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In this paper, we describe the vibrational properties of a realistic 648-atommodel of SiO2 ([1] Tafen and Drabold,
2005). The normal modes of the model are computedwith the ab initio density functional code SIESTA ([2] Soler
et al., 2002). The static structure factor and the electronic density of states are in reasonable agreement with the
experimental data. The vibrational density of states is analyzed by evaluating the partial density of states and lo-
calization. The vibrational modes were further investigated by calculating phase quotient and stretching charac-
ter, and constructing animations of specific nodes of interest. We have obtained a low temperature specific heat
in qualitative agreement with experiments, including a feature resembling the Boson peak, and the modes that
give rise to this feature.
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1. Introduction

Amorphous SiO2 is probably the most researched amorphous mate-
rial. Neutron scattering [3–5] and Raman spectroscopy [4,6], along with
infrared spectroscopy [7] are employed to understand the vibrational
and structural properties [3] of a-SiO2. Also, several computer models
of the materials exist. The models are prepared using empirical poten-
tials, ab initio or reverse Monte-Carlo techniques [8]. In this paper, we
characterize an ab initio “decorate and relax” [9] model of a-SiO2 and
present extensive new results on its phonons.

While there has been much theoretical research to understand the
physics of a-SiO2, a perfect model for the vibrational properties and de-
rived quantities like the vibrational specific heat has been lacking.
Phonon calculations demand a precise calculation to satisfactorily
model the vibrational excitations. Significant controversy exists in the
literature about artifacts of small structuralmodels and/or imperfect in-
teratomic potentials. We should note too that there is some non-
negligible variance in experimental data on the vibrational density of
states, as we describe later.

We have employed a 648-atommodel of a-SiO2 with self-consistent
field density functional interactions to study the vibrational properties
of the system. We study the vibrational properties by diagonalizing
the dynamical matrix which gives us the eigenvalues and eigenvectors
(classical normal modes). Our results are in improved agreement with
experiment and we present interesting new results for the low-
temperature specific heat. We thoroughly characterize these modes,
by including the Taraskin–Elliott correction (connecting experiment
drabold@ohio.edu
and theory), and computing phase quotients and estimating bond-
stretching/bending behavior. Our paper is also of some interest as the
largest (648-atom) ab initio study of vibrations in amorphous silica pre-
sented to date. Also, modes in complex systems like amorphous silica
are often thought of very locally — as essentially molecular excitations,
but of course this is a gross (albeit useful) simplification. This is shown
clearly in animations that we provide a Supplementary Material for
this paper. These animations emphasize the non-locality of the modes
and, and are useful as a pedagogic aid.

The paper is organized as follows, in Section 2 we discuss the simu-
lation methods used. Section 3 provides a description of the structural
properties of the model: the structure factor, pair correlation function
and compare it with the known experimental results of the material.
Section 4 gives a brief description of the electronic properties of the
model and the localization of the electronic states. The core of the
paper is Section 5, which is devoted to the vibrational properties of
the system: localization, identification of the vibrational states and the
low-temperature specific heat. In Section 6, we summarize ourfindings.
2. Model

The models of a-SiO2 were obtained with the help of ab initio code
“Spanish Initiative for Electronic Simulations with Thousands of
Atoms” (SIESTA) [2], a density functional code using the local-density
approximation (LDA) with Ceperley–Alder (CA) exchange correlation
functional. The 648-atom model of g-SiO2 consisted of 216 Si atoms
and 432 O atoms with a of cube side length of 22.3 Å. The simulation
was performed with single-ζ basis, a self-consistent field and periodic
boundary conditions, and the final model was relaxed using the conju-
gate gradient (CG) method. The simulation was initially performed at
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Fig. 1. Calculated total neutron static structure factor for the 648-atom SiO2 (solid red line)
compared with experimental results [14] data (black circle, neutron diffraction). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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constant volume, sampling the Brillouin zone only the Γ ( k
!¼ 0

!
) point

to compute the forces and energies. During the final relaxation, the sys-
temwas allowed to relax to zero pressure for the single-ζ Hamiltonian.
This allowed the system volume to change and resulted in a non-cubic
cell, with a density about 11.7% smaller than the experimentally report-
ed density.1

3. Structural properties

In a neutron or X-ray scattering experiment, the static structure fac-
tor S(Q) is measured. The Faber–Ziman definition of partial structure
factor can be stated as [12],

Sαβ Qð Þ ¼ 1þ 4πρ0

Z ∞

0
drr2

sin Qrð Þ
Qr

gαβ rð Þ−1
� �

ð1Þ

where, Sαβ(Q) is the partial structure factor and gαβ(r) is the partial pair
correlation function or radial distribution function (RDF), which gives
the corresponding structural information in real space. S(Q), the total
structure factor is obtained by summing the partial structure factor
with an appropriate weighing of their concentration and neutron scat-
tering length of the corresponding species.

S Qð Þ ¼
X
αβ

cαbαcβbβ Sαβ Qð Þ−1
� � ð2Þ

Conversely, the pair correlation function is [13],

g rð Þ ¼ 1þ 1
2π2ρ0

Z ∞

0
S Qð Þ−1½ �Q

2 sin Qrð Þ
Qr

dQ : ð3Þ

3.1. Structure factor and pair correlation function

For investigating vibrational properties ofmaterials, a good structur-
al model is required and ab initio interactions have been the most reli-
able. In Fig. 1 we have compared the static structure factor S(Q) of the
648-atom SiO2 model with neutron-diffraction experimental results
[1]. The comparison of S(Q) shows an excellent fit for most of the
range of Q,while there is somediscrepancy afterQ~11Å-1. This discrep-
ancy is due to the density difference between model and experiment,
and originating from finite size effects [1].

Partial structure factors were also calculated for the 648-atom
model, which gives us a better idea of the origin of various peaks in
the total structure factor S(Q). Results for the partial structure factor
are given in Fig. 2. We can infer from Fig. 2 that the first peak in S(Q)
arises from all three partial factors. The second peak in S(Q) arisesmost-
ly from the Si–Si and O–O correlations, while the contribution from
Si–O provides a partial cancellation. The third and fourth peak involves
the contribution from Si–Si, Si–O and O–O depending upon the corre-
sponding concentration and the scattering length. The counterpart of
the structure factor (partial pair correlation) in real space is shown in
Fig. 3. The first sharp peak of the pair correlation function gives us infor-
mation about the bond length between nearest neighbors and the
1 Previous simulations of this system have either constrained the volume to match ex-
periment [10], or used empirical potentials that are concocted to reproduce the density
[11]. This makes the pair correlations look slightly better, but then one is not considering
vibrational excitations around the trueminimum, an essential assumption of theHarmon-
ic Approximation. In addition, by carrying out this zero-pressure simulation the cubic
symmetry of the supercell also slightly breaks, yielding lattice vectors: 〈22.28,-0.24,-
0.12〉, 〈-0.24,22.48,0.03〉 and 〈-0.13,0.02,22.07〉 (units are Å).While the effect is fairly small
compared to our earlier calculation (as characterized by the structure factor, and quanti-
ties like bond angle distributions), we think this is a more appropriate starting point than
an artificially constrained case. We verified that with a more complete double-ζ basis, the
lattice constant was indeed close to experiment, as expected. Since the vibrational calcu-
lations require 6 N force calls, a phonon calculation with the full basis would be quite ex-
pensive for a cell with 648 atoms.
results obtained from the plot show that the first peak of Si–Si bonds
is at 3.23 Å, similarly Si–O and O–O have their first maximum at
1.65 Å and 2.71 Å respectively. The average pair distances reported
are, 3.100(0.113)Å, 1.621(0.022)Å and 2.65(0.109)Å for the Si–Si,
Si–O and O–O respectively. The numbers in the brackets are the stan-
dard deviation for the data [15].

3.2. Bond angle distribution

In Figs. 4 and 5, we report the bond angle distribution of our 648-
atom model SiO2. This is in agreement with our previous results for
the 192-atom model and 648-atom model [1]. The obtained structure
has an average O–Si–O angle of 108.97° which is close to the tetrahe-
dral angle of 109.47°. The broadening of the Si–O–Si angles is consis-
tent experimental results which also vary within the range of 142°–
152° [16]. It is also to be noted that differentmeasurements give slightly
varying results. The FWHM (Gaussian fit) for the two bond angle distri-
butions O–Si–O, Si–O–Si are 8.81° and 31.21° respectively.

3.3. Ring statistics

In Fig. 6 we have reported the ring statistics computed via ISSACS
[17] for our sample of 648-atom SiO2. The ring statistics were obtained
using King's shortest path [18].
Fig. 2. Calculated partial structure factors for the 648-atom model of SiO2.



Fig. 3. Calculated partial pair correlation functions for the 648-atom model of SiO2.

Fig. 5. Bond-angle distribution function, Si–O–Si (red), Gaussian-fit(dotted green). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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FromFig. 6we can see that there are no odd-membered rings, which
shows that the model has no wrong (homopolar) bonds. Further, the
maximum occurs for 12-member rings, which is in agreement with
the previous finding for the structure rings of SiO2 [19]. Our sample is
devoid of 4- and 6-fold ring. Edge-sharing tetrahedra is the origin of
4-fold rings and distortion for 6-fold rings [19].

4. Electronic properties

The electronic properties were analyzed with the electronic density
of states (EDOS) and localization of different energy eigenstates. The lo-
calization is obtained by calculating the inverse participation ratio (IPR),
which is given by the relation [20],

I ψ j

� �
¼ N

XN

i¼1
aj4

iXN

i¼1
aj2

i

� �2 ð4Þ

where, ψj=∑i=1
N ai

jϕi is the jth eigenvector and ϕi is a local atom-
centered basis orbital. Fig. 6 shows the plot of the EDOS and IPR. For a
completely localized state, IðEiÞ ¼ 1 (only one atomic site contributing
to that state). Small IPRs are associated with extended states, in which
case the electronic wavefunctions are more uniformly distributed in
space (Fig. 7).
Fig. 4. Bond-angle distribution function, O–Si–O (red), Gaussian-fit (dotted green). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
5. Dynamical properties

In this section, we discuss the classical normal modes in some detail.
The dynamical matrix is the key ingredient to analyze the vibrational
properties of the model, which is obtained from a well relaxed system
for which the inter-atomic forces can be evaluated. The dynamical ma-
trix is given by the relation [13],

Dαi;βj ¼
1

mimj
� �1

2

∂2ϕ
∂uαi∂uβj

ð5Þ

where,ϕ is the total energy of the system,m's are the ionicmasses of the
atoms andα andβ are the Cartesian coordinates of atoms i and j, respec-
tively. The indices i and j run over the atoms. Now, when the ith atom is
displaced by (a suitably small)Δxαi in the α direction, the forces(Fβj) on
all the atoms are computed, so that the above relation can be replaced
by [13],

Dαi;βj ≈
1

mimj
� �1

2

Fβj
Δxαi

: ð6Þ

For our system the dynamical matrix is obtained with the SIESTA [2]
recipe by displacing each atomalong thepositive andnegative Cartesian
directions (in 6-directions)with amagnitude of 0.02 Ao. After, each such
displacement an ab initio force calculation was performed to obtain the
force constant matrix resulting from the displacement of each atom
Fig. 6. Number of Ring per Cell (Rc) versus the number of nodes(n) (see [17] and [18]).



Fig. 7. The Electronic Density of States (black, solid line) and the IPR (green, drop lines),
with the Fermi Energy shifted to 0 ev. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 8. The Vibrational Density of States (black, solid line) and the IPR (green, drop lines).
The highly localizedmodes near 1000 cm -1 are Si–O stretchmodes. (For interpretation of
the references to color in thisfigure legend, the reader is referred to theweb version of this
article.)

Fig. 9. The obtained total VDOS (black, solid line), partial VDOS for Si (red, dotted line) and
partial VDOS forO (green, dashed line). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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from its equilibrium position. The details of the constant force matrix
calculation are given in [21]. The eigenvalue problem reads:

∑βjDαi;βje
n
βj ¼ −ω2

ne
n
αi ð7Þ

where,ωn and eαi
n represent the 3N eigenfrequencies and the eigenvec-

tors respectively.
If ω is the frequency then g(ω)dω describes the number of modes

within the interval [ω, ω+dω], where g(ω) represents the VDOS of
the system. The VDOS for amorphous systems with N number of
atoms is defined as,

g ωð Þ ¼ 1
3N

X3N
i¼1

δ ω−ωið Þ: ð8Þ

We evaluate the VDOS by Gaussian broadening the eigenvalue with
the standard deviation σ=2.5 meV or 20.15 cm-1: see Fig. 8. The first
three frequencies are very close to zero, and arise from supercell trans-
lations. These have been neglected for the evaluation of both VDOS and
derived quantities like specific heat.

5.1. Assignment of normal modes

The vibrational properties of amorphous SiO2 have been analyzed
through various spectroscopies: neutron scattering [3–5], Raman scat-
tering [3,6] and infrared scattering [7]. The VDOS of amorphous silica
shows several peaks. Our 648-atom model shows well-defined peaks
occurring at low frequencies at 390 and 507 cm-1, and intermediate fre-
quency at 766 cm-1. At high frequency the two peaks are at frequencies
1095 cm-1 and 1198 cm-1.

The VDOS of amorphous SiO2 has been well studied. In celebrated
work, Bell and Dean [22] reported peaks at frequencies near 400 cm-1,
550 cm-1, 750 cm-1 and 1050 cm-1. Bell and Dean [22]were able to eval-
uate the effects of vibration due to the non-bridging oxygen atoms and
their effects onVDOS. The importance of themotion of non-bridging ox-
ygen atoms was vital for the peaks obtained at 300 cm-1 and 850 cm-1.
The bending motion of non-bridging oxygen (NB) plays a large part
for motion at 300 cm-1 and the peaks observed at 850 cm-1 are mostly
due to the stretching motion of non-bridging oxygen (NS).
5.2. Species projected VDOS

Below, we present the atomic species-projected VDOS along with
the total VDOS. The total density of states is projected onto the two spe-
cies according to their respective weights of the eigenmodes and they
satisfy the relation g(ω)=∑α gα(ω). The partial density of states can
be defined as [10],

gα ωð Þ ¼ 1
3N

XNα

i¼1

X
n

jeni j2δ ω−ωnð Þ: ð9Þ



Fig. 10. The obtained total VDOS as shown in Fig. 9 (black, solid line), effective VDOS
obtained by Eq. (11) (green, solid line), experimental data (red, dots) [3] and
experimental data (blue, stars) [5]
G1: one-phonon reduced neutron scattering spectrum see (Fig. 5a, Ref [3]). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 11. Plot of vibrational IPR: total IPR (top), Si-IPR (middle) and O-IPR (bottom).
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The vibration among the various species is mostly dominated by the
oxygen atoms. From Fig. 9 we can infer that the vibrational motion of
both the atoms Si and O are mixed through the spectrum except near
766 cm-1, where the vibration is dominated by the Si-atoms.

Taraskin and Elliott [23] reported that the model constructed
by using Van Beest potential [24] or Tsuneuki potential [25] was
unable to reproduce the pronounced peak at 12.5 THz (≈416.9 cm-1).
Similarly, phenomenological three-body atomic potential or semi-
phenomenological potentials were unsuccessful to reproduce the
peak. The Feuston–Garofalini [26] potential did not have this deficiency
but it was unable to reproduce other principal peaks of the VDOS. In fact,
the simple Bethe lattice [27] and ab-inito MD-constructed model [28]
were reported to reproduce all the principal peaks. Further, the occur-
rence of a high frequency doublet was a topic of debate but, Sarnthein
et al. [28]were able to demonstrate that the splitting is a general feature
of any tetrahedral amorphous network rather than longitudinal-optic–
transverse-optic (LO–TO) effect.

5.3. The effective VDOS

In their paper, Taraskin and Elliott [29] gave a detailed analysis of the
connection between the true vibrational density of states and the exper-
imentally measured VDOS from an inelastic neutron experiment. They
observed that only the effective VDOS can be measured with experi-
mental techniques. The true VDOS and the effective VDOS are related
via a correction function. Mathematically, the correction function is
defined by [29],

C ωð Þ ≃ 1þ A
3
∑
α

b2α
mα

ρα ω j
� �� ρ 0ð Þ

α

h i
ð10Þ

where,A ¼ 3bmN

bb2αe−2WN
is constant depending upon the scattering length,

the mass of the ions and the Debye–Waller factors. Similarly, the quan-

tities ραðω jÞ ¼
gαðω jÞ
gðω jÞ

, ρð0Þ
α ¼ Nαmα

NbmN, represent the relative partial VDOS

and the zero-frequency partial VDOS respectively for the species α and
bmN is the average atomic mass.

The true VDOS is connected to the effective VDOS by the relation
[29],

geff ωð Þ ¼ C ωð Þg ωð Þ: ð11Þ

So with appropriate values of the constants and the relative partial
VDOS, we evaluated the correction function and applied it to obtain
the effective VDOS, which can be measured in an inelastic neutron ex-
periment. The maximum and minimum values for the correction func-
tion were obtained as, Cmax=1.495 (1.48), Cmin=0.435 (0.58) which
were very close to the prescribed values (in brackets). Also, the normal-
ization constant (G) for SiO2 was obtained as 1.10 which is very close to
the suggested value of (1.14). The obtained effective VDOS was plotted
with a direct comparison with the reduced neutron experiments [3,5].
The effective VDOS is shown in Fig. 10. The plot of the effective VDOS
shows some slight variation from the uncorrected original (true
VDOS). Changes are observed at the peaks 390 cm-1 (increased effective
density), 766 cm-1 (decreased effective density) and at the high
frequencies 1095 cm-1(increased effective density) and 1198 cm-1 (in-
creased effective density).

We observe from Fig. 10 that the two experiments don't exactly
coincide. This makes the interpretation of our computed VDOS more
challenging. It is self evident from the above figure that we have a
general satisfactory agreement with the experiments regarding the
occurrence of themajor peaks in VDOS, while there are somediscrepan-
cies in weighting, between the experiment and theory.
5.4. Vibrational localization

Amorphous solids may possess localized vibrational modes. We can
evaluate the localization different vibrational modes near the band
edges oscillating with different frequencies by again using the inverse
participation ratio (IPR) much like the case for electrons. The IPR can
be easily calculated from the normalized displacement vectors, and
the IPR for the vibrations can be defined (for mode j) as:

I ¼
XN

i¼1
uj
i

��� ���4
XN

i¼1
uj
i

��� ���2
	 
2: ð12Þ

The inverse participation ratio of a localized displacement is I ¼ 1
and the extended or de-localized displacement is close to I ¼ 0. A
plot of vibrational IPR is shown in Fig. 11. It can be seen that the low fre-
quency band of the vibrations is de-localized with the only localized
modes occurring at the frequency ~31 cm-1. There is clear band gap
(≈135 cm-1 or 4.04 THz) excepting a heavily localized state at
~885 cm-1. As expected, these localized modes involve the motion of
few atoms as opposed to the motion of nearly all the atoms in the de-
localized frequencies.
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The middle and bottom panels of Fig. 11 show, the partial or species
projected vibrational localization of the two atoms. It can be asserted
that the contribution of oxygen atoms ismore pronouncedwith respect
to both vibration and localization. To obtain the species-projected IPR
we use the same Eq. (12) but the summation is restricted to particular
atoms, in our case silicon or oxygen.

The modes were further analyzed by using visualization
techniques.2 3 The modes were investigated using an earlier recipe
[31].

In this recipe, each atom is representedwith a color code on the basis
of the percentage of vibration it contributes to a particular frequency
mode. The assignment is done in such a way that it includes at least
80% of the total vibrations in a particular mode.

In the above two Fig. 12(a) and (b), we analyze two extended
modes with comparable values of IPR. In Fig. 12(a) the vibrations
occurring at one of the low frequency mode (72.38 cm-1) are shown
while Fig. 12(b) gives a visual description of a high frequency mode
(1176.38 cm-1). The two plots resemble each other in most aspect,
with the notable difference is that vibrations of silicon are more in low
frequencymode (Fig. 12(a)) than the high frequency mode (Fig. 12(b)).

We also used this visualization technique to observe some of
the prominent localized states, notably occurring at the frequencies
31.85 cm-1 and 1264.56 cm-1. The localizedmodes exhibit few atoms vi-
brating in the network, with some of the atoms contributingmore than
the 50% of the vibration at a particular frequency. The localized modes
occurring well inside the optical band or the high frequency region of
the spectrum were thoroughly studied, with the intent of identifying
the possible signatures of voids and to distinguish the possible pattern
of vibrational localizations. These plots are shown in Fig. 12(c) and (d).

The above Fig. 12(c) and (d) depicts the two localized states, one
occurring at the low frequency end and the other at the high frequency
part of the spectrum. The comparison of the two localizedmodes shows
that the vibrations are not as evenly distributed as in Fig. 12(a) and (b),
weremost of the atoms had almost similar vibrational contribution. The
localized state at the band gap at that frequency (882.94 cm-1) (not
shown) is particularly peculiar as one of the oxygen atom has more
than half of the total vibrational weight.

We also used the visualization techniques to obtain snapshots of the
vibrational motions at a particular frequency. These several frames of
snapshots were further visualized in VMD and were studied as movies.
We found that these states to be consistent with the bending and
stretching motions assigned earlier.

5.5. Phase quotient

The eigenvectors of the dynamical matrix have complete informa-
tion about the atomic motions within the harmonic approximation.
We can calculate the phase relationship among the neighbors of an
atom by classifying whether the motion of atoms are in phase or out
of phase with each other. The (Bell and Hibbins-Butler) [32] definition
of phase quotient can be stated as [23],

qj ¼
1
Nb

X
i

X
i0

uj
i � uj

i0

uj
i

��� ��� � uj
i0

��� ��� ð13Þ

where,Nb is the number of valance bonds, ui
j
and ui'

j are the normalized
displacement vectors as defined earlier (Section 5.4). In Eq. (13), i sums
over all the silicon atoms and i ' enumerates all the oxygen atomswhich
are the neighbors of the silicon atom. A complete acoustic motion will
have a value of 1, while the optic like modes will attain a negative
value for the phase quotient.
2 Jmol: an open-source Java viewer for chemical structures in 3D.
3 VMD: a molecular visualization program [30].
In Fig. 13 we show the plot of phase quotient (qj). The plot shows
three clear branches with an abrupt change of phase quotient at around
~450 cm-1 and the other jump at the band gap (~850 cm-1), which indi-
cates a different nature of optic vibrations [23,33].

5.6. Stretching-bending character

To further investigate the modes, we studied the stretching charac-
ter of our 648-atom model. The stretching and bending character de-
fines the extent to which a mode is stretching type or bond-bending
type and it can be defined as [33],

S ωp
� � ¼

∑
m

��� ui
p � uj

p

� �
:r̂ij

���
∑
m

jui
p � uj

pj
ð14Þ

where, upi and up
j are the eigenvectors of the pthmode, rij is the unit vec-

tor parallel to themth bond. S(ω) is close to unity when themode of vi-
bration is predominantly of bond-stretching type andwill be close to 0 if
themode is of a bond-bending type. The plot of S(ω) is shown in Fig. 14.

The plot of S(ω) can bedivided in three distinct regions similar to the
phase quotient. The three regions can be distinguished with a clear gap
at ~450 cm-1 and ~850 cm-1. The modes less than ~450 cm-1 show
bond-bending type of character, the regions ~450–850 cm-1 show a
mixed type of behavior and the high frequency range shows a clear
stretching character. The obtained S(ω) is in a good agreement with
the previous calculations [33] with a slight difference in the amplitude.

To aid in the interpretation of thesemodes,we have included anima-
tions of several key modes as Supplementary Material associated with
this paper.

5.7. Phonon specific heat in the harmonic approximation

The evaluation of the specific heat within the harmonic approxima-
tion is straightforward with the help of the density of states, g(ω). The
only significant provision is that not all of the vibrational excitations
can be represented with a finite size model: vibrational excitations
with wavelength larger than our supercell size are not included in the
obtained VDOS data [34]. With the VDOS in hand, we may compute
the Cv(T) by the relation [35,36],

C Tð Þ ¼ 3R∫Emax

0
E

kBT

	 
2 eE=kBT

eE=kBT � 1
� �2 g Eð ÞdE ð15Þ

where the VDOS, g(E) is normalized to unity.4 Further at low tempera-
tures, the specific heat follows the Debye law so we calculated the
term CV(T)/T3 and plotted it as follows,

In Fig. 15 we can see that the obtained plot of CV(T)/T3 with our 648-
atom SiO2 model is in reasonable agreement with the experimental
findings. It is to be noted that our peak is little shifted to the right and
has somewhat reduced amplitude. But, our results are substantially im-
proved over the previous simulation results of Taraskin and Elliott [23]
using the van Beest potential [24]. A similar calculation was done by
Horbach et al. [37] using 8016 ions with a larger box size but the results
do not reproduce the CV(T)/T3 curve.

The authors [23,37] have assigned this discrepancy in the plot of
CV(T)/T3 to finite size effects and the cooling rates of their samples
[37]. But, our calculation, with the same number of atoms (648) as
Taraskin and Elliott and produced a better result. The calculation of
Horbach et al. with a larger cell does not improve the results significant-
ly. Thus, we can infer that the discrepancy between the theory and the
experimental calculation may is due to inter-atomic interactions.
4 See Ref. [36] Sec III, page 45.



Fig. 12. Visualization of an extended vibrational mode. Each atom shown is labeled with different colors with respect to the fraction of total vibration: gray (N1/1024 and b1/256), blue
(N1/256 and b1/64), red (N1/64 and b1/16), yellow (N1/16 and b1/4) and green (N1/4 and b1). The larger atom represents silicon (Si) and the smaller one denotes the oxygen (O) atoms.
The labels (a, b, c, d) on top of each figures are shown in Fig. 11 (top panel). (a) 72.38 cm-1 and IPR= 0.0025, (b) 1176.38 cm-1 and IPR= 0.0028, (c) 31.85 cm-1 and IPR = 0.0781, and
(d) 1264.56 cm-1 and IPR = 0.0653. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Somewhat surprisingly, an ab initio potential is required to qualitatively
reproduce CV(T) for small T.

The CV(T)/T3 curve has a noticeable plateau at a temperature ~20 K.
The acoustic modes in the vibrational density of states (VDOS) has a
Debye (~ω2) spectrum. In the Debye spectrum an additional peak
seen in the region 30-120 cm-1, usually referred as “Boson peak”. We
calculated the specific heat by excluding the frequencies lying in the
Fig. 13. Phase Quotient (qj) versus the frequency.
region of “Boson peak” and notable changes were observed at the pla-
teau of the CV(T)/T3 graph around the region (20 K). We illustrate
these modes in Fig. 16. A representative example in this frequency
range is the extended transverse mode of Fig. 12(a). It has been
shown that the Boson peak satisfies the Ioffe-Regel criterion [38],
which is the reasonmany authors have proposed this to be a hybridized
state of the acoustic band and the optic band. In agreement with
Fig. 14. Stretching character (S(ω)) versus the frequency(ω). The small values of (S) is
bond-bending, large values corresponds to optical stretching modes.



Fig. 15. Low temperature dependence C(T)/T3: our model (black, solid line), experiment
(red, dotted line) [23]. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Taraskin and Elliott we note that these are transverse-bond bending
rather than stretching excitations.

6. Conclusions

We found that our model of 648-atom SiO2 reproduces most of the
known experimental properties while improving on some earlier calcu-
lations. The structure of our 648-atom SiO2 model is in reasonable
agreement with the experimental results as obtained from the experi-
mental techniques of diffraction and inelastic neutron scattering, and
is “fully first principles”, perhaps the first such calculation, in the sense
that the supercell geometry is optimized to minimize the total energy
for the Hamiltonian we employ. The vibrational properties were ana-
lyzed with the help of eigenfrequencies and eigenvectors, obtained by
diagonalizing the dynamical matrix. The VDOS obtainedwith ourmeth-
od showed a good agreement with the experimental data. It was able to
produce all the principal peaks obtained in the experimental measure-
ments on amorphous SiO2. In addition to the principal peaks, there
was a peak observed at the frequency ~495–507 cm-1 in both the 192-
atom [1] and the current 648-atom models.

The localization of vibrational modes was also studied through the
evaluation of inverse participation ratio (IPR) and with the help of the
visualization techniques. We found that these modes were consistent
Fig. 16. Low temperature dependence C(T)/T3: black (total), red (excluding the frequency
range: 60–95 cm-1), green (excluding the frequency range: 40–120 cm-1). Inset: plot of
g(ω)/ω2 versus the frequency. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
with the different types of motion (rocking, bending, etc.) previously
assigned by different authors [22,23]. A thorough analysis of the locali-
zationwas done by using visualization techniques including animations
in the Supplementary Material. In addition, we were able to make an
improved prediction for the low temperature specific heat compared
to previous work [23,37]. We were also able to verify that plateau ob-
served (~20 K) in the plot of specific heat (C(T)/T3) was due to the
“Boson peak” seen in the VDOS. We provide some evidence that the
modes associated with Boson peak may be computed and analyzed in
simulation.

In conclusion, we found that our 648-atommodel improved the un-
derstanding of a-SiO2 while describing the structural, electronic and
vibrational properties and clarifying the importance of interatomic po-
tential and model size on vibrational quantities.

Acknowledgment

The authors acknowledge the NSF under grant number DMR
1507670.We thank the Ohio Supercomputer Center for providing com-
puting resources.

Appendix A

To further aid in the interpretation of the modes and as a pedagogic
tool, we animated certain modes of interest — indicating the motion of
the cell in specific pure modes (with the amplitude exaggerated, of
course). As assortment of localized and extended modes are given. We
choose these specific modes for the animation because they have
some unique characteristics about their motion. These modes have
been properly labeled in Fig. 17. The phase quotient and stretching char-
acters of these modes may be seen in Figs. 13 and 14.

Fig. 17. The Vibrational Density of States (black, solid line), the IPR (green, drop
lines).

• (a) 31 cm-1, represents the first localized mode in IPR-plot (Fig. 11),
there is a unique torsionalmotion involvingmotion of only few atoms.

• (b) 72 cm-1, depicts the well know Boson-peak region of the VDOS
(see Fig. 16), it occurs in a region of well extended mode of and one
can see that almost all atoms are in motion at this mode.

• (c) 160 cm-1, represents another well extended region of vibrational
motion.

• (d) 514 cm-1, this represents the region of small peak in the VDOS at
the frequency (500–520 cm-1). This peak was also the subject of
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some of earlier calculations [1].
• (e) 1176 cm-1, we choose this frequency to compare an extended
mode occurring well inside the optical region of vibration with
modes occurring in acoustic region of vibration. It is evident from
Fig.12(a) and (b) that both of these modes have similar values of IPR
and the vibrations occurring in different atoms are well distributed.

• (f) 1264 cm-1, as above, we considered this frequency to compare two
localized modes occurring in different regions (acoustic and optical)
of vibrations. One can see that very few atoms take part in themotion
and the stretching motion dominates in optical region.
Note that the usual picture of a specific molecular mode at given fre-
quency may be qualitatively correct, but the true eigenstates usually
exhibit non-locality and often mode mixing.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jnoncrysol.2016.02.002.
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