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Spatial Projection of Electronic Conductivity: The
Example of Conducting Bridge Memory Materials
Kiran Prasai, Kashi N. Subedi, Kaelyn Ferris, Parthapratim Biswas,
and David A. Drabold*
Conducting bridge random access memory materials have special promise
for FLASH memory, other applications beside, and also special potential for
continued miniaturization. They are electronic materials of unique flexibility.
Here, we offer new models of Cu-doped alumina, and reveal qualitative
differences in the behavior of transition metal ions in chalcogenide and oxide
hosts, showing that Cu clusters in an amorphous alumina host, in contrast
with chalcogenides in which the metal atoms do not cluster. We further
elucidate the processes of electron transport. To determine these, the Kubo–
Greenwood formula is cast in a form to enable the estimate of a space-
projected conductivity. The method reveals those parts of the networks that
may conduct a current (or absorb radiation at frequency ω).
Some leading contenders for next generation non-volatile
computer memory depend on manipulation of electrical
conduction. Among these, conducting bridge random access
memory (CBRAM) and phase change memory (PCM) materials
are examples. In this article, we discuss the atomistic conduction
mechanisms in two CBRAMmaterials[1]: a-(GeSe3)0.75Ag0.25 and
a-Al2O3:Cu. We show that the chalcogenide and oxide stories
turn out differently, with Cu or Ag clustering in the oxide and
dissolving in chalcogenides. To more deeply understand these
phenomena and to grasp the atomistic electronic conduction
mechanisms in these materials, we identify and quantify
conducting structures in materials. The compositions discussed
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in this paper are relevant for both scientific
studies of these materials, and some
devices in use and/or development.

We begin by creating supercell models
of a-Al2O3, (a-Al2O3)0.9Cu0.1 and
(a-Al2O3)0.8Cu0.2 consisting of 200 atoms.
The bulk density of 3.175 g cm�3 is taken
for a-Al2O3. Due to a lack of experimental
data, we refer to ref. [2] to make an
initial guess of bulk density of 3.7 g cm�3

(3.9 g cm�3) for 10% (20%) Cu models,
respectively. We perform ab initio molecu-
lar dynamics simulations using VASP[3]

and projector-augmented wave (PAW)[4,5]

potentials within the local density approxi-
mation.[6] A plane wave cutoff energy of
420 eV and Г-point Brillouin zone (BZ)
sampling was used. The time step was 1.5 fs, and the
temperature was controlled by a Nos�e-Hoover thermostat. The
models were prepared using the melt-quench scheme[7] starting
with random initial configurations at 3500K. After annealing the
initial configurations for 7.5 ps at 3500K, we cool each model to
2600K at a rate 0.27 K fs�1 and equilibrate for 10 ps at this
temperature. Each model is then quenched to 300K at the same
cooling rate 0.27K fs�1 and equilibrated for another 10 ps. We
performed zero-pressure relaxation for these equilibrated
models and obtained optimized densities of 3.75 and 3.99 g cm�3

for the 10 and 20% Cu-doped models. The a-(GeSe3)0.75Ag0.25
model discussed in this work is a 100-atom cubic cell, reported in
ref. [8].

In Figure 1, we illustrate the radial distribution functions of
pure alumina and two Cu-doped alumina models, and compare
to experiment[9] for the undoped case. In contrast to the more
covalent silver-doped chalcogenides,[10] there is an obvious
proclivity for Cu to cluster in alumina, as seen in Figure 2. For
the 20% Cu cluster, the clustering leads to a narrow space-filling
conducting path described below, whereas for 10% the path is
broken, and states near the Fermi level are somewhat localized.
Pure alumina has an LDA (Г-point) gap of 4.0 eV. States near the
Fermi level in the 20% Cu-doped system are fairly extended
originate mostly from Cu.

For a-(GeSe3)0.75Ag0.25 the Ag dissolves uniformly into the
matrix[11] and when the Ag ions are well separated (in the
homogeneous state of the material), it is semiconducting.
Separate calculations have shown that Ag clusters in a-Al2O3 as
Cu does. The inference then is that the highly ionic alumina host
induces the transition metal clustering. It seems likely that this
is just due to the large energy penalty for homopolar bonds for
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Figure 1. Left: Radial distribution for alumina and experiment.[9] Right:
Radial distribution functions g(r) for Cu-doped alumina. The peak near
2.44 Å is due to Cu–Cu correlations.
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such an ionic system. Thus, in crude terms, the primary role of
electrochemical manipulation of the materials is to connect
(break) conducting filaments in chalcogenides (oxides). The
qualitative difference in ion solubility between the
chalcogenide and oxide host must affect ion trap-release
dynamics, device response to radiation, and electronic character-
istics. The alumina-based materials have been carefully studied
experimentally, including even the morphology of an electro-
chemically induced filament.[12]

To determine the space-projected conductivity (SPC), we use
the Kubo–Greenwood formula (KGF),[13] which is suited for
density-functional simulations of materials with its single-
particle Kohn–Sham orbitals and energies.[14] The KGF has been
exploited in tight-binding and DFTcomputations of conductivity
of liquids and solids,[15] and may be employed with better (post-
DFT) estimates of excited states.[16] The idea is to spatially
decompose the KGF in terms of Kohn–Sham orbitals in real
space.We describe two ways to achieve this, one directly from the
KGF, and the other in terms of the eigenvectors of a Hermitian
matrix described below.

The KGF estimates the AC conductivity (for frequency ω and
Bloch vector k) as

σk ωð Þ ¼
X
i;j

gij k; ωð Þ
X
α

pαij

���
��� 2 ð1Þ

In the shorthand notation of Equation (1), we averaged over
diagonal elements of the conductivity tensor (α¼ x,y,z), i and j
index Kohn–Sham orbitals ψi;k xð Þ with associated energies
ei,k, pα is the momentum operator (for direction α) and
Figure 2. Cu atoms (blue), O (red), and Al (gray) in (a-Al2O3)0.9Cu0.1 (left)
and (a-Al2O3)0.8Cu0.2 (right). Note that the Cu clusters in the oxide matrix.
Periodic boundary conditions are employed throughout.
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gij k; ωð Þ ¼ 2πe2 f i kð Þ � f j kð Þ
h i

δ ej kð Þ � ei kð Þ � �hω
� �

= 3m2ωΩð Þ,
whereΩ is the cell volume and f is the Fermi–Dirac distribution.

From this point on, we suppress the explicit dependence on k
and ω. The matrix elements of the momentum operator are
pαji ¼ hψj p

αj jψii so that

σ ¼
X
ijα

Z
d3x

Z
d3x0gij ψ

�
j xð Þpαψi xð Þ

h i
ψ�
i x0ð Þpαψj x

0ð Þ
h i

ð2Þ

Define complex-valued functions ξαij xð Þ ¼ ψ�
i xð Þpαψj xð Þ on a

real-space grid (call the grid points x), and suppose, for
simplicity, that the grid is uniformly spaced in three-dimensional
space with spacing h. In such a case, the spatial quadratures are
easily estimated as a sum on the grid, and the operation of pα is
provided by finite-differences. Then the conductivity is approxi-
mated as

σ � h6
X
x;x0

X
ijα

gijξ
α
ji xð Þξαij x0ð Þ ð3Þ

This equation expresses the conductivity as a double spatial
sum and leads us to define the Hermitian, positive-semidefinite
matrix:

Γ x;x0ð Þ ¼ h6
X
ijα

gijξ
α
ji xð Þξαij x0ð Þ ð4Þ

and it follows from Equation (3) that σ¼Σx,x0 Г(x, x0) as h! 0.
Equation (4) suggests a means to spatially decompose the
conductivity. We take the SPC to be ζ(x)¼ |Σx0 Г(x, x0)|. ζ(x) is of
interest as it is positive, additive, and by construction indicates
the conduction-active parts of the system. Г(x, x0) decays for large
|x� x0|. The physical reason is cancellation due to loss of
correlation for |x� x0|> δ,[17] where δ is a system-dependent
length. This is reminiscent of Kohn’s “principle of nearsighted-
ness,”[18] developed for the density matrix. In fact, for qualitative
structure of SPE, the positive diagonal approximation Δ(x)¼
Г(x, x) yields results virtually identical to ζ. See the left panel of
Figure 3.

Since Г is Hermitian, it is natural to diagonalize it. Its
eigenvalue problem reads: Γjχμi ¼ Λμjχμi, for which μ¼ 1, ng. ng
is the number of points in the spatial grid (thus for example,
ng¼ n3 for n points in each Cartesian direction in 3D).
Diagonalization provides a spectral representation:
Γ̂ ¼P

μjχμiΛμhχμj, from which:

σ¼
X
x

X
μ
Λμ χμ xð Þ

���
��� 2 þ X

x;x0;x 6¼x0

X
μ
Λμχμ xð Þχ�μ x0ð Þ ð5Þ

Equation (5) introduces the concept of conduction eigenval-
ues andmodes. In Figure 3 (right), we report the density of states
for Г and spatial localization of the associated χΛ(x). The
eigenvectors conjugate to extremal Λ are highly extended. Few
eigenvalues contribute significantly to σ, with an overwhelming
accumulation of spectral weight in the density of states near
Λ¼ 0. While the details of such spectra vary from systems like Al
to c-Si, the basic form is similar (an exception being a spectral tail
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2 of 5)
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Figure 3. Properties of Г(x, x0) for 10% Cu-doped model. Left: Decay of Г
matrix. Right: Spectrum of Г and localization (inverse participation
ratio)[19] of its eigenvectors (χ).
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that forms near Λ¼ 0 for more metallic systems). The spectral
decomposition of σ of Equation (5) categorizes the conductivity
into a finite and, in practice, tiny (compared to the dimension of
Г) set of conduction channels, and in practice the first few terms
of Equation (5) resemble Г(x, x). Because of trace invariance of Г
the first term of Equation (5) reproduces Δ(x)¼Г(x, x), in a
similar fashion, Σμ Λμ¼Σx Δ(x).

To carry this out, we employ Kohn–Sham orbitals computed
with VASP. The ψi;k xð Þ are obtained from the VASP WAVECAR
file using a convenient code of R. M. Feenstra andM. Widom.[20]

The ξ (of Equation (3)) are obtained using central differences
with δr¼ 0.05 Å. The KGF is evaluated in its “exact form”
(Equation (8) of ref. [21]) and to estimate the SPC ζ, we adopt a
discrete grid with n¼ 36 (dim Г¼ 46 656). Among various tests,
we studied FCC Al (108 atoms and 4 k-points) and obtain a DC
conductivity of 12.3� 106 Sm�1, in favorable comparison with
Figure 10 of ref. [21]. We select a temperature T¼ 1000K for the
Fermi–Dirac distribution. The exact value of the conductivity is
somewhat sensitive to this choice, the SPC plots far less so.

Using the assumptions above, we obtained DC conductivities
of 60, 1.5, 45 S cm�1 for a-(GeSe3)0.75Ag0.25, (a-Al2O3)0.9Cu0.1,
and (a-Al2O3)0.8Cu0.2, respectively. The first two are essentially
semiconductors/insulators (with gaps of about 0.4 eV, and 4.0 eV
(with Cu levels), while the 20% model exhibits a more metallic
mode of conduction with more banding Cu states in the host
alumina gap. To graphically display the SPC ζ (x), we take two
approaches: 1) a plot of minimal space filling path (for the ζ field)
projected onto atomic sites (Figure 4) and 2) a direct scheme
Figure 4. Bader projection of SPC ζ(x) of oxides. Left: Al2O3:Cu, 10%.
Right: Al2O3:Cu, 20%. The atoms with color represent the atoms with 80%
of SPC.[22] Color nomenclature is green: Cu, yellow: O, blue: Al.
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indicating atom positions and in gray scale the “intensity” of ζ (x)
(see Figure 6). In the latter case, we normalize the gray scale to
either the mean or maximum of ζ (x). For case 2, we note that
each material is normalized separately: gray scale images should
not be compared (except for qualitative structure) between
different materials.

In Figure 5, we present SPC iso-surfaces for the 20% Cu-
doped model obtained from Equation (5), summed over 20 and
all eigenvectors. Twenty terms offers a reasonable qualitative
approximation for ζ.

It is apparent that for the Cu-doped oxides that ζ is strongly
associated with Cu, particularly for the 20% case. A notable
number of O atoms contribute, especially in the 10% case, which
is expected since in the absence of transition metals in the
system, transport would occur through Kohn–Sham states near
the Fermi level, built almost entirely from O p states. Al plays
essentially no role in the conduction for either composition. The
case of the 20% is especially interesting as a Cu cluster exists that
is space-filling, when periodic boundary conditions are consid-
ered. Electronic delocalization/banding of Kohn–Sham states
(mostly involving Cu) surrounding the Fermi level hint at a
disordered form of metallic conduction made explicit in our
analysis. As the cluster is not well connected in the 10% system,
the conductivity is lower. The usual means to determine the
conducting parts of a network is to just look at the Kohn–Sham
orbitals near the Fermi level. This is at best qualitative, and the
present work correctly includes effects stemming from the
current–current correlation function, which is central to the
Kubo approach to electrical transport.

For the chalcogenide (Figure 6, top panel), the system (with
homogeneous Ag distribution) is semiconducting (albeit with a
small gap compared to the alumina systems) and the Ag (green)
sites are not well correlated with ζ (x). Instead, rather like the 10%
Cu-doped oxide, the Se p states again appear, indicating hopping
conduction.

Where SPC is concerned, as for any method based on KGF,
thermal broadening, k-point sampling, and other details have to
be treated carefully,[21] and the method is only as good as the
models and single-particle states/energies we employ. We
analyzed three representative models that lend insight into
the electronic processes in a significant class of electronic
Figure 5. Isosurfaces of SPC from weighted sum of eigenvectors for 20%
Cu-doped alumina. Left: SPC computed from 20 eigenvectors (with
largest eigenvalues), right: SPC computed from all eigenvectors. The blob
volumes indicate the value of the weighted sum at the point. Left and right
figures use the same isosurface cutoff. Cu atoms are shown in blue for
reference.
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Figure 6. Space-projected conductivity ζ(x) for a-(GeSe3)0.75Ag0.25 (top),
(a-Al2O3)0.9Cu0.1 (middle), and (a-Al2O3)0.8Cu0.2 (bottom). O and Ge
atoms are shown in red, Cu and Se atoms in blue, and Al and Ag atoms in
green. The SPC at each grid point is shown in gray scale which is scaled by
either the mean (Al2O3:Cu) or the maximum (a-(GeSe3)0.75Ag0.25) value
of ζ(x).
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materials and processes. Comparison to experiment is qualita-
tive at this point due to: 1) inadequate sampling of possible metal
structures in the host and 2) incomplete treatment of electron–
phonon couplings,[23,24] now coarsely handled by broadening –
@f =@e eFj .[25] Notwithstanding this, we offer a new tool that
extends the reach of ab initio simulation, lends qualitative new
insight into transport in complex materials and is easily adapted
to standard codes. For a finite frequency ω, the scheme is useful
to determine absorptive and transparent parts of complex
materials, which might prove useful for designing waveguides,
etc.
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