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Structural origins of electronic conduction in amorphous copper-doped alumina
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We perform an ab initio modeling of amorphous copper-doped alumina (a-Al2O3:Cu), a prospective memory
material based on resistance switching, and study the structural origin of electronic conduction in this material.
We generate molecular dynamics based models of a-Al2O3:Cu at various Cu concentrations and study the
structural, electronic, and vibrational properties as a function of Cu concentration. Cu atoms show a strong
tendency to cluster in the alumina host, and metallize the system by filling the band gap uniformly for higher Cu
concentrations. We also study thermal fluctuations of the HOMO-LUMO energy splitting and observe the time
evolution of the size of the band gap, which can be expected to have an important impact on the conductivity. We
perform a numerical computation of conduction pathways, and show its explicit dependence on Cu connectivity
in the host. We present an analysis of ion dynamics and structural aspects of localization of classical normal
modes in our models.
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I. INTRODUCTION

Nonvolatile memory devices based on resistive switching
characteristics have been studied since the late 1960′s [1].
In these devices, application of an external bias potential
across an electrolyte changes the electrical conductivity of the
electrolyte by changing its structure. This process is reversible
and can be performed in the timescale of nanoseconds. Three
types of resistive random access memory (RRAM) devices
have been studied in detail [2] and these include RRAM
based on oxygen vacancies, RRAM based on thermochemical
effects, and RRAM based on the electrochemical metalliza-
tion. The latter class of devices are also called conducting
bridge random access memory or CBRAM. The CBRAM
devices are composed of a thin solid electrolyte layer placed
between an oxidizable anode (e.g., Cu, Ag, or TiN) and an
inert cathode (e.g., W or Pt). The Cu, in its ionic state, is
converted into the conducting “filament” by the applied field:
the ions are reduced by electrons flowing from the cathode to
leave them in their metallic form, although other counterions
(e.g., OH-) may also be involved in this process [3]. With the
application of a reverse bias, the connectivity of the cluster can
be destroyed, and the device is put into a highly electronically
resistive state. The details of the mechanism of CBRAMs
have been described elsewhere [4,5]. The performance of
CBRAM devices has been studied with several materials
as the solid electrolyte which include chalcogenides [6,7],
insulating metal oxides [8–14], and bilayer materials [15,16].
CBRAM devices have demonstrated excellent performance
in terms of operational voltage, read/write speed, endurance,
and data retention. Among the host materials reviewed for
CBRAM devices, alumina (Al2O3) shows particular promise.
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It has a high dielectric constant, large band gap, and its amor-
phous phase is highly stable [17,18]. The experimental results
for CBRAM devices based on Cu alloyed with Al2O3 have
shown that the cell exhibits highly controlled set and reset
operations, fast pulse programming (10 ns) at low voltage
(<3 V), and low-current (10 μA) with 106 cycles per second
for the writing speed [12].

In our recent work [19], we developed a method to compute
a space-projected conductivity (SPC) and utilized the method
to visualize the conduction-active parts of the network for
two different CBRAM materials, metal-doped a-Al2O3 and
a-GeSe3. We observed that the Cu atoms cluster and the
clustered Cu atoms form a conducting pathways in a-Al2O3

whereas the Ag atoms are more or less uniformly distributed
in the a-GeSe3.

In this paper, we further investigate the microscopic origin
of electronic conduction in Cu-doped a-Al2O3. We use ab
initio molecular dynamics (AIMD) to generate atomic mod-
els of a-Al2O3:Cu for varying Cu concentrations. The work
presented in this paper shows that an increase in local Cu
concentration can result in stable conducting pathways due
to the strong tendency of Cu atoms to cluster in the ionic
host. This would lead to a highly stable low-resistance state
(LRS) for high copper concentration, which does indeed seem
to be the case for copper-alumina devices [12]. We study
the electronic properties for these models and are able to
crudely estimate the local concentration of Cu above which
CBRAM device switches to the LRS. We present the numer-
ical computation of conduction-active parts of the network
by computing SPC, and show that the strong electron-lattice
coupling for electron states near the gap leads to interesting
and substantial thermally induced conductivity fluctuations on
a picosecond timescale. We study the lattice dynamics for the
doped models and show that the lower frequency vibrational
modes correspond to the Cu atoms.
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TABLE I. Initial and final densities of a-Al2O3:Cu models.

Cu content Mol. formula ρin (g/cc) ρ f (g/cc)

0% (Al2O3)1.00Cu0.00 3.175 3.175
10% (Al2O3)0.90Cu0.10 3.58 3.75
20% (Al2O3)0.80Cu0.20 3.78 3.99
30% (Al2O3)0.70Cu0.30 4.53 4.82

The rest of the paper is organized as follows. Section II de-
scribes computational details used to create the structures and
also the details of our method to obtain the SPC. Section III
includes results where we discuss structural, electronic, and
dynamical properties of the models in different subsections.
Section IV provides the conclusions.

II. COMPUTATIONS

A. Model generation

In this work, we use AIMD to generate four atomic models
with the composition of (a-Al2O3)1−nCun with n = 0, 0.1,
0.2, and 0.3. We used a density of 3.175 g/cm3 for a-Al2O3

[20,21]. For the Cu-doped models, we referred to the literature
[22] to make an initial guess, then carried out a zero-pressure
relaxation to correct/optimize the result. For each model, we
began by taking a cubic supercell of 200 atoms with randomly
initialized atomic positions. Plane-wave density functional
calculations were performed using the VASP package [23] and
projector-augmented wave (PAW) [24,25] potentials within
the local density approximation (LDA) [26] using periodic
boundary conditions. We used a kinetic energy cutoff of
420 eV and the � point to sample the Brillouin zone. A time
step of 1.5 fs was used and the temperature was controlled by
a Nosé-Hoover thermostat throughout.

We performed a melt-quench simulation [27] with a start-
ing temperature of 3500 K. After annealing the “hot liquid”
for 7.5 ps at 3500 K, we cooled each model to 2600 K at a
rate of 0.27 K/fs as discussed in [28] and then equilibrated for
10 ps. Each model was then quenched to 300 K at the same
cooling rate 0.27 K/fs and further equilibrated for another
10 ps. Zero-pressure relaxations were used to determine the
final densities for Cu-doped models. The final force on each
atom is no more than 0.01 eV/Å. The initial and final densities
are provided in Table I.

B. Spatial projection of electronic conductivity

In this section, we briefly discuss a method to obtain
a space-projected electronic conductivity. We discuss the
method in detail in Ref. [19]. We begin by writing the diagonal
elements of the conductivity tensor for each k point k and
frequency ω using the standard Kubo-Greenwood formula
(KGF) [29,30] as

σk(ω) = 2πe2

3m2ω�

∑
i, j

∑
α

[ f (εi,k ) − f (ε j,k )]

× |〈ψ j,k|pα|ψi,k〉|2δ(ε j,k − εi,k − h̄ω). (1)

In the above equation (1), e and m represent the charge
and mass of the electron, respectively. � represents the vol-
ume of the supercell. We average over diagonal elements
of conductivity tensor (α = x, y, z). ψi,k is the Kohn-Sham
orbital associated with energy εi,k and f (εi,k ) denotes the
Fermi-Dirac weight. pα is the momentum operator along each
Cartesian direction α. Let

gi j (k, ω) = 2πe2

3m2ω�
[ f (εi,k ) − f (ε j,k )]δ(ε j,k − εi,k − h̄ω).

Then, suppressing the explicit dependence of σ on k and ω,
the conductivity can be expressed as

σ =
∑
i, j,α

gi j

∫
d3x

∫
d3x′[ψ∗

j (x)pαψi(x)][ψ∗
i (x′)pαψ j (x

′)],

(2)
a form that reminds of the the current-current correlation
function origins of Kubo’s approach. If we define complex-
valued functions ξα

i j (x) = ψ∗
i (x)pαψ j (x) on a real-space grid

(call the grid points x) with uniform spacing of width h in
three dimensions, then we can approximate the integrals as a
sum on the grid. Thus, Eq. (2) can be written as

σ ≈ h6
∑
x,x′

∑
i, j,α

gi jξ
α
ji(x)ξα

i j (x
′). (3)

In the preceding, the approximation becomes exact as h → 0.
If we define a Hermitian, positive-semidefinite matrix

�(x, x′) =
∑
i, j,α

gi jξ
α
ji(x)

(
ξα

ji(x
′)
)∗

, (4)

we can spatially decompose the conductivity at each grid
point as ζ (x) = |∑x′ �(x, x′)|. ζ (x) contains vital informa-
tion about the conduction-active parts of the system.1 The
form of ζ makes use of a common approximation for con-
ductivity estimates in disordered systems, namely, averaging
over the diagonal elements of the conduction tensor. Thus
images of ζ (x) made in this way should be thought of as
indicating those parts of the network that would support a
current through the system with ideal leads in the x, y, and z
directions.

To implement the method, we used VASP and associated
Kohn-Sham orbitals ψi,k. We divided the supercell into 36 ×
36 × 36 (dim� = 46 656) grid points and obtained the wave
function at each point by using the convenient code of Feen-
stra and Widom [31]. In computing the ξα

i j , we used a centered
finite-difference method to compute the gradient of ψi for
each α. We used an electronic temperature of T = 1000 K for
the Fermi-Dirac distribution. We approximated the δ function
in Eq. (1) by a Gaussian distribution of width kT , where k is
Boltzmann’s constant. In this paper we restrict ourselves to the
case of ω = 0. We note that the value of the conductivity from
an expression such as Eq. (3) is somewhat dependent upon the

1A simpler scheme is to just look at the structure of the Kohn-Sham
eigenfunctions near the Fermi level to identify the conduction active
parts of the network. While this is a sensible first approximation,
it entirely neglects the current-current correlations that underlie the
derivation of the Kubo formula from linear response theory.
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FIG. 1. g(r) and S(q) of a-Al2O3: (a) g(r) computed on models
are compared with measured g(r). (b) S(q) computed on models are
compared with measured S(q). (c), (d) Partial g(r) and partial S(q),
respectively, for Al-O, O-O, and Al-Al pairs.

smearing of the δ function (temperature T ), but the structure
of the SPC ζ is far less so.

The first appearance (to our knowledge) of an equation
of the form shown in Eq. (2) (obtained from the Kubo-
Greenwood formula in one dimension) was in a paper of
Economou and Soukoulis [32]. Baranger and Stone [33]
elegantly generalized this with the inclusion of a magnetic
field, and worked out the current density within linear re-
sponse. These formulas were applied to a two-dimensional
(2D) Anderson model, yielding interesting results even for
a relatively simple system [34]. Our work is different from
the preceding in at least two senses: first, we adapt this
general approach to practical materials problems using fairly
realistic (Kohn-Sham) wave functions. Also, though we do
not exploit it here, the eigenvalues and eigenvectors of the
positive-semidefinite matrix � are interesting objects. Invari-
ably, only a tiny fraction of these eigenvalues are significantly
different from zero, and the remaining handful of eigenvectors
conjugate to nonzero eigenvalues specify the key conduction
“modes” of the system [35].

III. RESULTS

A. Structural and electronic properties

1. Bonding and topology of the models

As a test of validity of our models, we compute the total
radial distribution function g(r) on a-Al2O3 models and com-
pare with experimentally measured neutron scattering g(r)
from [36]. A plot showing these two g(r) is presented in
Fig. 1 and shows that the models capture the structural order
up to 6 Å reasonably well. We also compute the structure
factor S(q) on our models at 2600 K and compare it with
S(q) measured on l-Al2O3 [37]. The plot shows that these
two S(q) show a satisfactory agreement, especially on the

positions of peaks at 1.8, 2.8, and 4.7 Å
−1

. The bottom left
plot in Fig. 1 presents the partial g(r) computed on models
of a-Al2O3. The peaks at 1.81, 2.78, and 3.17 Å corre-
spond to the geometrical bond distances for Al-O, O-O, and

FIG. 2. Total g(r) computed from the models of a-Al2O3:Cu
at various concentrations of Cu. The hump appearing in Cu-doped
models, indicated by arrow, originates from Cu-Cu correlation.

Al-Al pairs, respectively; these results are in agreement with
similar earlier works [38–40]. The bottom right plot in Fig. 1
shows the partial S(q) corresponding to Al-Al, Al-O, and
O-O pairs computed on a-Al2O3 models. We see that the first

peak in the total S(q) occurs at 2.8 Å
−1

due to the partial
cancellation arising from Al-O correlations.

For doped models, the computed g(r) are plotted in Fig. 2
and show that the position of first peak remains largely the
same as undoped a-Al2O3 suggesting that Al-O bond remains
unaltered. As the concentration of Cu increases, a hump
corresponding to Cu-Cu correlation appears and grows at r ≈
2.44 Å. The relative sharpness of Cu-Cu hump, even for the
lowest concentration of Cu, provides a hint that Cu atoms are
probably clustered. Indeed, a visual inspection of the models,
shown here in Fig. 3, clearly shows the strong tendency of Cu
atoms to cluster.

FIG. 3. Final relaxed a-Al2O3:Cu models. Top plots (from left)
represent for 0% and 10% Cu and bottom plots (from left) represent
for 20% and 30% Cu. Atom’s color: Al (gray), Cu (blue), and O
(red).
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TABLE II. Average coordination numbers around Cu atoms for
10%, 20%, and 30% Cu models.

Cu content(%) Cu-O Cu-Cu Cu-Al

10 1.15 5.1 3.0
20 0.68 6.85 2.45
30 0.48 8.27 1.78

It is significant that Cu strongly tends to cluster. A study
by Dawson and Robertson [41] asserts that the Cu-Cu inter-
actions become more favorable with increasing Cu content.
We study the average coordination number around Cu atom
at different Cu concentrations as shown in Table II. We
take the first minimum in suitable partial g(r) as the cutoff
distance to define the coordination number. The increase in
Cu coordination by Cu and the decrease in Cu coordination
by Al and O implies the segregation of Cu from the host and
formation of cluster.

2. Electronic structure

a. Density of states and the localization. Alloying with
copper in a-Al2O3 is expected to have effects on electronic
properties which are of interest for applications of these
materials in CBRAM devices. We investigate these effects
by examining the density of Kohn-Sham eigenvalues (EDOS)
and their spatial localization. The localization is gauged by
computing the inverse participation ratio (IPR) that is defined
as IPR = ∑

i ani
4/(

∑
i ani

2)2 [42], where the a′
nis are the

contribution to eigenfunction ψn from the ith atomic projected
orbital obtained from VASP. The values of IPR extend from
nearly 0 to 1. The states with higher IPR values are more
localized. Figure 4 shows the computed EDOS and IPR
as a function of Cu concentration. We find a decrease in
HOMO-LUMO gap with increasing Cu concentration; at Cu
concentration 20% and 30%, the EDOS is continuous across
the Fermi level. The states that fill in the band gap are quite
extended as indicated by small values of IPR around the Fermi
level in Fig. 4. The mean IPR values around the gap declines
monotonically with Cu concentration.

To physically interpret the connection of the HOMO-
LUMO gap and the extent of localization with electronic
conductivity (σ ), let us rewrite Eq. (1) for the dc conductivity
(T = 0 K) in the form of Mott and Davis [43]:

σdc = 2πe2h̄�

m2
|Dε f |2N2(ε f ), (5)

where Dε f is a matrix element of ∇α between Kohn-Sham
states near the Fermi level and N (ε f ) is the density of states.
For small gap, one expects more states near the Fermi level.
The magnitude of matrix elements Dε f for extended states
would be higher. So, the conductivity could be crudely linked
with the HOMO-LUMO gap of the material and the extent of
localization of the Kohn-Sham states.

By projecting the electronic states onto atomic sites, we
observe that the states near the Fermi level for the doped mod-
els consist of Cu orbitals. An example of the site-projected
EDOS, for 20% Cu, is plotted in Fig. 5. It is quite interesting
that at 20% and 30% Cu concentrations, Cu levels almost

FIG. 4. Electronic density of states (EDOS) and the inverse
participation ratio (IPR) computed from a-Al2O3:Cu models for
different concentrations of Cu. The black curve represents EDOS and
red vertical lines show IPR. The Fermi level is shifted to zero in all
plots.

uniformly fill the host a-Al2O3 gap as shown in Fig. 4. The Cu
does not form an impurity band, as one might naively suppose
from experience on heavily doped semiconductors. In Fig. 4,
we see that the models with higher Cu concentration produce
states near Fermi level that yield an essentially metallic form
of conduction. This is qualitatively different than the case
of Ag in GeSe3 [44], wherein the Ag atoms do not cluster

FIG. 5. Projected electronic density of states (EDOS) computed
from a-Al2O3:Cu models with 20% Cu. (a) Site-projected EDOS.
(b) Orbital-projected EDOS. The Fermi energy is shifted to zero.
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FIG. 6. Net Bader charge on Cu atoms calculated from
a-Al2O3:Cu models with 20% Cu concentration. A color code dis-
played on top is used to represent the charge state. Charge state of
zero, shown by green, represents a neutral Cu atom; the charge values
are in units of electronic charge. All Cu atoms are shown in color.
Light gray atoms represent Al and O atoms within the first cutoff
distance of Cu atoms.

and do not introduce states in the optical gap of the host. A
comprehensive study on chalcogenides [45] shows that states
near the Fermi level are mainly contributed from chalco-
gen atoms for lower concentration of Cu (<25%) and for
higher concentrations, Cu-derived states appear along with the
chalcogen states. So, Cu in chalcogenides behave differently
compared to Cu in alumina. We observe that electron states in
the alumina gap are filled mostly by 3d , 4s, and 4p orbitals
of Cu.

b. Charge analysis on Cu atoms. The formation of Cu
clusters in a-Al2O3 matrix leaves the Cu atoms in different
charge states depending on the local environment of these Cu
atoms with O and/or Al atoms. We performed Bader charge
analysis [46] to calculate net charge on these atoms and an
analysis for 20% Cu-doped model is shown in Fig. 6. The
charge state of the Cu atoms (shown in color in Fig. 6) can be
explained by a simple analysis of the first neighbors around
the Cu atoms. Among all the Cu atoms shown in the figure,
only five Cu atoms have exclusively Cu neighbors and are
neutral in nature; the rest of the Cu are neighbors with at least
one Al or O atoms. When a Cu atom is a neighbor with Al
or O atoms, bonding or charge transfer occurs. A Cu atom
bonded with O atoms is positively charged, whereas a Cu
atom bonded with Al atoms is slightly negatively charged and
can be understood in terms of difference in electronegativities
of Cu and Al. When a Cu atom is bonded with both O and
Al atoms, it is charge neutral. The charge compensation is
likely to happen in such bonding. The Cu atoms shown in
green are therefore almost metallic in nature and are likely
to form a conducting channel for the current to flow in the
network.

FIG. 7. Fluctuation of HOMO, LUMO, and HOMO-LUMO gap
(η) with time for 20% model at 1000 K. η(t ) is represented by black
line with its values given by right axis of the plot as shown by
arrowhead in the plot.

c. Thermally driven conduction fluctuations. In this sec-
tion, we discuss relatively dramatic thermally induced fluc-
tuations in the HOMO-LUMO splitting and consider the
electronic conduction mechanisms.2 We illustrate with one
of the conducting models (including 20% Cu) and performed
molecular dynamics (MD) at 1000 K for 24 ps. The fluctuation
of the frontier HOMO and LUMO levels with time is provided
in Fig. 7. η(t ) is the HOMO-LUMO splitting through the
course of the MD. The model reveals a large thermally driven
fluctuation in the value of the HOMO-LUMO gap with time.
As we discussed earlier in Sec. III A 2 a, the electronic con-
ductivity is crudely associated with the band gap. Following
Eq. (5), for dc conduction to occur, there needs to be finite
density of states (Nε f ) at the Fermi level (to enable electronic
transitions, as from Fermi’s golden rule) and nonvanishing
matrix elements |Dε f |2 as in Eq. (1). So, we expect more avail-
able states near the Fermi level for the system with small gap,
thus, the conductivity σ (t ) can be very crudely linked to η(t )
(small η ⇒ large σ ) in the spirit of Landau-Zener tunneling
[47,48]. We provisionally interpret the small-gap (small-η)
instantaneous configurations as low-resistance states, and the
large-gap configurations as high-resistance states.

It is therefore interesting to visualize the conduction-active
parts of the network for these different states. We selected
two snapshots (shown by orange arrows in Fig. 7), one rep-
resenting a small gap (low η) and the other large gap (high
η) from the simulation and obtained the SPC as described
in Sec. II B. The variation of the HOMO-LUMO gap due to

2Here and elsewhere in this paper, electronic time evolution refers
only to variation in Kohn-Sham eigenvalues/states on the Born-
Oppenheimer surface; no attempt is made to solve a time-dependent
Kohn-Sham equation.
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FIG. 8. Overlaying SPC values (orange spheres) with atomic
configuration: on the left, large-gap (high-resistance) state of
a-Al2O3:Cu model with 20% Cu. On the right, small-gap (low-
resistance) state of the same system. Color nomenclature: blue, Cu
atom; red, O atom; and gray, Al atom. The bond length of cutoff
2.6 Å is chosen. Circles with same color represent the same part of
the local configurations. There is a factor of about 104 between the
conductivity of the two conformations.

thermal fluctuations has also been studied in boron-doped a-Si
at 600 K, where it was observed that with addition of hydrogen
to the network, there occurs a thermal modulation of HOMO
and LUMO states causing the HOMO and LUMO states to
be overlapped at a certain interval of the thermal simulation
representing highly conducting configuration [49]. This com-
putation makes it clear that the dc conductivity is difficult to
accurately estimate since to handle the large electron-phonon
coupling for states near the Fermi level, long MD averages at
constant temperature would be required (within an adiabatic
picture for which one simply averages the Kubo formula over
a trajectory).

d. Space-projected conductivity. We investigated SPC by
computing ζ (x) as described in Sec. II B in our models. SPC
values are evaluated at coarse three-dimensional (3D) grid
points inside the supercells. A graphical representation of SPC
values in 3D grid points overlaid with the atomic configuration
is shown in Fig. 8. This figure shows the SPC computed on
two models: one with large η and the other with and small
η. We include 12% of the highest local contributions to SPC
in each plot. The SPC reveals that the conduction path is
primarily along interconnected Cu atoms. A few O atoms in
the vicinity of Cu atoms also participate in the conduction
whereas Al atoms do not show any role in the conduction. We
see that the SPC for the large-gap snapshot is disconnected
so that ζ (x) appears to be localized in certain region, whereas
the SPC with small gap forms an interconnected chain for the
conduction. For these two particular structures, we observed
the local configurations as shown by the enclosed circles of
Fig. 8 where the Cu atoms come closer to form short bonds
and form a closed network in the right plot compared to the
left plot.

This shows that the connectivity among Cu atoms deter-
mines the conductivity of the system. Aside from the struc-
tural difference, the type and the number of clusters also
affect the HOMO-LUMO gap. It has been shown that an
alternation of the HOMO-LUMO gap occurs between even-
and odd-numbered isolated clusters due to electron-pairing
effects and particularly large gap for cluster size 2, 8, 18,
20, 34, and 40 which are also called as magic clusters [50].
At this temperature, the diffusion of Cu atoms may cause the

FIG. 9. Mean-squared displacement at 800 and 1000 K for 20%
Cu model.

change in the bonding environment of Cu atoms, resulting in
the variation of the gap with time.

B. Ion and lattice dynamics

Since the ion and lattice dynamics are of key importance
for applications, we discuss these in this section.

1. Ionic motion

As a representative example, the 20% model was annealed
at different temperatures 800 and 1000 K for 15 ps, and the
resulting ion dynamics was studied by calculating the mean-
squared displacement for each atomic species as

〈r2(t )〉α = 1

Na

Nα∑
i

〈|	ri(t ) − 	ri(0)|2〉, (6)

where Nα represents the number of atoms of species α, ri(t )
represents the position of atom i at time t , and the 〈. . .〉
represents an average on the time steps and/or the particles.
The connection between mean-squared displacement and the
self-diffusion coefficient is given by Einstein’s relation

〈r2(t )〉 = A + 6Dt, (7)

where D is the self-diffusion coefficient, A is a constant, and
t is the simulation time. Figure 9 shows the mean-squared
displacement for the corresponding species. Clearly, Cu atoms
are more diffusive than Al and O atoms. On taking the snap-
shots of the position of atoms (figures not shown here), we
find that the Cu atoms do not diffuse into the host matrix but
diffuse within the Cu clusters and thus the Cu clusters become
stable at these ranges of temperatures. We then calculated the
self-diffusion coefficient for each species using Eq. (7). The
diffusion coefficient for Cu at 800 and 1000 K are obtained to
be 9.95 × 10−7 cm2/s and 6.248 × 10−6 cm2/s, respectively.
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FIG. 10. Normalized total and partial vibrational density of states
for 10% and 30% of Cu models.

Cu is relatively static in a-Al2O3 compared to chalcogenides
[51].

2. Lattice dynamics

We study the lattice dynamics of these Cu-doped sys-
tems by the means of vibrational density of states (VDOS),
species-projected VDOS, and the vibrational IPR. The prop-
erties are studied within the harmonic approximation using
the first-principles method. The force constant is obtained
by displacing each atom by 0.015 Å along ±x, ±y, and
±z directions. The diagonalization of the dynamical matrix
yields eigenfrequencies and the corresponding eigenmodes.
The normalized VDOS and the partial VDOS are expressed
as [52]

Z (E ) = 1

3N

∑
n

δ(E − h̄ωn), (8)

Zα (E ) = 1

3N

Nα∑
i∈α

∑
n

∣∣en
i

∣∣2
δ(E − h̄ωn), (9)

where ωn are the normalized eigenfrequencies (3N in total).
Here, the sum over i is over all the atoms belonging to the
species α and en

i corresponds to the displacement vector of
atom i with Cartesian components en

iμ where μ = x, y, and
z. We approximate the δ function by a Gaussian distribution
function of width 10 cm−1. Among the 3N eigenmodes, we
neglect the first three translational modes with frequency very
close to zero.

Figure 10 shows the total and partial VDOS for 10% and
30% Cu content. The lower vibrational modes correspond
to the Cu atoms. The higher-frequency modes are unsur-
prisingly dominated by O atoms. To study the localization
of the vibrational eigenstates, we calculated the vibrational
IPR for each species. From Fig. 11, we see that the higher
modes corresponding to the O atoms are more localized
compared to the lower modes for both concentrations of Cu.
The lower eigenstates corresponding to Cu for 10% Cu model
are quite localized compared to the 30% Cu model. The

FIG. 11. Vibrational IPR different models. Left column for 10%
model and the right column for 30% model.

vibrational states for aluminum are mostly extended for both
models.

IV. CONCLUSION

In this paper, we studied realistic models of a-Al2O3:Cu,
and showed that the Cu atoms have a strong propensity to
cluster in the ionic a-Al2O3 host. We observed a continuous
filling of the optical gap by Cu levels, especially at 20%
and 30% models. As the Cu concentration increases (and
Cu-Cu connectivity increases), the Cu levels band to enable
metallic conduction. We observed the opening and closing
of the HOMO-LUMO gap at an elevated temperature, and
projected electronic conductivity into real space and visual-
ized the conduction-active parts of the network. We showed
that the connectivity of Cu atoms plays a significant role
in the electronic conduction. We studied the diffusion of
Cu atoms in a-Al2O3 at different temperatures and observed
that the Cu atoms do not diffuse easily into the a-Al2O3 in
contrast with relatively covalent chalcogenides like GeSe3

[51]. We discussed the harmonic lattice dynamics of the
models by calculating vibrational density of states and the
vibrational IPR and showed that the lower vibrational modes
correspond to Cu atoms and the higher modes correspond to O
atoms.

The results presented in this work on a-Al2O3:Cu show
an interesting contrast with similar study performed on
GeSe3:Ag [53]. We find that the properties of Cu in the
oxide host (in this case, a-Al2O3) contrast with those of
Ag in chalcogenide (in case of [53], GeSe3). The Ag atoms
do not form a cluster in the GeSe3 and no uniform filling
of the optical gap is observed. In other words, one has to
electrochemically work hard to draw Ag atoms together to
form a cluster in GeSe3. So, the electronic conduction is
likely to occur by hopping process in GeSe3:Ag whereas the
conduction in Al2O3 is most likely through the interconnected
Cu atoms in the network. We observed that Cu in a-Al2O3 ex-
hibits different charge states (negative, neutral, and positive)
whereas the charge state of Ag in GeSe3 changes from neutral
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when isolated to ionic (positive) near the trapping center sites
(host atoms) [54].
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