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Inversion of diffraction data for 
amorphous materials
Anup Pandey1, Parthapratim Biswas2 & D. A. Drabold3

The general and practical inversion of diffraction data–producing a computer model correctly 
representing the material explored–is an important unsolved problem for disordered materials. Such 
modeling should proceed by using our full knowledge base, both from experiment and theory. In this 
paper, we describe a robust method to jointly exploit the power of ab initio atomistic simulation along 
with the information carried by diffraction data. The method is applied to two very different systems: 
amorphous silicon and two compositions of a solid electrolyte memory material silver-doped GeSe3. 
The technique is easy to implement, is faster and yields results much improved over conventional 
simulation methods for the materials explored. By direct calculation, we show that the method works 
for both poor and excellent glass forming materials. It offers a means to add a priori information in first-
principles modeling of materials, and represents a significant step toward the computational design of 
non-crystalline materials using accurate interatomic interactions and experimental information.

On the eve of the First World War, William Lawrence Bragg and his father, William Henry Bragg, exposed crys-
talline solids to X-rays and discovered what we now call “Bragg diffraction”, strong reflection at particular inci-
dent angles and wavelengths. These “Bragg peaks” were sharply defined and, when analyzed with a wave theory 
of the X-rays, led to clear evidence of order in the crystalline state1. By analyzing the diffraction angles at which 
the peaks appeared and the wavelength of the X-rays, the full structure of the crystal could be ascertained. In 
the language of modern solid state physics, the X-ray structure factor of a single crystal consists of a sequence of 
sharp spikes, which are broadened in a minor way by thermal effects. The information obtained from this palisade 
of delta functions, arising from a crystal, is sufficient for the determination of lattice structure. The rapid devel-
opment of X-ray Crystallography in the past several decades had made it possible to successfully determine the 
structure of complex protein molecules, with more than 105 atoms, leading to the formation of a new branch of 
protein crystallography in structural biology2.

In contrast with crystals, amorphous materials and liquids have structure factors that are smooth, and thus 
contain far less specific information about structure. The lack of sharp peaks principally originates from the 
presence of local atomic ordering in varying length scales, and no long-range order in the amorphous state. 
The resulting structure factor is one-dimensional and is effectively a sum rule that must be satisfied by the 
three-dimensional amorphous solids. This presents a far more difficult problem of structural determination of 
amorphous solids that requires the development of new tools and reasoning. A natural approach to address the 
problem is to carry out computer simulations, either employing molecular dynamics or Monte Carlo, with suit-
able interatomic potentials. We have called this approach the “simulation paradigm”3 elsewhere. By contrast, the 
other limit is to attempt to invert the diffraction data by “Reverse Monte Carlo” (RMC) or otherwise without 
using any interatomic potential but information only4,5. This we have called the “information paradigm”3. The 
information paradigm in its purest form produces models reproducing the data using a random process. These 
models tend to be maximally disordered and chemically unrealistic. The information paradigm is closely related 
to the challenge of Materials by Design6,7, for which one imposes external constraints to incorporate additional 
information on a model to enable a set of preferred physical properties that are of technological utility.

Neither paradigm is ideal, or even adequate. The simulation paradigm is plagued by severe size and time-scale 
limitations that misrepresent the real process of forming a glass, not to mention imperfect interatomic interac-
tions. For amorphous materials with no or weak glass-forming ability, either approach is rather desperate, and 
leads to the formation of unrealistic models with too many structural defects in the networks. In this paper we 
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introduce ab initio Force Enhanced Atomic Refinement (AIFEAR). A preliminary trial of the algorithm using only 
empirical potentials recently appeared8.

Others have undertaken related approaches9–17. By including ‘uniformity’ as a constraint for the refinement 
of models, Goodwin and coworkers showed their Invariant Environment Refinement Technique11 to produce 
improved models of a-Si and other systems. A liquid-quench procedure, combined with a hybrid Reverse Monte 
Carlo approach, which incorporates both experimental and energy-based constraints has been employed by 
Opletal and coworkers12. A similar approach via hybrid RMC with empirical bonded and non-bonded forces was 
used by Gereben and Pusztai to study liquid dimethyl trisulfide18. Likewise, by refining the initial interatomic 
empirical potential-energy function and fitting the input experimental structure-factor data, empirical potential 
structure refinement has been quite successful in predicting liquid structures14. An alternative approach, experi-
mentally constrained molecular relaxation, which incorporates experimental information in first-principles mod-
eling of materials in a ‘self-consistent’ manner16 was discussed in refs 15 and 16. Recently, a means for including 
electronic a priori information has also appeared17. These methods have all contributed significantly to the field, 
yet they have limitations such as employing empirical potentials of limited reliability8,12, or unacceptable con-
vergence properties15,16. A general and successful framework for inverting solid state diffraction data does not exist. 
AIFEAR is a major step toward this important goal.

We begin with some definitions. If V(X1 …​ Xn) is the energy functional for atomic coordinates {Xi} and χ2 
measures the discrepancy between diffraction experiment and theory, we seek to find a set of atomic coordi-
nates {Xi} with the property that V =​ minimum and χ2 is within experimental error. AIFEAR is a simple iter-
ative process consisting of (i) producing a structural model at random (at a sensible but not necessarily exact 
density, which may not be available), (ii) invoking N accepted moves within conventional RMC19 followed by  
M conjugate-gradient (CG) steps using ab initio interactions. We then iterate (ii) until convergence. The final 
results do not depend heavily on the numerical values of N and M, which were chosen to be 1000 and 10, respec-
tively, for the present work. For the examples discussed here, we find that significantly fewer ab initio force calls 
are needed for AIFEAR than for an ab initio ‘melt-quench’ simulation. In addition, AIFEAR avoids the problem 
of relative weighting of V and χ2 in a penalty or target energy functional as in hybrid approaches developed 
elsewhere12,20. If the density of the material is unknown, it is straightforward to carry out the simulation at zero 
pressure (with variable cell geometries) in the CG loop, and simply pass the modified supercell vectors back to 
the RMC loop.

To illustrate the efficacy of this new approach, we begin with a persistently vexing problem: the structure 
of amorphous Si which is particularly difficult because the network is over-constrained21,22 and it is not a glass 
former. The only methods that yield really satisfactory results are the Wooten-Weaire-Winer (WWW)23 and 
Activation Relaxation Technique24 methods. Structural and electronic experiments reveal that coordination 
defects in good quality material have a concentration less than a part in 1000. As such, a satisfactory model 
should have at most a few percent (or less) defects. Inversion methods like RMC and ab initio melt-quench both 
produce unsatisfactory models with far too many coordination defects compared to experiments. In this illustra-
tion, we employ the local-orbital-based density functional code SIESTA for the calculation of ab initio forces, but 
the approach is easily implemented with ab initio total-energy plane-wave codes as we show in the next example.

We began by preparing three 216-atom models of a-Si, at the experimental density25 of 2.33 g.cm−3 , using (1) 
RMC, (2) melt-quench, and (3) AIFEAR. The starting atomic configurations were chosen to be random, and the 
diffraction data from ref. 23 were employed in RMC and AIFEAR. The structural properties of a-Si, obtained 
from these models, are summarized in Fig. 1. For a discussion on convergence and comparisons to other calcu-
lations, see the Methods section. RMC produces a highly unrealistic model, far from the accepted tetrahedral 
network topology, as seen in Fig. 1. Melt-quench, while better, still produces far too many coordination defects. 
By contrast, AIFEAR produces a nearly perfect tetrahedral structure, with 99.07% fourfold coordination, and 
a bond-angle distribution close to that of a WWW model. In comparing the bond-angle distributions (from 
AIFEAR with that of from WWW), one must take into account the fact that ab initio interactions tend to produce 
a slightly wider bond-angle distribution than the highly artificial WWW (Keating spring) interactions.

We wish to emphasize that the starting configuration used in AIFEAR was random, so that one can logically 
infer that a combination of atomic-radial-correlation data and DFT interactions leads to an almost perfect tet-
rahedral network as illustrated in Fig. 1. Table 1 lists the key structural properties of the model, along with the 
total energy per atom. In the Methods section, we report the detailed convergence of total energy E and χ2. In the 
Supplementary Materials, we also offer an animation of the convergence of AIFEAR by showing the formation of 
a tetrahedral network as the simulation proceeds with the disappearance of coordination defects.

For a challenging and timely example, we have also studied the solid electrolyte material Agx(GeSe3)1−x. This 
is a chemically complex system with important applications to conducting bridge computer FLASH memory 
devices, which are of considerable fundamental and technological interest. We employ the same scheme as for 
a-Si, but with ab initio interactions from the plane-wave DFT code VASP26–28, with 135 and 108 atoms in a unit 
cell of length 15.923 Å and 15.230 Å for x =​ 0.05 and x =​ 0.077, respectively. These values correspond to the den-
sities of 4.38 g.cm−3 and 4.04 g.cm−3 for the models with 5% and 7.7% Ag, respectively. For x =​ 0.05, both the 
structure-factor data and density of 4.38 g.cm−3 are taken from the work of Piarristeguy and Pradel29. For x =​ 0.07, 
we have used the RDF data provided by Zeidler and Salmon30, and a density of 4.04 g.cm−3 was obtained from a 
zero-pressure conjugate-gradient relaxation using VASP. For completeness, we have also studied a melt-quench 
model of x =​ 0.077 as described in the Methods section. The melt-quench model (in Fig. 2a) shows significant 
discrepancies with experiments: the first sharp diffraction peak (FSDP) near 1 Å−1 is absent, and there are sig-
nificant inconsistencies in the structure factor at high k values. The FSDP is an indicator of medium range order, 
a signature of structural correlations between the tetrahedral GeSe structural building blocks of the glass. By 
contrast, the AIFEAR model captures all the basic characteristics of the structure factor, including the FSDP 
(in fact, it slightly overfits the FSDP). We show that the method has similar utility in either real or k space, using 
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S(k) for the first composition and g(r) for the second. Figure 2 shows the structure factors and radial distribution 
functions obtained from AIFEAR and melt-quench simulations, and compares with the experimental data from 
neutron diffraction measurements29,30.

Figure 1.  Top: A 216-atom model of a-Si obtained from (a) RMC, (b) melt-quench and (c) AIFEAR 
simulations. Silicon atoms with a coordination number of 3, 4 and 5 are shown in green, blue and red colors, 
respectively. Center: The radial distribution function (RDF) for the (d) RMC, (e) melt-quench and (f) AIFEAR 
models. Bottom: The bond-angle distributions for the models as indicated in the figure. See supplementary 
materials for animations showing the formation of three-dimensional network structure and the corresponding 
evolution of the radial and coordination-number distributions.

RMC Melt-quench AIFEAR WWW

4-fold Si (%) 27 80 99.07 100

SIESTA energy (eV/atom) 3.84 0.08 0.03 0.00

Average bond angle (RMS deviation) 101.57° (31.12° ) 107.04° (20.16°) 108.80° (14.55°) 108.97° (11.93°)

Table 1.   Total energy and key structural properties of a-Si models. The energy per atom is expressed with 
reference to the energy of the WWW model.



www.nature.com/scientificreports/

4Scientific Reports | 6:33731 | DOI: 10.1038/srep33731

The GeSeAg systems are of basic interest as solid electrolytes. One of the most interesting questions per-
tains to the dynamics of Ag atoms, which are sufficiently rapid that they can be tracked even in first-principles 
molecular-dynamics simulations31. The fast Ag dynamics have led to the invention of conducting bridge Random 
Access Memory32,33. As this dynamics appears to be of trap-release form31, the structure, including features like 
medium range order, and associated energetics may be expected to play a key role in the silver hopping. The 7.7% 
Ag composition is near to a remarkable and abrupt ionic mobility transition34,35. Dynamical simulations are cur-
rently underway to determine the role of the structure in this dynamics.

The following features of Agx(GeSe3)1−x glasses have been observed in the AIFEAR model: 1) the Ge-Se cor-
relation is not affected by an increase in Ag content: Ge(Se1/2)4 tetrahedra remain the fundamental structural 
units in the network. 2) Ge-Ge correlations, greatly affected by Ag doping, are revealed by the shift in Ge-Ge 
nearest-neighbor distance from 3.81 Å in Ag =​ 0%29 to 2.64 Å and 2.56 Å in Ag =​ 5% and Ag =​ 7.7%, respectively 3)  
the Ag-Se correlation peak is near 2.66 Å for both the systems, which is consistent with the experimental work 
of Zeidler30 and others29. 4) The Se-Se coordination number for 5% and 7.7% Ag are 1.12 and 0.83 (0.81 from 
experimental data30), respectively. This is consistent with the observed phenomena of decrease in Se coordination 
with the increase in Ag concentration29.

Beside retaining the important chemical features of the network, the AIFEAR model is superior to the 
melt-quench model by the manifestation of a prominent FSDP (cf. Fig. 2a), a signature of medium range order 
in these materials. Absence of the FSDP indicates the lack of structural correlations in the Ge(Se1/2)4 tetrahedra, 
which is less prominent for low Ag concentration. Also, the energy of the AIFEAR model for x =​ 0.077 is 0.02 eV/
atom less than the melt-quench model (see Fig. 3b).

It is important and promising that in the GeSeAg systems, as in a-Si, AIFEAR is not a greedy optimization 
scheme, as it is evidently able to unstick itself (for example in Fig. 3b) near 400 steps, there is a dramatic and tem-
porary increase in χ2, which then enabled the system to find a new topology which produced further reduction 
of both χ2 and energy. A similar, if less dramatic, event is indicated in Fig. 3a around step 1100. The Monte-Carlo 
moves robustly explore the configuration space and are not so prone to getting trapped as in MD simulations, and 
yet the chemistry is properly included in the ab initio relaxation loop.

Figure 2.  (a) Structure factors of (GeSe3)1−xAgx [x =​ 0.05] from AIFEAR. Experimental data, from neutron 
diffraction measurements, are shown for comparison29. Melt-quench data are from Pradel et al.29 (b) The radial 
distribution function of (GeSe3)1−xAgx [x =​ 0.077] from AIFEAR and melt-quench simulations. Experimental 
RDF shown here are from Zeidler et al.30.
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In conclusion, we have introduced a new and practical method that enables the joint exploitation of exper-
imental information and the information inherent to ab initio total-energy calculations, and a powerful new 
approach, to the century-old problem of structural inversion of diffraction data. The method is simple and robust, 
and independent of the systems, the convergence of which has been readily obtained in two highly distinct sys-
tems, both known to be challenging and technologically useful. By direct calculation, we show the network topol-
ogy of a-Si, implied by the atomic pair correlations and accurate total energies, is: structurally similar to WWW 
models, including the bond-angle distribution. Using only the total structure-factor (or pair-correlation) data and 
SIESTA/VASP, we obtain models of unprecedented accuracy for a difficult test case ( a-Si) and a technologically 
important memory material (GeSe3Ag). The inclusion of a priori experimental information emphasized here may 
also be developed into a scheme to include other information for materials optimization. It is easily utilized with 
any interatomic potentials, including promising current developments in “machine learning”36. The method is 
unbiased in the sense that it starts from a completely random configuration and explore the configuration space 
of a total-energy functional aided by additional experimental information to arrive at a stable amorphous state. 
Beside these attributes, it requires fewer force calls to the expensive ab initio interactions.

Methods
As described in the main text, AIFEAR jointly minimizes the configurational energy V and the cost function (see 
refs 4 and 37)
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where FE/M(ki) is the experimental/model structure factor, and σ (ki) is the error associated with the experimen-
tal data for wave vector ki. To undertake this program, (i) we begin with a random model, (ii) invoke M RMC 
accepted moves followed by N conjugate-gradient steps to optimize the total energy. We have found M =​ 1000 and 
N =​ 10 to be satisfactory for the materials of this paper. The process (ii) is repeated until the desired accuracy of 
δχ2 ≈​ 0.1 and a force tolerance of δf ≈​ 0.02 eV/Å is attained. All that is required are RMC and total-energy codes 
and an appropriate driver program connecting them.

Amorphous Si.  Initially, conventional RMC (i.e. without any constraint) runs were performed using the 
RMCProfile software19 for a random starting configuration of 216-atom a-Si with a cubic box of side 16.281 Å 

Figure 3.  Total energy per atom and the cost function (χ2) versus AIFEAR steps for two models with (a) 5% 
and (b) 7.7% Ag-doped GeSe3. The melt-quench energy for the 7.7% Ag model is indicated for comparison.
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corresponding to the density 2.33 g.cm−3. The maximum step length of the RMC moves for Si atoms is chosen 
to be 0.05 Å. In a parallel simulation, the same starting configuration is taken through a process of melt-quench 
using the density-functional code SIESTA38 with single-ζ basis under Harris functional scheme38 within the 
local density approximation. The total-energy and force calculations are restricted to the Γ​ point of the supercell 
Brillouin zone. After melting at 2300 K, the liquid structure was quenched to 300 K at a rate of 240 K/ps. Each step 
was followed by the equilibration of the system for 2000 time steps. To ensure the reproducibility of the FEAR 
method, we have generated 10 a-Si models starting from random configurations and the models yielded 4-fold 
coordination always exceeding 96%. Details of convergence and comparison to the best available WWW model 
is provided in Fig. 4. The elimination of defects is chronicled in an animation provided in the Supplementary 
Materials.

Chalcogenide glasses.  The experimental structure factors data taken from the work of Piarristeguy et al.29 
for 5% Ag and the pair distribution function (PDF) was obtained from the work of Zeidler and Salmon30 for 

Figure 4.  Results for 216-atom a-Si: (a) The variation of cost function and total energy with the number of 
AIFEAR steps. (b) Electronic density of states (EDOS) for RMC, melt-quench and AIFEAR models with the 
Fermi level at 0 eV. (c) The bond-angle distribution from AIFEAR compared to that of WWW (see Table 1 for 
details).

Figure 5.  Comparison of number of force calls in ab initio FEAR with melt-quench simulations for  
a-Si, and 5% and 7.7% Ag-doped GeSe3. Note that the number of force calls in melt-quench simulations vary 
considerably for different systems.
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7.7% Ag. For ab initio interactions, we used the plane-wave DFT code VASP26–28 using projected augmented 
plane waves (PAW)39 with Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional40 and a plane-wave 
cutoff of 312.3 eV. All calculations were carried out at Γ​ point. The random starting configurations of 5% and 
7.7% Ag-doped GeSe3Ag were subjected to ab initio FEAR. The 5% Ag-doped GeSe3Ag ab initio FEAR model is 
compared to the melt-quench model of the identical system of Piarristeguy and co-workers29. The melt-quench 
model of 7.7% Ag-doped GeSe3 is prepared by melting the same starting configuration at 1400 K for 10,000 steps, 
followed by a quenching to 300 K at the rate of 100 K/ps, and then by equilibrating at 300 K for another 5000 steps. 
To estimate the density of the equilibrated system, the volume of the simulation cell was relaxed. A final relaxa-
tion at zero pressure was employed, which yielded a density of 4.04 g.cm−3. A time step of 1.5 fs was used for the 
production of melt-quenched models in MD simulations.

We have included a comparison of the number of force calls in the various simulations in Fig. 5. It is evident 
from Fig. 5 that AIFEAR offers a significant computational advantage, with fewer force calls to the expensive ab 
initio codes.
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