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We develop a technique to determine the occupied eigenstates in the matrix formulation of the
electronic-structure problem. The theory uses a random vector projected onto the electron occupied
subspace by use of a Fermi-Dirac projection operator. This random starting vector is inserted into
the recursion scheme to generate all occupied eigenenergies and eigenvectors of the system. The
method produces a tridiagonal Hamiltonian matrix, which unlike the original Hamiltonian matrix,
can be diagonalized even for a very large system. Hellmann-Feynman forces are readily obtained
because the eigenvectors can be efficiently computed. Care must be taken to correct for instabilities
in the three-term recurrence which gives rise to spurious solutions.

I. INTRODUCTION

In an electronic-structure calculation of the relaxed
geometry of a large system the band structure energy
and the Hellmann-Feynman forces are the most difficult
quantities which must be evaluated. This is because they
depend upon the eigenvalue spectrum, which is usually
calculated by diagonalization of the Hamiltonian matrix.
In this paper, we describe a method for calculating the
occupied electronic energy eigenvalues and eigenvectors
for which the number of floating point operations is pro-
portional to (P x M) + (N x M x M), where P is the
number of operations to compute a single moment of the
Hamiltonian, N is the dimension of the Hamiltonian and
M is proportional to the number of occupied levels. The
utility of this method over standard matrix diagonaliza-
tion routines accrues when the number of the occupied
levels is much smaller than the dimension of the Hamil-
tonian, NV, and if P is linearly proportional to N.

Random vectors were introduced in a recent paper
by Drabold and Sankey (DS) (Ref. 1) who proposed a
method for the calculation of the electronic structure of
an N-atom system with linear scaling with system size
(a so-called order N method). That method was based
upon the use of random vectors which mimic the effect
of the impartial vector |£),

1

where the 9; are eigenstates of the single particle Hamil-
tonian H, Hvy; = €;9;. DS used energy moments to
construct the electronic density of states (DOS) using
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a maximum entropy scheme. From the DOS, the band
structure energy can be obtained, Eps = ff; ED(E)dE.

A method similar to that of DS was used by Skilling?
and Silver et al.3 Silver et al. studied a two-dimensional
(2D) 4x4 Heisenberg model. We have recently found that
related ideas have been investigated in nuclear physics,
primarily for computing level densities.* The use of ran-
dom vectors in a recursion scheme was first used by Lanc-
zos himself in the recursion method that now bears his
name.® A comparison of Lanczos recursion and moments
using random vectors has been made.® In addition, ran-
dom vectors in a recursion scheme have been used to
calculate the density of states of phonons in amorphous
solids.”

In this work, we describe further applications of ran-
dom vectors to the electronic structure problem. Here we
use the recursion method to compute its spectral prop-
erties. A random vector is projected (using a Fermi-
Dirac projection operator) onto the occupied subspace of
eigenvectors and is used as a starting vector in the recur-
sion method,® to generate a tridiagonal matrix. Because
of instabilities of the recursion method, spurious states
(described below) must be taken into consideration. As
an example, we apply this theory to an empirical tight-
binding Hamiltonian. With alterations, the method can
be applied to plane wave basis calculations as well.? We
will report this plane wave work elsewhere.?

II. METHODOLOGY

To illustrate these ideas we comsider a tight-binding
model with N states, specifically the Vogl et al.l! sp3s*
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nearest neighbor tight-binding Hamiltonian model of
GaAs. Here, N is 5 x ny4, where ny is the number of
atoms. For demonstration purposes, we choose a 64 atom
cubic supercell of GaAs in which we displace each atom
in each of three directions by a random amount between
—0.1 and +0.1 A. This distortion breaks the symmetry of
the cell. We use the I point (k = 0) as the intercell wave
vector. The hopping parameters are scaled with nearest
neighbor distance as d=2. The size of the Hamiltonian
matrix is 320 x 320, which is readily exactly diagonalized,
so that we can test the approximations and convergence
of the ideas presented here.

The process is started by generating a normalized ran-
dom vector |z) in the space of vectors of dimension N by
use of a random number generator. This random vector
will have components z; on all eigenstates ; (occupied
and unoccupied),

|z) = Zz.-m), (1)

of the N x N Hamiltonian matrix. This vector is next
projected onto the subspace of occupied states by ap-
plying the Fermi-Dirac projection operator to it, f (fI ),
where

f(H) = (LHED 1) (2)

The utility of this operator has been noted in other con-
texts by Daw.!2 To apply fto |z}, we first scale and shift
the Hamiltonian H so that its spectrum lies in the range
[-1,1]. Then f is expanded in a Tchebychev series of K
terms in H s

K

F(H) =Y du(Er)Ta(H). (3)

n=0

In this paper, we will choose the temperature parame-
ter B3 large enough so that the action of the Fermi-Dirac
operator on an eigenstate is to effectively multiply it by
zero or 1. This requires a band gap between occupied
and unoccupied states for this to be strictly true, and
this is the only case we considered here. However, if we
did wish to investigate some conduction states, we sim-
ply choose Ef to be in the conduction band, and the
parameter 8 can be made larger. This approach should
therefore be applicable to metallic systems which are a
persistent challenge to ab initio methods.

The key utility of the projection methods is that it
enables us to work entirely within the occupied subspace
which has dimension n4cc, the number of occupied elec-
tronic states, rather than N which can be much larger
than necc. Of course one can view the Car-Parrinello!3
and conjugate gradient' as variants on this idea; itera-
tively “filtering” out the lowest energy (occupied) eigen-
vectors. The present operator technique accomplished
this directly—i.e., noniteratively, in one application of the
Tchebychev approximant Fermi-Dirac operator.

The number of terms K in the expansion of Eq. (3)
needed to obtain an accurate representation is between
100 and 200, and is independent of the system size. No-
tice that the expansion coefficients depend on Er and

implicitly on 3 and can be computed quite simply.'® The
projected random vector |z) obtained from Eq. (3) is

12) = (D)) = 3 da(BR)(Tn(@)le)).  (4)

This requires the application of T,,(H) on |z) which is
evaluated through a recurrence relation of Tchebychev
polynomials,

Ta(H)la) = 20T, 1(H)|z) — Tu—2(H)lz), ()

with To(H)|z) = |z) and Ty(H)|z) = H|z). The pro-
jected random vector z can then be written in terms of
occupied states as

Z Zi|;)- (6)

© occupied

|2) =

We show in Fig. 1 the Fermi-Dirac function obtained
from Eq. (3) using 150 terms in the Tchebychev expan-
sion for our 64 atom GaAs supercell. The highest occu-
pied valence state is at +0.05, and the lowest occupied
conduction state is at +0.14. These two energies are in-
dicated by short vertical lines in the figure. The Fermi
level Er was chosen half way between these, and the g
parameter is 100. We see that this expansion accurately
represents a Fermi-Dirac function, except for small oscil-
lations near the conduction band edge. In the calcula-
tions reported in this paper these small wiggles cause no
difficulty. However, they can be reduced if necessary sim-
ply by increasing the number of terms in the Tchebychev
expansion.

We now attempt to exploit the fact that the vector
|z) contains only occupied states. Therefore, any spec-
trum of energy eigenstates extracted from |z) must con-
tain only occupied eigenvalues and no unoccupied eigen-
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FIG. 1. Plot of the Tchebychev expansion of the
Fermi-Dirac function using 150 terms, a 3 factor of 100, and
the Fermi level Er midway between the conduction and va-
lence band extremum. The top of the valence band and bot-
tom of the conduction band lie at the energies indicated by
the small vertical lines. The energy scale has been adjusted
so that the entire spectrum lies in the range —1 to +1. The
inset shows a blow-up near the Fermi-level Er.
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values. An efficient method to extract the energy spec-
trum from a single vector is the recursion method® or
the Lanczos method. We use the vector |z) as a start-
ing vector |zp) and generate the sequence of vectors
|20),]21), |22); -y |2ar).  Since only occupied states are
contained in |2o), the sequence should theoretically termi-
nate at |zpr), where M = ng..—1, and 7o is the number
of occupied states. As discussed below, this termination
is not realized due to instabilities in the three term recur-
rence. When, due to finite precision arithmetic, a small
component of an energy eigenstate spuriously appears in
|2n), the error propagates and grows exponentially in the
subsequent recursion vectors |z,1), |zn+2) and so on. In
order to prevent this, we amend the approach.

The sequence obtained from the recursion (Lanczos)
method from M+1 applications of H is

H|z0) = ao|z0) + b1]21)
H|z1) = a1]z1) + ba|20) + ba|22)

H|z3) = az|z2) + ba|z1) + bs|23)

Hlzp—1) = am—1]zam—1) + bv—1]zm—2) + bar|zar)

H|ZM> = aM|zM) =+ lezM_1>

The coefficients a;, and b; are easy to determine, as dis-
cussed in Ref. 8, and their evaluation is an order N oper-
ation if the matrix H is sparse. Unfortunately there are
order M of these coefficients, so in total their complete
evaluation is order M x N.

The recursion sequence generates the tridiagonal ma-
trix HRec

ay by
by a1 b
by a3 by
HRec=
by—1 am-1 by
by aym

(7)

The eigenvalues are obtained from this tridiagonal ma-
trix in order M operations.'® Diagonalization of Hpgec
bypasses the order N3 diagonalization of the original
N x N nontridiagonal tight-binding (or plane wave) ma-
trix. The classical Householder tridiagonalization is an
O(N?3) procedure, and does not exploit sparseness of the
Hamiltonian.!” And of course the preconditioned start-
ing vector for the Lanczos procedure allows us to work in
the occupied subspace, whereas the Householder method
does not.

The procedure just described can be used for either

tight-binding models or for plane wave models. However,
in either case we must face the complications of “ghost-
ing” and “cloning.” We define a “ghost” state as an en-
ergy eigenstate generated by the recursion method which
is not contained in the original starting vector zo. In the
present case, since zo lies within the subspace of occu-
pied states, a ghost is defined to be an unoccupied state
generated by instabilities in the three term recurrence.
Similarly, we define a “clone” as a replica of an occupied
state, which is generated after the recursion method has
already converged on this occupied state. We make a
distinction between ghosts and clones in the electronic
structure problem, but the generic phenomenon in Lanc-
zos (recursion) methods is referred to as ghosting.!”

We now illustrate the formation of ghost states. Start
with the vector

1
|20) = 7N > ), (8)

i occupied

which contains an equal admixture of each occupied state
and no unoccupied states. This vector is artificially cre-
ated by exactly diagonalizing the N x N Hamiltonian of
our tight-binding GaAs example. After each recursion
step, we compute f8host)

fshost — Z

1 unoccupied

[(¥ilza)l* (9)

which is the projection of the recursion vector z, onto
any unoccupied states v;. The logarithm of f8host is
shown in Fig. 2. From this figure it is seen that initially
the projection of ghost states is machine precision, and
then grows exponentially with the recursion step number.
After only twenty recursions the vector has nearly unit
probability of being in the unoccupied subspace.
Cloning is a similar phenomenon, but refers to states
in the occupied subspace. To illustrate this, we again

host
Logio f§"°*
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FIG. 2. The logarithm of f&"°** defined by Eq. (9) which
gives the projection of the recursion vector z, onto any unoc-
cupied state. The starting vector zo was taken to be entirely
within (machine accuracy) the occupied subspace. The pro-
jection initially grows exponentially with each recursive step
due to instabilities of the recursion method.
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start with zo of Eq. (8), and after every recursion project
out “by hand” the occupied states from each of the states
|zn) as

lzn)conected = ‘Zn) - Z

% unoccupied

(Yilzn) ).

This removes all ghost states so that we can see the ef-
fect of cloning under ideal conditions. We then compute
flome defined as

fome =3 " ilzn) P (10)

i (n

Successive states |z;) generated by the recursion method
theoretically are orthogonal to each other, but because
of instabilities in the three term recurrence, they are not.
The logarithm of f'°"¢ is shown in Fig. 3. As the recur-
sion process proceeds, the projection of each state |z,)
onto previous recursive states |2;) (¢ < n) increases; far
less rapidly than for ghosts, but nevertheless by 70 re-
cursive steps, z,, has nearly unit probability of being pro-
jected onto earlier states. Thus previous recursive vectors
z; are “cloned” into the current recursive vector z,. Op-
erationally this means that after many recursions a single
eigenstate will appear multiple times.

Once these difficulties are understood, we can adjust
the approach so that these factors do not destroy the
convergence. We give two examples of approaches that
surmount these difficulties.

III. PRACTICAL IMPLEMENTATIONS

We begin by describing the first approach. Ghost
states can be removed by performing a recursion not with
H, but rather using the operator H f (ﬁ ). The spectrum
of Hf (ﬁ ) is €;f(e;), which effectively places all unoccu-
pied eigenvalues at zero energy and occupied states will
exist at their correct energy. The states of zero energy
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FIG. 3. The logarithm of f£'°™® defined by Eq. (10) which
gives the projection of the recursion vector z, onto all previ-
ous recursion vectors z;. It grows due to instabilities of the
recursion method.

do not appear in the calculated spectrum, since they are
removed from the recursion vector when the operator is
applied to that vector. This method therefore effectively
removes ghosts, but requires that each step of the re-
cursion method requires a computation of f(H)|z). As
explained earlier, the weight of a ghost state will grow
exponentially with the number of recursion levels. By
replacing the operator H with H f (ﬁ ) we are effectively
removing them with exponential weighting.

Cloning is still present, and these extra cloned states
makes it necessary to include more recursions M than
we have occupied states. If we have Moce occupied states,
and perform M levels of recursion of Hf(H) (M > ngcc),
then at least M — n,.. states are clones. We increase
M until all ny.. states are converged. The presence of
converged states can be easily tested by the method of
“orbital peeling.”*#1° In orbital peeling, the M x M tridi-
agonal Hamiltonian Hge. is diagonalized as well as the
(M —1) x (M —1) Hamiltonian Hg,_ obtained by remov-
ing the first row and column of Hge.. Cloning arises from
a loss of orthogonality between the computed recursion
vectors. The central idea in orbital peeling is that the
clone eigenvector contains the nonzero component of the
starting vector, |2q), in a recursion vector |z,) which is
not (but should be) orthogonal to |zp). Hence, the clone
eigenvalue is unaffected when the first row and column
of the tridiagonal matrix are removed. The orbital peel-
ing method works similarly for ghost eigenvalues, which,
by definition have a zero component of |2z), and so are
unaffected when |zp) is removed as a variational degree
of freedom. To discard clones, we search for eigenstates
of Hgec that are different from those of Hy . —these are
candidates for being converged occupied states. Such
candidates can be further tested for convergence by com-
paring (YRrec|H|¥Rec) With €rec, where H is the origi-
nal full sparse Hamiltonian (not Hgrec) and Ygec are the
eigenfunctions obtained from the recursion method.

The results of this first method are shown in Table 1.

TABLE I. Table showing the number of converged occu-
pied states, n., as the number of recursive steps M increases.
The recursion was performed using H f (H) as the effective
Hamiltonian and the starting vector was a computer gener-
ated random vector. A candidate for convergence was tested
by orbital peeling (see text). The number of occupied states,
Tocc, for this 64 atom GaAs supercell example is 128. The
Fermi-Dirac projection operator was expanded exactly as in
Fig. 1.

Order of recursion Number of converged eigenstates

M e
50 31
100 81
128 104
150 115
175 122
200 125
207 127
208 128
250 128
300 128
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Here we show the number of converged states n. as the
order of recursion M is increased. Again, this exam-
ple is for a 64 atom GaAs supercell which contains 128
occupied states. We use 150 terms in the Tchebychev ex-
pansion with 8 = 100 as in Fig. 1. We notice that even
for a small number of recursions M that we obtain many
converged states. One does not need n,.. levels of recur-
sion to produce a substantial set of accurate eigenstates.
At M = nyc., we have converged most (104) of the ngc.
(128) states. In this example, it takes M =208 to accu-
rately determine all eigenstates. Adding up all eigenval-
ues and comparing with the exact sum, Zlﬁ flei)e;, we
find an error of 1.5 x 107°%. Finally, increasing the level
of recursion M beyond the point where all ng.. states
have converged produces no more states (clones). We
note in passing that a single calculation of the “a” and
“b” recursion coefficients can be done with a single large
M value (we chose 350 in this example) and the results
can be analyzed for convergence for any M values less
than this.

It must be pointed out that construction of the eigen-
functions is an order N3 operation, or more precisely
M? x N. This is because the column vectors obtained
from the recursion method (of length M) refer to the ba-
sis of states |z,) which are of length N, and are in the
space we actually want the eigenvectors. This is unfor-
tunate, especially since clones force us to generate more
vectors than needed. If the sequence were to accurately
terminate after n,c. steps as it theoretically should (were
it not for instabilities) then the states z, would have
been an orthogonal set of states in the occupied sub-
space. Since these are some unitary transformation of
the occupied energy eigenstates, the charge density and
band structure energy could be obtained without diago-
nalization of H... at all, and the state 2, could be used
for charge densities just as eigenstates.

We now briefly describe a second approach. In some
situations, it is undesirable to perform a recursion of
Hf (H ), particularly since multiplying by f (ﬁ ) at each
recursive step requires multiplication of the (sparse) ma-
trix H and a vector K times, where K is the number of
terms in the Tchebychev expansion and is on the order
of one hundred. Instead, we begin with the random pro-
jected vector |zo) (= f(H)|x)), and allow ghost states to
appear. The idea is that generally a ghost state does not
appear until some occupied states have well converged
in the recursion Hamiltonian Hgre.. However, certain oc-
cupied states converge much more readily than others.
By choosing several random vectors, and projecting out
from the Hamiltonian these previously converged occu-
pied states, we can obtain the full occupied spectrum of
states.

As an example, we generate a projected random vec-
tor |zo) and perform M levels of recursion using it as a
starting vector. Here we arbitrarily choose M to be ngcc
(the number of occupied states, i.e., 128 for this GaAs
example). The number M is adjustable, and can actu-
ally be made much smaller than n,... Most of the states
generated will be ghost states, but a few will be genuine
occupied states. These genuine states can be identified in
a manner similar to the orbital peeling described earlier
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FIG. 4. The spectrum of converged eigenvalues generated
by using a set of nine different random vectors (RV’s). The
eigenvalues are in eV units, with ~ —13 eV being the bot-
tom of the valence band and ~ +0.5 eV being the top of
the valence band. The first random vector converges to the
“easy” states at the extremes of the occupied spectrum. Fur-
ther random vectors fill in the spectrum sequentially, until all
128 occupied eigenstates are determined with nine (9) random
vectors.

in the first approach. The dozen or so converged occu-
pied states shown for a single random vector are shown
in the lower panel of Fig. 4. Notice that the states that
have converged are near the bottom and top of the oc-
cupied spectrum as is typical of a Lanczos-like recursion
method.

Next we choose a second random vector, then a third
and so on, and project them onto the occupied subspace
by application of the Fermi-Dirac operator. The Hamil-
tonian used in the recursion method for each subsequent
random vector is replaced by a modified projected Hamil-
tonian

Nc
H— H-) el (w5l (11)
=1
Here € and v are the n. converged occupied eigenvalues
and eigenvectors converged so far by all previous random
vectors. This Hamiltonian forces the recursion method
to generate only new occupied eigenvectors and not the
“easy” eigenvectors previously found. The projection
term of the Hamiltonian in Eq. (11) is very similar to
a Kleinman-Bylander?® separable pseudopotential, and
will computationally have a similar cost in plane wave
calculations.

In Fig. 4 we show the results of this procedure using
nine (9) different random vectors. The second random
vector, shown in the second panel from the bottom, con-
verges to the extremal (lowest) energy eigenstates which
were not found by the first random vector. As more ran-
dom vectors are used, the spectrum fills in from the ex-
tremes, until finally for the last random vector (the ninth
in this example) the last of the n,. state is determined.

IV. CONCLUSION

In summary, we have further investigated the use of
random vectors within the matrix formulation of the
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electronic-structure problem. A random vector is appeal-
ing since in general it has components on all energy eigen-
vectors, and, in particular, the occupied states which we
seek. We find that a Tchebychev approximation of the
Fermi-Dirac projection operator is very accurate and a
useful noniterative scheme for projecting the random vec-
tor onto the occupied subspace.

We have described two applications of the recur-
sion method which satisfactorily determine the occupied
eigenstates. In any application, care must be taken to
account for the recursion method’s tendency to produce
multiple copies of occupied states (clones) or unoccu-
pied eigenstates (ghosts) from a starting vector which is
known to have its spectrum in the unoccupied subspace.

The methods we describe still scale with the cube of the
number of atoms, but may be competitive with existing
order N3 techniques!®!* when the occupied subspace is
a small fraction of the size of the full space.

Note added in proof. We have recently implemented
essentially the present method for ab initio molecular
dynamics using a plane-wave basis and nonlocal pseu-
dopotentials, and find excellent results compared to con-
ventional plane-wave methods.
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