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Abstract
The coupling between lattice vibrations and electrons is one of the central concepts of
condensed matter physics. The subject has been deeply studied for crystalline materials, but far
less so for amorphous and glassy materials, which are among the most important for
applications. In this paper, we explore the electron-lattice coupling using current tools of a
first-principles computer simulation. We choose three materials to illustrate the phenomena:
amorphous silicon (a-Si), amorphous selenium (a-Se) and amorphous gallium nitride (a-GaN).
In each case, we show that there is a strong correlation between the localization of electron
states and the magnitude of thermally induced fluctuations in energy eigenvalues obtained
from the density-functional theory (i.e. Kohn–Sham eigenvalues). We provide a heuristic
theory to explain these observations. The case of a-GaN, a topologically disordered partly
ionic insulator, is distinctive compared to the covalent amorphous examples. Next, we explore
the consequences of changing the charge state of a system as a proxy for tracking photo-
induced structural changes in the materials. Where transport is concerned, we lend insight into
the Meyer–Neldel compensation rule and discuss a thermally averaged Kubo–Greenwood
formula as a means to estimate electrical conductivity and especially its temperature
dependence. We close by showing how the optical gap of an amorphous semiconductor can be
computationally engineered with the judicious use of Hellmann–Feynman forces (associated
with a few defect states) using molecular dynamics simulations. These forces can be used to
close or open an optical gap, and identify a structure with a prescribed gap. We use the
approach with plane-wave density functional methods to identify a low-energy amorphous
phase of silicon including several coordination defects, yet with a gap close to that of good
quality a-Si models.

Keywords: amorphous silicon, amorphous selenium, amorphous gallium nitride, electron–
phonon coupling, photo-structural modifications

(Some figures may appear in colour only in the online journal)

1. Introduction

Amorphous semiconductors and glasses are among the most
important materials with diverse technological applications.

Man-made materials have been at our side since at least
the middle of the fourth millennium BC, initially in the
form of glazed quartz or faience. Despite this long history
of glass-making, our understanding of the physico-chemical
properties of glasses or amorphous solids in general from
a microscopic point of view only began in the 1960s.
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Electronic applications of amorphous semiconductors
have burgeoned, with utilization for electricity genera-
tion [1], night-vision applications [2], thin-film transistors
[3], computer-memory technologies [4], fiber-optic ‘light
pipes’ [5] and many others beside. In this paper, we focus
on one substantial issue—the interplay between the elec-
tronic properties (electronic states and energies) and the
atomic coordinates (and associated motion of the atoms
when in or out of thermal equilibrium). This
relationship between the electronic and ionic degrees of
freedom is described by the electron–phonon coupling
(EPC), which plays a crucial role in determining thermal
and optical responses of a solid to light and charge-carrier
transport.

Amorphous materials lack long-range structural order.
This makes them difficult to study via conventional approa-
ches, and enables physical attributes unknown in crystals. The
vibrations are distinctive compared to the crystalline case,
with motion less ‘confined’ than that for a crystal. This
‘dynamical sloppiness’ [6] manifests itself in the curious
observation that there are thermally induced defect fluctua-
tions—thermal dynamics are sufficient to change the instan-
taneous population of under or over coordinated atoms. On
much lower energy scales, we have also observed that the
nature of the amorphous vibrational ground state is ambig-
uous [7]. This dynamical sloppiness inevitably influences the
electronic structure and is naturally addressed through
the EPC.

For both electrons and phonons, the wave functions and
classical normal modes may be localized, i.e. confined only to
a finite volume of space. This is in contrast to any crystals, for
which Bloch’s theorem applies, and it is clear that all electron
or vibrational states are extended (though of course not
necessarily uniformly so). The localized states occur in
spectral gaps in the electronic or vibrational density of states
(DOSs). Any physical process that involves these localized
states will be markedly different than for the extended states
of translationally invariant systems. The electronic structure
of disordered materials may be addressed by adopting a
chemist’s viewpoint to bonding between atoms or molecules
in real space. The local electronic electronic density of states
(EDOSs) is computed from the diagonal elements of the
density matrix, whereas the off-diagonal elements provide
useful information about the locality of interatomic
interactions4.

The DOSs of amorphous solids bears some resem-
blance to their crystalline counterparts. For example, there
is a spectral gap for electrons in both crystalline and
amorphous semiconductors. In celebrated work, Weaire and
Thorpe [11] showed that short-range order is sufficient to
create an optical gap. Thus, the concept of ‘band gap’
continues to be valid even though the energy bands (i.e. E
(k) versus k relation) do not exist for disordered materials!
Still, significant differences exist between crystalline and
amorphous electronic state densities: (i) the DOS of

amorphous semiconductors is essentially smooth and exhi-
bits defect states within the gap and the ‘tail’ states in the
vicinity of the conduction and valence band edges. In
crystals, Van Hove singularities appear in the DOS in
association with Brilliouin zone edges. These result in
band edges delineating sharp spectral gaps. (ii) Electron
states near the edges tail into what would have been the
forbidden gap of the crystal and (iii) a localized–delocalized
transition (Anderson transition) [12–14] occurs near
either band edge. The delimiter between the extended and
localized states is called a ‘mobility edge’. These three
statements may be repeated mutatis mutandis for the
vibrational DOS.

In this paper, we focus on the EPC in amorphous
semiconductors. We discuss the electronic response to
atomic motion (by treating the latter classically) and the
structural response of a system to an electronic modification.
In a topologically disordered semiconductor, we find that
the EPC is strongly energy-dependent, and significantly larger
for localized states than for extended states. This
energy dependence can lead to useful anomalies in transport
(e.g. high temperature coefficient of resistivity (TCR)
behavior in doped a-Si:H) and at least a partial
explanation for the Meyer–Neldel rule (MNR) or compensa-
tion law [15]. It also explains the strong photo-response
of amorphous semiconductors and glasses (e.g. photo-
induced defect creation in a-Si:H or Staebler–Wronski
effect [16]).

To put it slightly differently, we may think of the special
susceptibility of the localized electron states to thermal
motion of the atoms as a sort of ‘natural amplifier’ (an
amplifier that is particularly sensitive to temperature). By
exploiting the unique electronic and transport properties of
these states (typically by ‘doping into them’, then measuring a
derived quantity like the conductivity), devices like night-
vision technologies accrue.

The lack of order also means that it is nearly impos-
sible to construct a tractable empirical potential to
model the interatomic interactions—the root of the com-
plexity in the total energy calculations is the electronic
structure, which must be grappled with in some way.
This was clearly perceived in the empirical potential com-
munity in the eighties [17], but led to important advances
when merged with tight-binding total energy [18, 19]
or density functional methods [20]. This recognition
initiated a revolution in materials theory, and enabled
connections between experiment and theory previously
inconceivable.

While we have reported some of these results before [21],
we assemble here new insights, including simulations on
different materials using high-quality plane-wave methods to
eliminate any artifact associated with the incompleteness of
basis sets in local-orbital-based calculations. In particular,
we present new results for a-Se and a-GaN. The latter
yields results different in some ways from the purely
covalent materials. Turning the problem around, we will also
show how the use of electronic a priori information can
be imposed in materials modeling as a means to carry out a

4 For realistic calculations of the decay of the density matrix and generalized
Wannier functions, see [8–10].
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program of optical engineering or ‘materials by design’, a
major current theme of condensed matter theory and simu-
lation [22].

The rest of this paper is organized as follows. In
section 2, we present an elementary overview of the calcu-
lations and offer simple analytical arguments to justify some
of the results. Section 3 discusses results for a-Si, a-Se and
a-GaN, and compares and contrasts these. In section 4, we
show how to obtain temperature-dependent electrical con-
ductivity using the Kubo–Greenwood formalism, and connect
this to the MNR in section 5. In section 6, we show how to
effectively engineer computer models to obtain desired elec-
tronic properties, and undertake a first foray into the ab initio
implementation of the new method. We draw conclusions in
section 7.

2. Formulation

The framework underlying these calculations is the many-
body (electron and nucleon) Schrödinger equation. The first
essential approximation is the Born–Oppenheimer or adia-
batic approximation, which enables the decoupling of the
electrons and phonons into separate quantum many-body
problems. Still prohibitively difficult, we then make the
assumption that the lattice dynamics may be treated classi-
cally. In practice, this means that the nuclei move in a
potential determined by the electronic structure of the system
(computed for that set of instantaneous atomic coordinates).
Like others, we approach the many-electron using density
functional theory in the local density approximation (LDA)
[23, 24]. Then, with specified initial conditions, we evolve the
positions of the nuclei for a short time (of order 1 fs),
obtaining updated coordinates and thus a new electronic

Hamiltonian, with a new force field, and so the dynamics
continues5. Our final philosophical transgression is to treat the
Kohn–Sham (KS) orbitals as quasiparticle states, and we take
the density of electron states to just be the density of KS
eigenvalues6.

While these are substantial approximations, the resulting
dynamics are reliable as seen by direct comparisons to
inelastic neutron scattering measurements. These are standard
assumptions used in current ab initio molecular dynamics
simulations. The simulations in this paper were carried
using the plane-wave code, Vienna ab initio simulation
package (VASP) [29, 30], in the LDA, other than briefly
recounting some tight-binding work on electronic design of
materials. In our earlier publications we have mostly used
local orbital methods, which are computationally efficient,
but with a chemically intelligent, but nevertheless,
incomplete basis set. We observe that the local orbitals pro-
duced a picture very similar to what we report here, though
the present results should be seen as quantitatively more
reliable7.

To schematically illustrate what we are doing8, consider
an orthogonal tight-binding prescription for the electronic
structure and the forces. In this picture the ionic dynamics are
determined from Newton’s second law (in the form of N3
coupled nonlinear ordinary differential equations):

( ) ( )= -
¶F ¼

¶
a a

a
m d R dt

R R R

R

, , ,
1N2 2 1 2 3

Figure 1. Thermal fluctuations of Kohn–Sham eigenvalues in the
vicinity of the Fermi level (near −6.3 eV) for a 216-atom model of
a-Si (left) and c-Si (right), both at 300 K. The natural energy scale
for the lattice in equilibrium is »k T 0.025 eVB , not far from what is
seen for c-Si. The fluctuations in a-Si near the Fermi level can be ten
times this value.

5 Thus, in this paper, the ‘electronic time evolution’ refers only to the
instantaneous values of the electronic eigenvalues and eigenvectors for a
given atomic configuration, that we have previously called ‘Born–
Oppenheimer snapshots [25]’. Naturally, the true evolution follows from a
time-dependent Schrödinger equation, beyond the scope of this
work [26, 27].
6 Like others working in this field, we use KS orbitals, which have been
shown to be very similar to quasiparticle states from GW calculations from
Louie’s group (such GW calculations provide self-energy corrections to
density functional theory in the LDA). For Si, C and LiCl, Hybertsen and
Louie [28] found 99.9% overlap between GW states and the KS orbitals. We
observed a similar state of affairs in GW calculations of quasiparticle states in
Si clusters. Localized states are also artificially delocalized by LDA. On an
empirical level for amorphous materials, there are many indications that it is
profitable to interpret the KS orbitals and energies for comparisons to
experiments (for example, x-ray photoemission spectroscopy measurements
on chalcogenide glasses, thermal effects in band tails of a-Si, and exciton
trapping). The optical gap is always underestimated by LDA, but for most
systems trends are faithfully reproduced by such an approximation. We also
candidly admit that there is no other approach available, for while better
theories do exist (with accurate calculations of excited states etc), they
are prohibitively expensive for the materials we discuss here.
7 It is well known that local-orbital Hamiltonians generally do well in these
systems, sometimes being closer to experiment than plane waves. This could
be due to compensating errors (for example the tendency of the LDA to
produce overly delocalized states and a localized basis set which is
incomplete and therefore yields states more localized than a complete-basis
KS calculation.
8 The results reported in this paper are based on plane-wave DFT unless
otherwise indicated. This discussion is offered to clarify the approach without
all the mathematical detail.

3

Semicond. Sci. Technol. 31 (2016) 073002 Topical Review



where
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Here, Φ is the total energy, a function of the atomic
coordinates Rα, li are the energy eigenvalues for the tight-
binding Hamiltonian H ( y l y=H i i i), the sum over occupied
eigenvalues is the electronic contribution to the total energy
(the so-called band-structure energy), and U is a short-range
repulsive potential between ions. The greatest complexity
emerges in equation (2), for which the computation of the
energy eigenvalues λ requires a matrix diagonalization, so
that the dependence of Φon Rα may take a highly complex,
non-local and non-analytic functional form. Equation (1)
represents the influence of the electrons on the particle
coordinates in the form of a second-order differential equation
and equation (2) identifies the functional dependence of the
total energy in terms of the electronic structure.

Equations (1) and (2) highlight the role of the Hellmann–
Feynman derivatives

( ) ∣ ( ) ∣

( )

l
l

y y =
¶ ¼

¶
= á

¶ ¼
¶

ña
a a

R R R

R

H R R R

R

, , , , , ,
,

3

i
i N

i
N

i
1 2 3 1 2 3

which are gradients of the electronic eigenvalues. This result
is particularly useful because the RHS is easily computed and
necessary for any molecular dynamics simulation based on an
interatomic potential derived from electronic structure. Since
they are gradients, they represent the direction of the most
rapid increase of the eigenvalues in the configuration space.
These gradients have special utility for modeling of
photoresponse [31] and computational gap engineering [32].

2.1. Lattice dynamics and electronic fluctuations

To appreciate the difference in electronic (and optical) prop-
erties between crystals and semiconductors, we begin by
addressing the time evolution of the KS eigenvalues from
molecular-dynamics simulations as shown in figure 1. Here
we show the fluctuations of the KS eigenvalues at room
temperature (300 K) in crystalline Si (c-Si) and amorphous Si
(a-Si). The thermal fluctuations of the KS eigenvalues are
considerably larger for the amorphous system than for the
crystal, and the degree of fluctuation is obviously energy-
dependent. It is also apparent that the tail states have a large
fluctuation that ‘fills in’ much of the gap region9. The energy
scale of the problem is the thermal energy kBT, of the order of

0.025 eV, at T=300 K. While this value roughly char-
acterizes the magnitude of fluctuations observed for the
crystal, the thermal excursions of the KS states may be sig-
nificantly larger (more than a factor of 10) near the Fermi
level. Further, the fluctuations decay in amplitude as we move
away from the conduction or valence band edges (far from the
Fermi level) to a region where the states are normally delo-
calized. This leads to the conclusion that localization of a
given eigenstate amplifies the fluctuations for the eigenvalue
associated with that state. We have separately observed that
eigenfunctions conjugate to localized eigenvalues change
dramatically in response to thermal motion of atomic posi-
tions [34].

A universal feature of disordered systems is the char-
acteristic presence of band-tail states with an exponential
form (of the DOSs) observed in diverse experiments [35]. As
the preceding paragraph suggests, these tail states are temp-
erature dependent. Ab initio calculations on static a-Si models
suggest that the nature of the tail states are intimately con-
nected with the degree of bond-length disorder in the network
[36]. In particular, they exhibit a filamentary character in real
space, which is associated with Si sites with short bond
lengths near the valence edge and long bond lengths near the
conduction edge. The temperature dependence of these tails
has been observed in photoemission experiments [37], and a
simple theory of this has been given elsewhere [21, 38].

2.2. EPC, eigenvalue fluctuations and localization

In earlier works [21, 25, 39, 40], we obtained simple esti-
mates of the strength of the EPC (for a-Si) by plotting the
variance of the thermal fluctuation of the KS eigenvalues
versus the localization, gauged by inverse participation ratio
(IPR)10. But before doing so here, we briefly describe the
origin of the electron–phonon interaction in solids based on
simple physical reasoning.

The first order contribution to the electron–phonon
interaction originates from the off-diagonal elements of the
non-adiabatic coupling operator that links the electronic
eigenvalues to the various atomic degrees of freedom due to
the movement of the atoms in a thermally vibrating lattice.
This follows from the Born–Oppenheimer ansatz11: the total
wave function of a solid can be written as a linear combina-
tion of the product of the electronic eigenfunctions (for a fixed
atomic configuration) with expansion coefficients that depend
on the instantaneous position of the ions. Following Bloch
[41], an approximate expression for the electron–phonon
interaction can be obtained by estimating the deformation
potential of the ions. Owing to the movement of the atoms in
a vibrating lattice, an electron at rk sees a change in the ionic

9 A nearly universal approximation for semiconductor models with more
than 100 atoms is the Γ-point approximation. Electron states are computed
only at =k 0, from which total energies and forces are computed based upon
the pious hope that the bands are flat (with respect to k dispersion) for such a
large cell. In a similar way, the DOSs is usually taken at Γ only. It is
noteworthy that for the 216-atom crystal cell there is a ‘gap’ between −6.8
and −6.4 eV (figure 1), appearing only because we did not integrate over the
Brillouin zone of the cell (that is, we sampled only the Γ point), a sobering
reminder of how slowly we approach the thermodynamic limit from an
electronic perspective [33]! Through the rest of the paper, we employ only Γ.

10 The latter provides an estimate for the degree of localization of a wave
function. A large value of IPR reflects a spatially compact or localized state,
whereas a small value indicates an extended state. For convenience, we
summarize the argument here.
11 The adiabatic approximation is obtained by neglecting the off-diagonal
elements of the non-adiabatic coupling operator, whereas the Born–
Oppenheimer approximation ignores both the diagonal and off-diagonal
elements. EPC originates from the small but finite off-diagonal elements, and
thus can be treated as a perturbation for a small displacement of ions.
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potential ( )dV r R,e i
k l

, as the atom moves from its equilibrium
position at Rl

0 to Rl. For a small displacement, the interaction
may be taken to be proportional to the displacement dRl

0 of
the ion, i.e.
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In the above equation, the first term indicates the equilibrium
value of the electron–ion potential at Rl

0. Thus the total
additional potential experienced by an electron at site rk is
given by the sum of the contribution from all atomic sites
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Assuming that the total electron–ion interaction in a solid
can be expressed as a pairwise sum over individual electrons,
a simple expression for the total deforming potential can be
written as
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In a thermally vibrating lattice Rl can be written as
( )= + uR R Rl l l

0 0 , where ( )u Rl
0 is the vibrational displace-

ment at site Rl
0, to obtain the electron-lattice interaction
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Equation (6) can be used to study the electron–phonon
interaction in solids by expressing ( )u Rl

0 and
( )

¶
¶

V

u R
in second

quantization forms in terms of phonon and electron creation/
annihilation operators, respectively.

We now proceed to establish a connection between EPC
and wave-function localization for the electrons. Consider an
electronic eigenvalue ln near the band gap. The sensitivity of
ln due to an arbitrary small displacement of an atom (possibly
thermally induced) can be estimated using the Hellmann–
Feynman theorem [42]
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ñ
a aR

H
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Here we have assumed that the basis functions are fixed
and ∣y ñn are the eigenvectors of the Hamiltonian H. For small
lattice distortion { }d aR , the corresponding total change in dln

is
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where N is the total number of atoms in the model. In
harmonic approximation
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where ( )c wa is the normal mode with angular frequency ω, A
is the temperature-dependent amplitude, and fw is an arbitrary
phase angle. By defining
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where ( )wXn can be interpreted as EPC function between
electron n and phonon ω. Here, M is the atomic mass (a
monoatomic system is assumed).

It may be noted that equation (7) includes the contrib-
ution from the electron–phonon term in equation (6) and
possibly contribution from additional degrees of freedom
depending on the approximations involved in the electronic
structure calculations. Thus, our definition of the EPC in
equation (9) is consistent with the Bloch form in equation (6).
By neglecting various canceling contributions, it is not diffi-
cult to show that the EPC ( )wXn between electron/band n and
phonon ω satisfies [40]:

( ) ( )wX ~ . 11n n
2

Furthermore, within this simplified framework:

( )dlá ñ µ . 12n n
2

We forthrightly emphasize that these arguments are very
crude, though it is remarkable that there exists a direct pro-
portionality between a static property (IPR) and the RMS
thermal fluctuation of energy eigenvalues associated with
localized eigenstates (as clearly seen in simulations of a-Si).

Here, the IPR,  is computed as:

( )
( )

å
å

=
a

a
. 13i i

i i

4

2 2

In the preceding, the ai are components of the eigenvector
being analyzed, projected onto atomic s, p and d states as
provided by VASP.

In the course of analyzing new simulations for this
manuscript, we noted that a more general (closer) linkage
between localization  and thermal variation of eigenvalues
can be stated in the form of:

¯ ( )dl a b= + 14rms

and ¯ ( )¯dl l l= -rms
2 2 . In the preceding, the raised bar

means average over the simulation at constant temperature T.
a b, are constants that depend on the type of material. The
value of α gives the ‘amplification factor’, a measure of how
strongly the lattice vibrations affect electronic energies of
localized states. One may suppose that parameter α is a partial
indicator of the TCR of a materials doped into the fluctuating
states.
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2.3. Structural change from electronic/optical modification

Topological or chemical irregularities in amorphous networks
lead to localized electron states in the gap or in the band tails.
If such a system is exposed to light of appropriate wave
length, then it becomes possible for the light to induce tran-
sitions of electrons from the top of the occupied states to low-
lying unoccupied (conduction) states. For the present paper,
we will not concern ourselves with the subtleties of how the
EM field introduces the transition; we will simply assume that
a photo-induced promotion of an electron occurs, by deplet-
ing the occupied states of one electron forming a hole and
moving the electron to the bottom of the unoccupied con-
duction states. Such a process is explicitly non-equilibrium
and the response suffered by the system is of key interest.
This results in a change of the Hellmann–Feynman forces
leading to structural rearrangements, either negligible or sig-
nificant, depending on the flexibility or stability of the net-
work, localization of the states and EPC. The timescale
associated with this relaxation from occupation-induced
changes are short (e.g. a few phonon periods), which can be
exploited to develop novel applications in solids involving
ultrafast processes [43]. This approach was pioneered by
Peter Fedders and coworkers [44].

Recently, in a series of articles, we have reported structural
changes associated with light irradiation in a-Si, a-Se, and
a-As2Se3 [31, 45–47]. We will not dwell on the system-specific
details here but instead describe the short-time response of such
systems suffering an occupation change of electronic states. In
particular, we address the case of structural changes from
placing an electron at the bottom of the conduction edge. We
discuss this for a-Si and a-Se in this paper.

3. Results for amorphous phases of Si, Se and GaN

In the following, we present results from molecular dynamics
simulations of a-Si, a-Se, and a-GaN to link the thermal
variation of KS eigenvalues to temperatures and static prop-
erties of the eigenfunctions like IPR. The first two materials
are covalent, and the third is significantly ionic. Amorphous
selenium has the feature that the states near the Fermi level
are built from p-orbitals with associated phenomena like

valence alternation [31, 48, 49]. Amorphous silicon has band
tails that originate from linear combinations of s and p states
of bonding and anti-bonding form. On the other hand, a-GaN
is a partly ionic semiconductor in which the valence and
conduction states involve quite different hybridizations, with
the conduction tail consisting primarily of mixtures of both
Ga and N s-states. The conduction states of a-GaN are less
localized than the valence states, presumably because these
states exhibit little dependence on local bond-angle disorder
—because of the isotropy of the s-orbitals from which the
eigenstates are built. Surprisingly, a-GaN also displays an
essentially extended midgap state.

3.1. Amorphous silicon

Here we employ a realistic 216-atom continuous random
network model of a-Sidue to Djordjevic et al [50, 51]. The
model, commonly referred to as the ‘WWW model’, is dis-
cussed extensively elsewhere, and reproduces the properties
of a-Si well for a small model.

In figure 2 we provide the EDOSs for a-Sialong with the
EDOS of a-Seand a-GaN. The IPR is slightly larger on the
conduction tail than on the valence tail. We begin by

Figure 2. Electronic density of states (EDOS) and inverse
participation ratio (IPR) for a-Si, a-Seand a-GaNmodels discussed
in this paper. The black curves represent the EDOS and the orange
drop lines represent IPR. The dotted lines represent the position of
Fermi level for each model.The models being represented in the
figure are described in the sections to follow.

Figure 3. Thermal fluctuations of Kohn–Sham eigenvalues near the
gap in a-Si. The eigenvalues are adiabatically evolving at a constant
temperature of 300 K. The colors represent the localization of the
states as measured by IPR (equation (13)). The dotted line in red
represents the Fermi Energy.

Figure 4. The combined charge density of lower three conduction
states when these states are most localized. This image corresponds
to a snapshot at time=100 fs in figure 3. The figure shows these
states are most localized around the defect atoms (represented in
color, purple: five-fold, red: three-fold) and around long bonds
(bonds longer than 2.5 Å are shown as red sticks in the figure).

6

Semicond. Sci. Technol. 31 (2016) 073002 Topical Review



presenting results for thermally induced fluctuations of the KS
states. In figure 3 we show the thermally induced fluctuation
in the eigenvalues with color indicating extent of localization.
The fluctuation for the eigenvalues in the gap are quite dra-
matic, varying over tenths of an eV for the lowest conduction
states.

Beside the variation in energy of electronic states, the
thermal motion induces fluctuation in localization of these
states as well. We note from figure 3, that such fluctuation in
localization is higher for states with commensurate high
fluctuation in energy (i.e. the band-edge states). We find that
thermal fluctuation modulates the bond lengths and bond
angles, resulting in a reshuffling of the atomic contributions to
electronic states. If these states are already localized, such
reshuffling can induce dramatic changes to the extent of
localization. Inspection of figure 3 suggests that at a time near
100 fs, the conduction tail states become momentarily very

localized. As an illustrative tale of variation in electronic
structure induced by thermal disorder, we find that at this
instant, the states are localized around long bonds or broken
bonds. We find that a pair of short-lived defects consisting of
one dangling bond (a three-fold bond) and one floating bond
(a five-fold bond) that are adjacent to each other are formed
around this time. In figure 4, we show the charge density of
the three lowest conduction tail states for this particular short-
lived conformation. We note that these three states are largely
localized around the newly formed defect pair, and also
around long bonds in the network. Figure 4 shows the bonds
longer than 2.5Åand its evident that these conduction tail
states have large projections onto these sites. Note that the
long bonds in the cell show a spatial correlation among
themselves forming a filament like pattern [36, 52]. It is
notable that this defect is thermally induced and transient.
After 200 fs, we see short-lived surges in the extent of loca-
lization of tail states and these surges correspond to various
thermally induced defects and bond length fluctuations.

In figure 5 we see that there is a linear correlation
between the RMS fluctuation of the eigenvalues and the the
IPR (localization), confirming equation (14). In figure 6, we

Figure 5. The correlation between RMS fluctuation of eigenvalues
around the gap and corresponding inverse participation ratio (IPR) at
300 K for the electronic ground state in a-Si (equation (14)). The
bold red line is the linear fit of the plotted values. The fitted value of
α (equation (14)) for a linear fit is 0.26.

Figure 6. Temperature dependence of mean squared fluctuation of
eigenvalues. The fluctuation is calculated over constant temperature
MD at 300 and 700 K. Symbol eF represents the position of Fermi
energy. Note that the band edge states fluctuate more than the deep
(band interior) states. Also, the temperature modulation of the energy
is higher for the tail states than for the deeper states.

Figure 7. Thermal fluctuations of Kohn–Sham eigenvalues near the
gap in excited a-Si. The eigenvalues are evolving under constant
temperature at 300 K when an electron is promoted to the conduction
band. The color represents the localization of the states as measured
by inverse participation ratio (IPR). Note that this is a non-
equilibrium simulation as the system responds to the promotion of an
electron to the bottom of the conduction states. Fermi level for the
unexcited system at t=0 is at 5.88 eV.

Figure 8. Thermally induced geometrical defects in excited and
unexcited a-Si. (a) and (c) are the evolution of defects under constant
temperature MD at 300 K in unexcited 216-atom a-Si. (b) and (d) are
those for an excited system. Coordination is defined by a
radius Å=r 2.7c .
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observe that the band tail states fluctuate far more than the
deep (band interior) states for a given temperature. Figure 6
also portrays the temperature dependence of the fluctuation of
eigenvalues across the spectrum. We observe that temperature
amplifies dln and the amplification is significantly higher for
the band edge states.

In a-Si:H, there is an extensively studied process of light-
induced photodegradation: the Staebler–Wronski effect, in
which light exposure leads to the creation of charge carrier
traps, presumably from defects created by the light exposure.
Fedders and coworkers [44] have studied this problem ato-
mistically by creating creating an electron-hole pair and
tracking the creation and annihilation of structural defects12.
In the spirit of their approach, here we have have conducted
constant temperature MD using VASP [29, 30] and promoted
an electron to the bottom of the conduction states. The LUMO
drops precipitously into the gap, nearly closing the gap
momentarily, near =t 600 fs (see figure 7). This change is
accompanied by creation and annihilation of short-lived
geometrical defects in the network. We have empirically
observed that the number of geometrical defects tend to
increase as a result of promotion of an electron in a con-
duction state. Figure 8 shows the thermal fluctuation of
geometrical defects at 300 K for the time interval that corre-
sponds to the energy fluctuations in figure 7. A plausible
explanation of this observation is that the lowest conduction
state is already localized around coordination defects and long
bonds. The occupation of a conduction state with an electron
causes these atoms to experience the Hellmann–Feynman
force coming from the newly occupied state and hence these
atoms become much more active. We have observed that the
states in an excited system are more localized than those in
the corresponding unexcited system.

Figure 9. Thermal fluctuations of Kohn–Sham eigenvalues near the
gap in a-Se. The color dimension corresponds to the localization of
the states as measured by (IPR). The dotted line in red represents
Fermi energy.

Figure 10. The correlation between RMS fluctuation of eigenvalues
around the gap and corresponding inverse participation ratio (IPR) in
a-Se (equation (14)). The fluctuation is calculated over constant
temperature MD at 300 K. Note that the fluctuation is higher for
conduction states than for valence states. The correlation breaks
neatly into two ‘branches’, one for valence and one for conduction
tail states. The green and blue lines represent a linear fit of the
plotted values. The fitted values of α for the linear fits are 0.15 for
valence states and 0.30 for conduction states.

Figure 11. Temperature dependence of mean squared fluctuation of
eigenvalues in a-Se. The fluctuation is calculated over constant
temperature MD at 300 and 700 K. Symbol eF represents the position
of Fermi energy. Note, in addition to the observations in figure 6,
that deep states are virtually unaffected by temperature whereas the
edge states see strong modulation.

Figure 12. Thermal fluctuations of Kohn–Sham eigenvalues near the
gap in excited a-Se. The system is kept at T=300 K when an
electron is promoted to conduction band. The color dimension maps
to the localization of the states (IPR). Fermi level for the unexcited
system at t=0 is at 1.33 eV.

12 The scheme can be understood to be a sophisticated local heating
approach, with the feature that the intensity of the local heating is critically
determined by the EPC and the Hellmann–Feynman forces (equation (3))
associated with the occupation change.
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3.2. Amorphous selenium

Amorphous selenium is different from a-Si in that its network
is less constrained, which may be expected to play out in the
EPC of localized states. We make use of a 216-atom model of
Zhang and Drabold [31] and relax it using LDA in a plane
wave basis. The model represents the material reasonably
well as reported in earlier work [31, 43]. It is notable from
figure 2 that the DOS is higher near the Fermi level for a-Se.
The localization of the tail states is fairly similar at either band
edge of the optical gap.

We perform constant temperature dynamics at 300 K
using a Nosé thermostat and monitor the evolution of KS
eigenvalues. In figure 9 we show the thermal fluctuation of
energy eigenvalues near/inside the band edges. We see that
the edge states fluctuate substantially more than the extended
states (well into the valence and conduction bands) and they
are more localized compared to the deep states. The system
has an under coordinated and an over coordinated atoms to
begin with. The equilibrium edge states are usually strongly
localized around these imperfections. The dynamics intro-
duces many short-lived defect states in the system.

In figure 10 we examine the correlation between the
RMS variation of the eigenvalues and the thermally averaged

IPR as in equation (14). Here, we see a strong correlation
between the fluctuation of energy and the spatial localization
of the state. We observe separate correlation for conduction
and valence states. In relation to equation (14), we note that
the ‘amplification’ factor α for the conduction states is twice
as big as for valence states. Figure 11 indicates once again
that there is connection between localization and electronic
response to phonons. We note, as in figure 6, that the fluc-
tuation of localized tail states is significantly higher than that
of the extended valence and conduction states.

In figure 12, we consider the non-equilibrium (adiabatic)
time development of the system—the response to adding a
carrier to the LUMO state. We note that the LUMO plunges
nearly 1 eV across the gap in a time of about 400 fs (see
figure 13 to follow the evolution of LUMO on longer time-
scale). Whenever an electron fills a conduction state, the
system tries to lower the total energy of the system, typically
by the relevant state dropping into the gap, thereby reducing
its (electronic) energy, and there will be geometrical changes
associated with this electronic drop—bond breaking and/or
formation. Some systems like Si may be too constrained to
allow geometrical rearrangements enabling such an electronic
plunge. Amorphous Se, on the other hand, has a highly
flexible (essentially polymeric) structure and hence can pro-
vide for the lowering of the newly filled conduction state.
This suggests an explanation for why the photo-darkening
effect in a-Se is so pronounced (see figure 13).

3.3. Amorphous gallium nitride

The case of the partly ionic system a-GaNmakes an inter-
esting counterpoint to the purely covalent materials described
in earlier sections. The first peculiarity of this material is that

Figure 13. The evolution of HOMO and LUMO states of a-Se. The
ground state represents the constant temperature MD at 300 K
whereas the excited state refers to similar MD run when an electron
is promoted to conduction band.

Figure 14. Thermal fluctuations of Kohn–Sham eigenvalues near the
gap in GaN. The eigenvalues are evolving under constant
temperature at 300 K. Note the energetically itinerant conduction
state level near 4.5 eV at t=0 and the extended gap state near
3.5 eV at t=0. The Fermi level at t=0 is at 3.13 eV.

Figure 15. The correlation of RMS fluctuation of eigenvalues around
the gap and corresponding inverse participation ratio (IPR) in GaN,
as described by equation (14). The fluctuation is calculated over
constant temperature MD at 300 K. Note that the fluctuation is
higher for conduction states than for valence states. As was the case
in Se, the correlation is observed in two separate branches for the
conduction and valence edge states. The green and blue lines
represent the linear fit of the plotted values. The observed value of α
for the linear fits are 0.11 for valence states and 0.25 for conduction
states.
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the valence tail is more localized than the conduction tail. The
reason for this is that the valence tail is susceptible to bond
angle disorder whereas the conduction tail is predominantly
sensitive to bond length disorder (which is comparatively
mild) [53]. In figure 14 we note that the valence states are
densely packed together with notable fluctuations right at the
band edge. Remarkably, a-GaN displays an essentially
extended midgap (deep acceptor) state (see figure 2). This is
of significant interest, since such states are unknown in
covalent systems like those discussed earlier. As we have
suggested elsewhere, these distinctive extended states must
yield better electronic conduction than in covalent sys-
tems [53, 54].

What is also of interest is the meandering gap state
(starting at near 4.5 eV at t=0), which shows a thermal
dispersion of nearly 1 eV, the largest we have noted in any of
these systems. Unlike covalent systems studied earlier, the
state near 3.5 eV at t=0 is extremely extended despite being
nearly a ‘midgap’ state. As expected from the discussion of
section 2.2, such a delocalized state has a very weak EPC and
barely shows thermal modulation at all.

In figure 15, the strong linear correlation between IPR
and fluctuation is again observed. The state near 4.5 eV at
t=0 of figure 14 shows very high fluctuation compared to
the rest of the conduction states and is not included in the
plot. There are two distinct linear plots in figure 15—one for
the valence states and the other for the conduction states13.
The thermally averaged values of IPR and RMS variation are
plotted along the abscissa and ordinate, respectively. Again,
we plot it in this way because it shows a better correlation
than the result implied by equation (12). This is an empirical,
but evidently strong, correlation. It may be noted that, for all
three cases, the intercept β (from equation (14)) provides an
estimate for the fluctuation of an ideally extended state
( = 0), which is of the order of k TB .

4. Electrical conductivity

An important application of doped a-Si:H is the use of the
material as the active focal plane element in infrared imaging
(IR) devices. The physical property of the a-Si:H that renders
it useful for this application is a high TCR. The physical
principal of the device is straightforward: it is conceptually
identical to an ordinary optical camera but with optics
focusing an IR image onto a high TCR material placed at the
focal plane. If this plane is subdivided into pixels, then the
local temperature of the individual pixels conveys informa-
tion about the IR intensity in that part of the image and the
pixels taken in their entirety to provide an IR image of the
scene. Evidently, there are myriad non-trivial technical
aspects to make a real device, but this is the basic idea.

To connect these devices to microscopic theory (wave
functions, atomic coordinates, doping levels, etc), the key is
to estimate the temperature dependence of the electrical
conductivity. Inspection of figure 3 shows that the thermal
modulation of the KS eigenvalues is largest near the Fermi
level and in a-Si:H very well correlated with the localization
of the states. If we imagine doping such a system—moving
the Fermi level into an energy range in which the eigenvalues
are strongly influenced by lattice vibrations—one can intui-
tively expect strong temperature dependence in the con-
ductivity and a high TCR. Quantification of this is made
possible by the celebrated work of Kubo on linear response
theory [55] merged with first principles methods. The Kubo
formalism is complicated especially in its full many-body
form [56–58], but a simple and graceful result for the AC
conductivity emerges with from the single particle approx-
imation of Greenwood [59]. In the Kubo–Greenwood form-
alism, which is valid in the weak-field limit and for elastic
scattering processes, the analytical expression for the AC
conductivity is given by [60]:
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To include thermally induced electron states and energy
fluctuations near the gap, we average the expression in
equation (17) over a thermal simulation at a fixed temper-
ature. The DC conductivity can be constructed from a tra-
jectory average (this approach is influenced by the work of
Allen and Broughton [61])
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where the bar denotes the average and we emphasize the
dependence of the various terms on the simulation time t. This
average then picks up thermal broadening effects in the
DOSs, and also include time-dependence in the dipole matrix
element. We insert equation (18)into (16) to obtain the
temperature-dependent conductivities reported in refer-
ence [62].

We see that there is indeed a very strong T-dependence
for the conductivity, and the TCR behaves much like

13 Within a given band—conduction or valence, the rule of linear correlation
between IPR and RMS fluctuation is preserved. The partitioning into two
branches is not surprising since hybridization of the eigenstates near the two
band edges is quite different for GaN, like Se, suggesting that in general the
two edges need to be treated separately.
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experiments on doped a-Si:H, as we report in detail in
reference [62].

5. Meyer–Neldel rule

In a band picture of conduction in semiconductors, one
expects an exponential dependence of conductivity with
energy, ( )s s= -E k Texpo a B , where Ea is the activation
energy and so is an energy-dependent prefactor. Meyer pro-
posed a simple relationship between the prefactor s0 and the
activation energy Ea,

( )s = +A B Eln , 19o a

known as the MNR [15]. In view of the equation above, the
conductivity σ can be written as
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where EMNR is a system-specific energy related to B and soo is
a new prefactor. MNR has been found to be followed
approximately not only by oxide semiconductors but also for
a class of semiconductors including inorganic [63], organic
[64, 65], and amorphous semiconductors (for example, a-Si:H
in connection with light-induced changes of conductivity
[66, 67]). Recent work on multiple excitation entropy [68, 69]
has been offered as a credible explanation of this effect.

By comparing experiments [70, 71] and our work [72],
we see that the mechanism underlying MNR is present in our
simulations. The increase of conductivity with increasing
activation energy can be understood in our picture as being
due to the increase in EPC with increasing activation energy
(and therefore localization). Since localized states possess an
‘amplified’ EPC as we emphasize in this paper, some com-
pensation is to be expected. In our picture, the MNR arises
because the phonons treat electrons with different localization
(or Ea) differently, and the effect runs in a direction consistent
with experiment: for doping into the more localized states, the
EPC is larger and serves to modulate the energies more
strongly than for more weakly localized states with smaller
Ea. The ‘compensation’ is due to phonons selectively ‘shak-
ing’ more localized electrons. The logic of the process is
given by Overhof and Thomas [73], wherein they discuss
‘phonon-induced delocalization’.

6. Optical properties by design

In the theory of complex materials, one confronts the fol-
lowing question: ‘Given particular optical properties (for
example, extent of an optical gap or lack thereof), what
atomic coordinates provide the desired properties?’. This is an
inverse problem, and requires a computational scheme that
efficiently explores the configuration space and leaves us with
an atomistic model satisfying our conditions. A way to
approach this problem is to construct a large number of
models using some random process, and keep promising
candidates. While this can be effective for small systems

(crystals with a small unit cell), it is impractical for more
complex systems like amorphous materials. In some cases,
the emphasis is not to construct a full structural model from
scratch, but rather to improve an existing model by imposing
additional atomistic information on the model. A simple
example is to generate a model of a-Si with a realistic optical
gap from an a-Si network with defect states in the gap region.

There are diverse motivations for these calculations. The
most obvious reason is to find materials optimized for pho-
tovoltaic (PV) applications, i.e. tuning a band gap to the solar
spectrum, for example. It is also possible to induce metalli-
zation via gap tuning: compelling the DOSs to be large at the
Fermi level would significantly increase the conductivity of
the model to induce transition to the metallic state. It also
provides an effective means to discover the structural sig-
natures of photodarkening or photobleaching, much studied
effects in chalcogenide glasses [74]. For phase-change
computer memory materials, the optical contrast between the
amorphous and crystalline phases is fundamental, and these
techniques should enable additional insight into the processes.
Finally, we have shown in our initial forays with this scheme
that including a priori electronic information has important
structural effects: for example, insisting that a-Si have a
defect-free gap produces models that also agree better with
structural measurements.

Following our discussion in the introduction, the quantity
- l¶

¶ aR
i is easy to obtain from any electronic-structure-based

simulation scheme using the Hellmann–Feynman theorem. It
is also clear that this force points the direction in the con-
figuration space to maximally shift li to lower electronic
energies (or higher if we move in the opposite direction).
Thus these gradients provide us a means to purposefully
‘push’ a computer model toward the desired conditions for
optimal design of materials’ properties. Following [32], we
summarize below the scheme and discuss how to generalize
the result for first-principles interactions.

6.1. Formulation for orthogonal tight-binding [32]

In the tight-binding formulation of electronic structure cal-
culations, the spatially non-local part of the interatomic force,
also known as the band-structure force, has the form:
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If one considers individual terms in the sum in
equation (21), the term Fi

BS represents the contribution from
the ith eigenvalue to the total band-structure force. In effect,
Fi

BS is a gradient for the ith energy eigenvalue li. As such,
Fi

BS provides the direction in the 3N-dimensional configura-
tion space of most rapid change of li. Thus, to shift li to
higher (lower) energies, we should move atoms incrementally
along the direction ( )- +F Fi i

BS BS . For incremental displace-
ments d aR along this gradient, the shift dli of an eigenvalueli

can be written as dl d= å -a a aF Ri i,
BS .

To this end, we introduce the term gap force for state i to
indicate the force (negative nuclear gradient) associated with
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eigenvalue li. We exploit such forces to push eigenvalues out
of a spectral range that we wish to be free of states. Our
modified or biased dynamics follows from a Lagrangian
 = - FT , in which ˙= åa a a=T m RN1

2 1
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The sum in the last term in equation (22) is restricted to
an energy range we wish to clear of states. Here, ( )lg i ʼs are
chosen +1 or -1 depending on the desired eigenvalues of
these states, and fi is the occupation number of ith energy
level, which is either 0, 1, or 2. The parameter γ controls the
strength of the gap force, ef is the Fermi energy, and Ur is the
repulsive ion–ion interaction. The force associated with the
ath degree of freedom is given by

( )= + +a a a aF F F F , 23bias BS ion gap

which can be used to obtain stable local minima by
minimizing the total energy and forces via MD simulations
and/or relaxations. In the tight-binding formulation, the
forces on the right-hand side of equation (23) can be explicitly
written as
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We show empirically that the method works well even
for midgap states near ef . We have observed that the method
is also applicable in the opposite mode: to maximize the DOSs

at the Fermi level by shepherding eigenvalues toward the
Fermi level. This might, for example, introduce new structural
features and produce models with interesting electrical
conductivity.

In [32, 75], we have demonstrated that the method is
quite effective in producing structure with a prescribed optical
gap. We used tight-binding parametrizations for C and Si
[76, 77] to conduct MD simulations where we modified the
atomic forces towards constructing amorphous structures with

Figure 16. The band gap of the model during biased quenching from
1800 to 300 K. γ represents the biasing factor, which remains
constant throughout the quenching dynamics. For all data sets, a
running window average is taken to reduce the noise.

Figure 17. EDOS and RDF of the relaxed models of a-Si. The model
indicated g = 0.0 is constructed using conventional MD where as
the one indicated g = 0.5 is constructed using biased dynamics with
g = 0.5. The Γ-point gap is 0.64 eV for model with g = 0.5,
compared to 0.89 eV in WWW a-Si of the same volume. The
calculation was carried out with the plane-wave LDA code VASP.
The Fermi-energy is at 0 eV.
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prescribed gap. We found that such electronic constraints
have profound implications on the structure. For example, we
show that we can tune the concentration of tetrahedrally
bonded (sp3 bonded) carbon atoms in a model of amorphous
carbon by tuning the magnitude of the gap forces. Note that
sp3 -bonded carbon has wide band gap where as sp2 -bonded
carbon is conducting, and accordingly, we show that a
quench-fromthe-melt dynamics biased to wider band gap
produces models with high concentration of sp3 -bonded
carbon. The magnitude of the gap force can be tuned with
parameter γ and in doing so we can tune the sp3 concentration
almost continuously (see figure 17 from [75]). This con-
stitutes a unique knob in MD simulations where we can
smoothly navigate between two distinct phases of a-Cthat
have different bond length, coordination and electronic
structure.

We have also used gap sculpting to model a-Siusing
tight-binding formulation. Conventional methods of modeling
a-Siproduce models with a few to many geometrical defects,
usually in the form of over-coordinated atoms, which in turn
register mid-gap states in the DOS of these models. In our
calculations, we have inverted the problem and have con-
strained the MD simulations to have electronic structure with
a clean gap. This has produced models that have remarkably
fewer defects in the model. For more on the calculations,
please refer to [32, 75].

6.2. Density functional approach

Gap sculpting is preferably performed using first principles
calculations since tight-binding methods suffer from well-
known problems of limited transferability. We have used
VASP to carry out biased dynamics14. As an early example
of the method, we report here a wide band gap amorphous
form of silicon that is structurally different from the tetra-
hedral continuous random network picture of a-Si. This
structure is stable and has lower energy that its conventional
counterpart.

We started with a random collection of 64 atoms and
prepared a liquid model of silicon (l-Si)15. The liquid model
so obtained was then quenched to 300 K using biased forces.
The band gap of the 64-atom WWW model was taken as
reference to electronic gap. We tested four different biasing
factors (g= 0.0, 0.3, 0.5 and 1.0). We see that the biased
dynamics gradually steers the model to configurations with
larger electronic gap and the size of the gap roughly correlates
with value of γ within reasonable limit (figure 16).

The quenched models are then relaxed to their nearest
minimum using true LDA forces (g = 0). We find that
relaxed models so obtained have a band gap larger than
conventional model by 0.24 eV (for g = 0.3), 0.35 eV (for
g = 0.5) and 0.15 eV (for g = 1.0). The band gap of our best

model (that with g = 0.5) is still smaller than that of WWW
model of the same volume by 0.25 eV. We report the com-
parison of electronic EDOS and RDF of the model using
g = 0.5 with the conventional model (i.e. using g = 0.0).
The former has more structural defects in the form of floating
bonds than the later and it is remarkable that these defects
somehow do not register states in the gap. The structure with
g = 0.5 has lower energy than its conventional counterpart
(g = 0) by 0.02 eV/atom but has higher energy than WWW
model of same volume by 0.07 eV/atom.

7. Conclusions

In conclusion, we have carried out an array of accurate
thermal MD simulations of realistic models of a-Si, a-Se and
a-GaN. We have demonstrated a strong correlation between
localization and thermally induced modulation of KS eigen-
values. We report a new correlation (equation (14)) that works
for all three highly distinct materials. The value of this
observation lies in its generality across systems with drama-
tically different chemistry and short-range order. We reveal
the effects of changes in cell charge states, as a necessary
ingredient to model light-induced changes in such materials.
We next discussed the role of phonons in electronic transport
by considering the use of a thermally averaged form of the
Kubo–Greenwood formula, and applied the idea to the
Meyer–Neldel compensation law. Finally, we took an initial
stab at the use of ab initio interactions in our ‘gap-sculpting’
scheme. In this case rather than looking at the effects of
phonons on electrons (as in the rest of the paper), we looked
at the consequences of applying electronic information in the
course of structure modeling. We showed in a small model of
a-Si that it is possible to obtain a Γ point gap not much
different from the best amorphous tetrahedral models of a-Si
—but in this case with several defects and reasonable ener-
getics. While this is only a first example, it suggests that the
scheme might hold promise for other problems requiring first
principles interactions.

The ‘amplification factor’ (α from equation (14)) is
found to be largest for the conduction states of a-Se. For both
a-Seand a-GaN, the linear correlation was very strong and
broke into distinct branches for conduction and valence tails.
It would be an interesting project to design materials with
maximal α- one might expect improved behavior for micro-
bolometer applications, for example.

This paper attempts to answer significant questions but
also begs new questions: why is there a strong linear corre-
lation between IPR and thermal variation of eigenvalues?
How does a-GaNproduce an extended state in the gap? This
work reveals once again the stark differences between crys-
talline and amorphous materials. As usual, the disordered
variants yield new phenomena unknown in crystals and
technologies have found ways to exploit these. Doubtless
many more remain!

14 The dynamics is biased in the sense that it prefers some minima in energy
landscape over others. In particular, the minima that conform to a prescribed
band gap are preferred.
15 The system was heated to 1800 K for 2 ps and was then melted at various
temperatures higher than 1800 K for 10 ps. The system was then equilibrated
at 1800 K for another 12 ps.
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