormalization-group techniques. However,
in this case, the above procedure will remove all of the
spins from the homogeneous bandwidth in the low-
concentration limit if the spin-spin interaction falls off ex-
ponentially. In the present case the procedure converges
to a finite fraction of homogeneous spins. The reason is
that as more and more spins are removed from the con-
tinuum, the spins that are left form a more and more uni-
form system. Finally enough clusters of spins that are in-
trinsic to a random distribution are removed and the
remaining spins form a rather evenly spaced system.

The remainder of this paper will be organized as fol-
lows: In Sec. II we review the theoretical tools necessary
for this work. We will discuss the statistical theory in
some detail from a point of view convenient for our pur-
poses and present our approach in detail. In Sec. III we
discuss our results, and compare them to explicit diago-
nalization of the truncated dipolar Hamiltonian, and oth-
er work.

II. METHOD

In this section we present a detailed account of our cal-
culations. It is natural to separate the problem into two
concentration regimes. For high concentrations the line
shape may be constructed from configuration average
moments. For low to intermediate concentrations we use
a method combining moments and a method closely re-
lated to the statistical theory.

A. High concentrations

In the high-c regime each spin evidently feels the
influence of many others and we are therefore in the
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homogeneously broadened regime. For this range of con-
centrations configuration average moments are useful for
obtaining the line shape. For reasons discussed above, we
calculated line shapes from average self-energy moments,
including up to the sixth, and performed a maxent recon-
struction based on these moments. In fact, information
theory has already been applied with average moments,
but using only the second and the fourth.'? In an earlier
paper!! it was seen that an excellent line shape could be
obtained from a few self-energy moments L,. In this
work the required average moments were calculated from
a paper of Hansen and Jensen.’ This approach was
found to be useful down to ¢ =0.4, where inhomogeneous
broadening becomes important. After obtaining the self-
energy fit to I', we performed a Hilbert transform to get
the full =, from which G was recovered using Eq. (2).
The necessary lattice sums were calculated on a 7X7X7
lattice, so that the central spin interacted with 342 other
spins.

B. Low and intermediate concentrations

It is a formidable problem to obtain line shapes at high
levels of dilution. In this regime, there is a very rich
variety of spatial configurations the magnetic impurities
can take. The amount of each form of broadening is evi-
dently very sensitive to the particular local configuration
and to the concentration. We outline a method for han-
dling both of these modes of broadening simultaneously.
We use an iterative technique to identify the spins in a
particular simulated lattice which are inhomogeneously
broadened. After characterizing the broadening of each
spin, the line shape for the entire lattice can be treated in
two separate parts, a homogeneous component and an in-
homogeneous part. The process is then repeated over an
ensemble of such simulated lattices. The moment
methods outlined above work well for homogeneous
broadening. For inhomogeneous broadening, these mo-
ments are inadequate for calculating a line shape, since
they are dominated by a small number of improbable
configurations. We apply a variation of the statistical
theory! ~2!* to handle the inhomogeneous component as
follows:

(1) We use a procedure described below to identify in-
homogeneously broadened spins on a simulated diluted
lattice.

(2) We assume that the only effect of spin i on spin j
(both assumed isolated) is to shift the resonant frequency
of the spin j by

Awli,j)=37*HB;[(1—-3 cos’0;;)/r}], (6)

where 6;; and r;; are the same as in Eq. (5), and B;; =*1
with equal probability at high temperatures—specifying
the “m” orientation of the two spins.

(3) These shifts are taken to be additive, so that the to-

tal frequency shift experienced by spin i is

o= Y Awli,j), )
J
where the prime means sum is restricted to inhomogene-

ous spins. The contribution to the line shape of spin i is
then
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Gilw)=8w—a,) (8)

and properly normalized line shape for the entire collec-
tion of inhomogeneous spins is then

Gl@)=N""'3 G(0), 9)

where N is the number of inhomogeneously broadened
spins in the lattice. Of course, for a macroscopic system,
the 8 functions become a continuous density, yielding a
smooth approximation for the inhomogeneous part of the
line shape.

We choose to write G in the form of Eq. (9) because it
is computationally convenient. Given the positions i of
the inhomogeneous spins, it is straightforward to calcu-
late the sum in Eq. (9). The variation of the statistical
theory outlined here is actually superior to the conven-
tional version. In the original form of the statistical
theory, it is assumed that all spins were isolated. In this
approach, the statistical theory is applied only to the set
of spins that are isolated, according to a well-defined cri-
terion.

Two further remarks on the statistical theory are in or-
der. First, we have performed calculations which indi-
cate that keeping only pairs (i.e., modeling the spin sys-
tem as an ensemble of isolated pairs) is inadequate, even
at low concentrations. This is because in the central part
of the line, cancellation of frequency shifts is important
for obtaining a good line shape. Such cancellations obvi-
ously cannot occur for pair-only interactions. Also, this
version of the statistical theory is done on a lattice, so
that all effects of discreteness are properly reproduced.
For low concentrations this point is moot, but for higher
concentrations (¢ > 0.1) lattice effects are important. For
pure inhomogeneous broadening, this version of the sta-
tistical theory is essentially exact.

To develop a criterion for homogeneous and inhomo-
geneous broadening we need to approximate certain re-
laxation rates. Consider a spin which is isolated from the
continuum. As a consequence of its isolation, it HWHM
is very small (such a spin is slightly broadened by the
spins in the continuum band). We assume that the source
of the spin’s isolation is a large shift in its resonant fre-
quency due to another spin very nearby, or a pair of adja-
cent spins. Denote this frequency shift for spin i, by ;.
We use the bubble approximation®’ to estimate the relax-
ation rate for such a spin. We find

T, =3L, ()G (Q,), (10)

G () is the continuum (homogeneous) component of the
Green’s function evaluated at the frequency shift and L,,
is the same as in Eq. (5), except that the sum is restricted
to the continuum. A similar result can be obtained for
the relaxation rate of a spin in the continuum. A good
approximation for this rate is

r.=[G.(0] ", (an

where G_(0) is the value of the continuum component of
the frequency Green’s function at @ =0.

In order to proceed further, we introduce a few
definitions: First, the definition of an isolated pair. Two
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spins i and j form an isolated pair if

Ji,j)>JHi,k) all k) ,
J2j,0)> T3, k) all k=i,

and if the ratio of relaxation rate of the isolated spins to
the continuum rate

T, /T, <€. (12)

The terminology ‘“isolated pair” is evidently sensible,
since for small I'; /T", such spins are very slow to relax,
because they are only very weakly coupled to the other
spins in the lattice compared to their mutual pair interac-
tion. It is possible to show that in the dilute limit, about
60% of the spins satisfy conditions given by Eq. (11)
above.

For certain configurations, one may also have an isolat-
ed spin which interacts more strongly with an isolated
pair than with the rest of the spins in the lattice. The cri-
terion for an isolated spin at site i is: (1) The effect of a
particular isolated pair [as measured by its contribution
to L,(i)] on the spin i is greater than the rest of the lat-
tice, and (2) T'; /T, <€ where, I'; =5L,.(i)G(Q,)/6, Q, is
the frequency splitting experienced by spin i from the
dominant pair. If a spin falls into neither of these two
categories it is part of the continuum.

In the preceding definitions, € is an as yet unspecified
parameter; the ratio of relaxation rates for a given spin to
the continuum rate. A criterion is introduced below for
determining €. Determination of € roughly quantifies the
separation of broadening into homogeneous and inhomo-
geneous components. We may form some preliminary
ideas about what range of € are reasonable. It is com-
monly expected that two nearest neighbors is the border-
line for the existence of a continuum. For a sc lattice
with coordination number 6, this crude estimate suggests

=1 as the concentration where inhomogeneous
broadening becomes important. It turns out that our
method is rather consistent with this rule. Another ex-
ample to illustrate the meaning of € is a one-dimensional
coupled chain with nearest-neighbor interactions. We be-
lieve such a system to be near the boundary between
homogeneous and inhomogeneous broadening. For this
array of spins the ratio I'; /T, is about L. This is fairly
consistent with our calculations, as will be seen in Sec.
II B.

In detail, our procedure is the following: A computer
is used to simulate impurity configurations on a sc lattice.
We sweep through the lattice, and for each site a random
number R is obtained, 0 <R < 1. If the random number
for a given site is less than the spin concentration c, we
occupy the site, otherwise it is left vacant. Simulations
were performed for a variety of concentrations from
¢ =5 to c=1. The following iterative scheme is em-
ployed to separate the line broadening and to obtain
configuration averaged Green’s functions.

(i) We use the simulation procedure outlined above to
simulate a lattice with randomly distributed spins at con-
centration c.

(ii) For each occupied site in the lattice, we apply
periodic boundary conditions (in effect making each site
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in turn the “origin”) and calculate the ratio of Eq. (12)
defined above. We then use the criteria for isolated pairs
and isolated single spins so that each spin in the lattice
could be classified as part of the continuum, part of a pair
or a single isolated spin.

(iii) The procedure (ii) removes spins from the continu-
um. This can contribute to the isolation of more spins
because the continuum second moment L,. has been re-
duced. We therefore iterate (i) until L, remains un-
changed upon further iteration.

(iv) After iterating to convergence, we calculate the
moments L, (i),L 4 (i) and restrict the sums to the contin-
uum lattice (i.e., the set of spins contributing to homo-
geneous broadening). These “continuum” (homogeneous)
moments are then stored.

(v) The procedure (i)—(iii) is repeated many times to get
a good sample of the joint distribution of moments P (L,,
L,). We saved these results at each step. It was also
necessary to repeat (i)-(iii) for a wide range of € for a
later determination of what value of € was appropriate.

(vi) The impurity averaged Green’s function is calculat-
ed in two steps. First we use maxent to treat the continu-
um spins, calculating an average continuum lattice
Green’s function. This was just the ensemble average
Green’s function over each of the continuum moments
we generated. The pairs and isolated spins were treated
differently. For each concentration and external Zeeman
field configuration, the statistical theory was applied to
the isolated spins in each lattice. The complete line shape
was then taken to be the sum of the homogeneous and in-
homogeneous shapes.

B. Parameter e: Criterion of consistency

The parameter € is determined by a criterion of con-
sistency: The maxent approach to the moment problem
produces a well-defined sequence of functional approxi-
mants given a finite set of moments. Of course, the
more information (moments) known, the better the
reconstruction—provided that we make use of all the in-
formation at our disposal. In particular, at low c, it is
crucial to make use of the fact that the power moments of
the spectral functions 4 and ' are large because of
unusual configurations which contribute in the remote
tail of the line shape. If this information is neglected,
maximum entropy can predict spectral functions with the
additional weight near the origin which leads to entirely
spurious line shapes. A naive application of maxent hap-
pens to work reasonably well for the reconstruction based
on one moment, because the functional form maxent pro-
vided distributes the spectral weight required to produce
the large moments almost uniformly in the part of the
line of interest to us. For the two-moment reconstruc-
tion, the weight is placed incorrectly near the origin. Our
difficulty can be resolved in one of two ways: (1) Find a
way to include the information about the tail as a con-
straint on maxent, or (2) transform the problem so that
the tail and neighborhood around the origin can be treat-
ed separately. We took the latter approach. To illustrate
the point, it is worth examining the maxent fits for the
one- and two-moment reconstructions.
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The L,-only (Gaussian) reconstruction is dominated by
the continuum homogeneously broadened configurations.
This follows from the form the maxent fitting function
takes:

—w?/2L
G Gauss (@)= (/2L ;) %e 2,

The effect of mutual isolated pairs (corresponding to
large L,) is negligible, such configurations merely intro-
duce a very slowly decaying component in G (w). Conse-
quently they affect the relaxation rate in an unimportant
way. By contrast, the joint reconstruction based on both
the second and fourth moments is completely dominated
by certain configurations involving very strongly interact-
ing pairs. Such configurations lead to very rapidly decay-
ing component in the Green’s function. This makes the
predicted line shape absurdly sharp near the origin. So,
to obtain a useful joint reconstruction, it is necessary to
handle the inhomogeneous components separately.

We expect a Gaussian fit to the continuum component
to be a fair approximation to the true Green’s function.
This comes from two considerations: First, at c=1, the
Gaussian approximation is reasonable, and for high ¢, the
broadening must be completely homogeneous. Also, in
diluted lattices, the line shape becomes even more Gauss-
ian because there are effectively more continuum neigh-
bors than in the concentrated lattice, and the central lim-
it theorem may be invoked to infer a Gaussian shape. In
principle, the two-moment reconstruction should be
better than the Gaussian fit, simply because the extra mo-
ment provides additional information about the line
shape. For n — oo it should be exact, where n is the or-
der of the fit. Consequently, a reasonable way to quantify
the homogeneous and inhomogeneous components of
broadening is to require that the single and joint recon-
structions be consistent. This is not a rigorous criterion;
there is no reason why the two fits should be identical.
The usefulness of this criterion is great, however, because
for € too small, the two fits are extremely inconsistent.
This is because the joint reconstruction is completely
dominated by a few weird configurations. Such
configurations occur, of course, yet their effect on the
joint reconstruction is absurdly overweighted if € is in-
correctly chosen. The result of neglecting the inhomo-
geneous component (i.e., assuming purely homogeneous
broadening) is illustrated in Fig. 1.

Optimal consistency between the Gaussian and joint
reconstructions is obtained at all concentrations for
€~=0.35. There is some uncertainty in this, as mentioned
above. A range of € for which agreement is reasonable is

0.25<€<0.40 .

For low concentrations, our line shapes are sensitive to
the choice of €. As indicated above, € is determined by
requiring consistency between the single and joint recon-
structions. This specifies a good lower bound on €. In
Fig. 3 we illustrate the different constituents of the recon-
structions for different €. Tolerable consistency is ob-
tained for €>0.25. Optimal agreement is obtained for
€~=0.35. We find that €=0.35 is the optimal choice for
all concentrations (of course this statement only has
relevance for low concentrations, where some spins are
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FIG. 1. Strikingly inconsistent line-shape functions for one-
and two-moment reconstructions neglecting inhomogeneous
broadening at ¢=0.001. In this and all other plots of line
shapes, the line shape function is normalized to m, and the fre-
quency is in reduced units of w, =cwy,, where c is the spin con-
centration. Although it is difficult to see on this plot, the two
moment reconstruction has a value of about 1.8 at the origin.

inhomogeneously broadened).

This works also clearly reflects the existence of a con-
tinuum for the dilute limit. We find that for any €>0,
the ratio of the homogeneous population to the total
number of spins

C]ll’% Nconti /Ntotal

is finite for all concentrations (down to ¢=0.001) and de-
pends only on the value of € chosen, and the assumption
that the alloy is random. If a continuum did not exist,
one could make the limit arbitrarily small by considering
a sufficiently dilute lattice. For all very dilute cases we
considered (€ <0.01) we found that about 10% of the
spins were in the continuum for optimal €.

III. RESULTS AND DISCUSSION

A. High concentrations

In Fig. 2 we present our line shape functions for high
concentrations using average moments. For this concen-
tration regime, the line shapes bear some interesting
differences. The [100] case is flattened because of the
strongly anisotropic dipolar interaction with spins in the
first shell. The other two common directions [110] and
[111] are much more Gaussian in appearance. We expect
the average moment method to be valid for concentra-
tions sufficiently high that isolated configurations are im-
probable. In practice, for a sc lattice, the great majority
of line broadening is continuum in origin down to ¢ =~0.4.
In all graphs of line shape functions, frequencies are mea-
sured in units of . =cw,, where w, is given in Sec. 1.
L (o) denotes line shape functions in the figures.

B. Low concentrations

For the low-concentration limit, we predict a line
width surprisingly consistent with other calculations.
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The early work of Kittel and Abrahams!® and Ander-
son'* led to half-widths at half maximum of §=5.3 w,
and §=3.8 w,. We predict 6=3.7 w,, in the notation of
our figures. The plots of Fig. 3 are all for the [110] direc-
tion and for ¢ =10"3. For low concentrations, the
difference in line shapes is negligible for differing Zeeman
field configurations—this is a consequence of the dipolar
coupling J;; having zero-angle average, and essentially all
angles with respect to a given site being attainable for
¢ —0.

Figure 4 illustrates our method for ¢ = {; with Zeeman
field along the [110] direction. €=0.35 was again the
maximally consistent choice, and about 30% of the spins
were in the continuum. For high concentrations the con-
tinuum component continued to grow.

It is interesting to compare this work to average mo-
ments in the regime where they overlap (¢>0.3). For
c¢=1, there is a significant (but tolerable) discrepancy be-
tween the self-energy fit to L,, L, and experiment,
whereas the three-moment reconstruction almost exactly
reproduced experiment.'? Fortunately, as the concentra-
tion decreases, the two-moment fit improves as the con-
tinuum part of the line becomes more Gaussian (Fig. 5).

w/we

FIG. 2. Line-shape functions at high concentrations and for
different Zeeman field configurations. (a) Illustrates the line
shapes for the [100] direction, (b) corresponds to [110], and (c)
to [111].
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FIG. 3. Line shapes for different € corresponds near the op-
timally consistent value of 0.35. All plots are for ¢=0.001. (a)
Depicts the case of €=0.25, where 37% of the spins are homo-
geneously broadened. Note the sharp feature in the two mo-
ment reconstructions. (b) €=0.35 has 9% of the spins in the
continuum. (c) €=0.40 has 6% in the continuum. 1, composite
one-moment reconstruction; 2, composite two-moment recon-
struction; 3, inhomogeneous; 4, homogeneous one moment; 5,
homogeneous two moment.
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FIG. 4. Line shape for ¢=0.1 and [110]. Here €=0.35, and
15% of the spins are in the continuum. 1, composite one-
moment reconstruction; 2, composite two-moment reconstruc-
tion; 3, inhomogeneous; 4, homogeneous one moment; 5, homo-
geneous two moment.
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FIG. 5. Comparison of continuum component of line shape
and average moments (¢c=0.3, [110]).

As an independent test of our work, we formed the
Green’s function by diagonalizing the secular dipolar
Hamiltonian for several configurations. Because of the
prohibitive size of the matrix to diagonalize, even for a
moderate number of spins, we present our results only for
a very dilute lattice (¢=0.001), where any particular spin
is influenced primarily by a few neighboring spins. We
applied periodic boundary conditions to reduce edge
effects, and performed the indicated diagonalization for
up to nine spins. As we illustrate in Fig. 6, the agreement
between the moment analysis and the simulation is
reasonable. We are inclined to accept the moment work
as the better predicted line shape, since it was computa-
tionally feasible to work with many more spins, and
easier to configuration average to convergence. The fair
agreement between the two methods does suggest that for
the dilute limit most of the broadening of the line is inho-
mogeneous. This is because only inhomogeneous
broadening could be well represented by nine or less
spins.

C. Discussion

A distinct advantage of simulating randomly diluted
lattices is that the investigator is forced to deal with the
problem on a configuration by configuration basis. This

0.3 T T T

€=0.00!

0.2 Theory 4

Llw)

Exact Diagonalization

O.1F

(o} 10 20 30 40
w/w,

FIG. 6. Comparison of diagonalizing the secular spin-spin in-
teraction, forming the Green’s function directly, and the result
of our method. Both plots are for ¢=0.001 and the [110] orien-
tation of the Zeeman field.
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forced us to find the configurations responsible for
strange line shapes such as Fig. 1. It also enabled us to
quantify the different components in a meaningful way.
The iterative procedure we outlined is evidently not easi-
ly implemented in any other fashion.

We have also calculated distributions of relaxation
rates for inhomogeneously broadened spins contributing
to different parts of the NMR line shape. A typical cause
of inhomogeneous broadening in this problem is the pres-
ence of spins at small separations compared to the aver-
age interspin distance. Such spins experience a huge shift
in Larmor frequency because of the local field each ele-
ment of the pair feels from the other. It is interesting to
consider such distributions, because in a hole-burning ex-
periment'® one can excite a small band of frequencies in
the line shape, and observe the decay of the “hole.” Hole
lifetimes 7}, are of the order

Thok =~ fo‘” dT Tp(T) .

We have calculated such rate densities for two different
parts of the line. For the case of ¢ = i, we considered
the range 1 <w/w, <5, and 15 <w/w, <30. The results
are shown in Fig. 7 and o, is defined in Fig. 1.

In work on inhomogeneous broadening of distorted
solids, Kanert et al.!” used a configuration averaging
scheme somewhat similar to ours. These authors used a
computer to generate an ensemble of simulated lattices
with a fixed number of magnetic impurities in each lat-
tice. In a finite lattice this suppresses local fluctuations in
concentration that are relevant to the line shape. These
fluctuations are of order n'”2, where n is the number of
spins. The measure of the effects on physically measur-
able quantities is ~n ~!/2. A more correct approach is to
form an ensemble of lattices each of which having its sites
occupied with probability ¢. The distinction between
these two ensembles is analogous to the difference be-
tween the canonical and grand canonical ensembles in
statistical mechanics. For the infinite lattice limit, the
two ensembles evidently coincide. For the finite lattices
we are compelled to work with however, we feel it is
more appropriate to use our “grand canonical ensemble.”

The foregoing work also raises an important point
about the use of maximum entropy. Information theory
provides a powerful method of dealing with inverse prob-
lems of many kinds. However, to get useful results based
on incomplete information, one must be sure to include
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FIG. 7. Densities of relaxation rates for different parts of the
line shape for the dilute limit. (a) Depicts the range
l<w/w. <5. (b) Obtained for 15 <w/w, <30. The wiggles are
probably a consequence of too few simulations, particularly in
(a).

all the information available. It is very easy to use max-
ent, leaving out an apparently insignificant bit of infor-
mation, only to find that the results depend crucially on
that information. In this work, we had to separate the
forms of broadening because the joint reconstruction of
the Green’s function tended to put too much spectral
weight in near the origin, rather than in the tail to ac-
count for the large moments caused by inhomogeneously
broadened configurations.

The preceding work could be continued in several
ways. Another system of interest is solid molecular hy-
drogen. It is closely analogous to the dipolar case, except
that the dominant part of the spin Hamiltonian is the
electric-quadrupole-quadrupole interaction in the hydro-
gen problem. We are currently pursuing this problem. It
is also straightforward to simulate clustering, by requir-
ing the probability for occupation to be site dependent.
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