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Origins of structural and electronic 
transitions in disordered silicon

Volker L. Deringer1 ✉, Noam Bernstein2, Gábor Csányi3, Chiheb Ben Mahmoud4,5, 
Michele Ceriotti4,5, Mark Wilson6, David A. Drabold7 & Stephen R. Elliott8,9

Structurally disordered materials pose fundamental questions1–4, including how 
different disordered phases (‘polyamorphs’) can coexist and transform from one 
phase to another5–9. Amorphous silicon has been extensively studied; it forms a 
fourfold-coordinated, covalent network at ambient conditions and much- 
higher-coordinated, metallic phases under pressure10–12. However, a detailed 
mechanistic understanding of the structural transitions in disordered silicon has been 
lacking, owing to the intrinsic limitations of even the most advanced experimental 
and computational techniques, for example, in terms of the system sizes accessible 
via simulation. Here we show how atomistic machine learning models trained on 
accurate quantum mechanical computations can help to describe liquid–amorphous 
and amorphous–amorphous transitions for a system of 100,000 atoms 
(ten-nanometre length scale), predicting structure, stability and electronic 
properties. Our simulations reveal a three-step transformation sequence for 
amorphous silicon under increasing external pressure. First, polyamorphic low- and 
high-density amorphous regions are found to coexist, rather than appearing 
sequentially. Then, we observe a structural collapse into a distinct very-high-density 
amorphous (VHDA) phase. Finally, our simulations indicate the transient nature of 
this VHDA phase: it rapidly nucleates crystallites, ultimately leading to the formation 
of a polycrystalline structure, consistent with experiments13–15 but not seen in earlier 
simulations11,16–18. A machine learning model for the electronic density of states 
confirms the onset of metallicity during VHDA formation and the subsequent 
crystallization. These results shed light on the liquid and amorphous states of silicon, 
and, in a wider context, they exemplify a machine learning-driven approach to 
predictive materials modelling.

The state-of-the-art in understanding structurally complex materials, 
such as liquid and amorphous matter, has been reached in no small 
part by means of computer simulations. Still, disordered phases 
present persistent challenges for simulations, requiring large system 
sizes, long simulation times and transferable atomic-interaction 
models (that is, models that are valid for all relevant structural and 
bonding environments). Machine learning-driven interatomic poten-
tials are an emerging and powerful approach with which to address 
these challenges19–21; pressure-induced transitions between crystal-
line phases of silicon have been among the very first applications of 
these methods22, and more recent applications have included crystal 
nucleation in the liquid phase23. We have previously carried out pilot 
studies of disordered silicon based on molecular-dynamics simula-
tions with a quantum-accurate Gaussian approximation potential 
(GAP) machine learning model24,25, using system sizes between 512 
and 4,096 atoms, and considering only the ambient-pressure regime 

at that time26,27. In the present work, we now use much more extensive 
GAP molecular-dynamics (GAP-MD) simulations of a system contain-
ing 100,000 silicon atoms to resolve the atomistic mechanisms of the 
various structural transitions—including those at very high pressures 
and densities, which had been incompletely understood (Extended 
Data Figs. 1, 2). Comprising several million individual timesteps at 
this system size, such simulations would previously have only been 
possible with empirically parameterised force fields of (necessarily) 
limited accuracy and transferability28,29. We demonstrate that such 
a simple force field is unable to reproduce the pressure-induced 
changes in silicon, which are observed experimentally and also found 
in the present study. Machine learning potentials are currently gain-
ing immense popularity19–21, although their use for larger system sizes 
than in the present work has largely focused on technical capability 
demonstrations30 or on transition pathways between crystalline 
phases31.
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Vitrification of silicon
The first mechanism to be studied here in atomistic detail is the liquid–
amorphous transition. Simulating the cooling of liquid silicon at a suf-
ficiently low rate yields a glassy a-Si network with a structure compatible 
with experimental observations, as we have established for small GAP 
model structures26,27. We now carried out such a quench simulation for 
a 100,000-atom system, reducing the temperature at a rate of 1011 K s−1 
in the relevant temperature interval (Fig. 1a). The large system size and 
slow cooling enable us to pinpoint the transition from a supercooled 
high-density liquid (sc-HDL) to a low-density amorphous (LDA) phase, 
as the volume increased by about 10% between 1,195 and 1,175 K (Fig. 1a). 
(Note that although the cooling is slower than in quantum mechanical 
simulations, it remains much faster than in most experimental set-
tings.) Although our system at 1,500 K appeared to be fully disordered 
(Fig. 1b), we observed an onset of spatial heterogeneity (‘patchiness’) 
during cooling, shown at 1,195 K, just before the transition set in. At 
this stage, regions with high coordination numbers (N; red in Fig. 1b) 
coexisted with others that were much closer to fourfold, ‘diamond-like’ 
coordination (white), and spatial fluctuations occurred on the length 
scale of a few nanometres. Upon further cooling (1,195 K → 1,175 K), we 
then observed a rapid transition to a largely fourfold coordinated, 
glassy network, concomitant with a sudden drop in the atomic mobility  
(as monitored by the mean-square displacement; Fig. 1a). In addition to 
the average coordination number, the overall short-to medium-range 
structural similarity to crystalline silicon increased sharply during the 

transition: we measure this similarity using the Smooth Overlap of 
Atomic Positions (SOAP) kernel32, which yields a value between zero 
and one for each atom (Fig. 1c)27,33; note that the same kernel was used 
in the construction of the GAP25. We finally link the evolution of the 
spatial (and purely structural) heterogeneity with that of local ener-
getic stability: the predicted atomic energy, εML, derived from the GAP 
model, can serve as an indicator for the stability of individual atomic 
environments in liquid and amorphous silicon (a-Si)27. Regions with 
low coordination (white in Fig. 1b) and a high degree of similarity to 
diamond-type silicon (light green in Fig. 1c) also have low—that is, 
favourable—machine-learned atomic energies (blue in Fig. 1d), and 
vice versa. Remarkably, the distribution of εML and its evolution during 
the sc-HDL → LDA transition (between 1,195 and 1,175 K) can be decon-
voluted into contributions from four-, five- and sixfold coordinated 
environments (Fig. 1e). This approach complements the colour-coded 
plots in Fig. 1d by giving insight into the entire system—collecting local 
information for 21 simulation snapshots, or 2.1 million distinct atomic 
environments.

Structural transitions under pressure
The second mechanism, and perhaps the most intriguing question in the 
context of the present work, concerns the structural transformations of 
a-Si under high pressure. Diamond anvil cell experiments have indicated 
an amorphous–amorphous transition upon compressing a-Si to several 
gigapascals, evidenced by the sudden disappearance of high-frequency 
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Fig. 1 | Vitrification of supercooled liquid silicon. a, The evolution of the 
temperature, T, the cell volume, V, and the change in atomic mean-square 
displacement, ΔMSD (obtained by subtracting a moving average) in the 
relevant region of the machine learning-driven simulation trajectory from 
supercooled high-density liquid (sc-HDL) to low-density amorphous (LDA) 
states. b, Structural snapshots during the quench, taken at the beginning (top), 
just before (middle), and just after the structural transition (bottom). 
Simulation cells are shown in plan view, offering the same perspective in all 
panels. Atoms are drawn as opaque spheres, and so the slice thickness is a few Å 
at most. Coordination numbers, N (spatial cut-off = 3.1 Å), are indicated by 

colour coding. c, As in b, for the SOAP-kernel similarity to ideal diamond-type 
crystalline Si (dia-Si). d, As in b, for the machine learning (ML) atomic energy, 
εML (referenced to dia-Si). e, The evolution of εML shown as kernel-density 
estimates (‘smoothed histograms’), similar to a previous work27, evaluated here 
for a 100,000-atom system at 1 K temperature increments between 1,195 and 
1,175 K, and shown separately by coordination numbers, N. The arrows indicate 
the direction of evolution of the curves with decreasing temperature—that is, 
during the quench from the liquid to the amorphous state. All structural 
drawings were created using OVITO48.
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Raman fingerprints and by a concomitant sharp increase of the electri-
cal conductivity (a semiconductor–metal transition), both indicative 
of a major change in atomistic structure10–12. Increasing the pressure 
even further, to about 14 GPa, was seen to induce crystallization of the 
simple hexagonal (sh) phase of silicon (thereby demarcating the exist-
ence limit of dense disordered phases)13,14, although the experimental 
results may depend on the nature, origin and purity of the sample15,34, 
and the appearance of Bragg peaks in X-ray diffraction (XRD) alone does 
not explain the mechanism of crystallization. Furthermore, although 
experiments made it possible to identify the transition in the first place, 
they can provide relatively little insight into the atomistic structure 
of the amorphous high-density phase(s). Over the years, computer 
simulations have led to predictions of various high-pressure structures, 
predominantly including those with N = 5 (refs. 11,12,17) but also those with 
much higher coordination numbers16, presumably depending on the 
computational method used. No previous atomistic simulation has 
been able to reproduce the pressure-induced crystallization of a-Si, 

to our best knowledge. Motivated by these outstanding questions, 
we carried out GAP-driven simulations of the 100,000-atom a-Si sys-
tem under isothermal compression. Hydrostatic pressure was applied 
at a constant rate of 0.1 GPa ps−1 while the temperature was held at 
500 K: high enough to overcome local energy barriers, but below the  
melting line.

The evolution of the a-Si system with increasing pressure is visual-
ized in Fig. 2a–e, which reveals multiple interesting phenomena. Up 
to 11 GPa, most atoms remained in fourfold-coordinated (LDA-like) 
environments. However, regions of higher coordination emerged 
(magenta in Fig. 2a), consistent with the notion of a ‘high-density amor-
phous’ (HDA) phase. A striking result is the coexistence of LDA- and 
HDA-like regions at the same temperature and pressure; that is, the 
simulations indicate the presence of polyamorphism over a range of 
several GPa, rather than an abrupt transition to an almost completely 
fivefold-coordinated single HDA phase. The ability to capture this phe-
nomenon at all requires system sizes beyond the nanometric length 
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Fig. 2 | a-Si at high and very-high pressure. a–e, Structural snapshots during 
isothermal compression at 500 K using the GAP-18 model, showing the 
coexistence of LDA-like (N = 4) and HDA-like (N > 4) regions up to 11 GPa, the 
collapse into a transient VHDA phase (N ≫ 4) at 12–13 GPa, and finally the 
formation of sh crystallites. Colour coding indicates coordination numbers, N 
(spatial cut-off = 2.85 Å). f, Volume versus pressure during this simulation. The 
transition pressure, as well as the onset of crystallization (indicated by dashed 
lines), are consistent with experimental reports within a few gigapascals13; see 
text. The inset shows the evolution of coordination numbers, N, during the 
structural transitions. g, SOAP kernel similarity to sh-Si. This analysis shows the 
system at 13 GPa to be fully disordered on the atomic scale and homogeneous 

on the nanometric scale. By contrast, sh-like crystallites have begun to form at 
15 GPa, leading to nm-scale inhomogeneity. h, As in f, now comparing three 
simulations with different interatomic potential models but otherwise similar 
parameters. Another machine learning potential fitted here using the SCAN 
functional (red line), as well as an RPA-corrected difference model (yellow line), 
both reproduce the structural collapse, VHDA formation, and eventual 
crystallization; the established empirical Stillinger–Weber potential (grey 
dashed line) does not predict either of these effects (see also Extended Data 
Fig. 4–6). i, Machine learning-based prediction of atomic contributions to the 
enthalpy (defined here as εML + pV/N), indicating the local stabilization of the 
sh-like regions.



62  |  Nature  |  Vol 589  |  7 January 2021

Article

scale. We note that a previous work11 explicitly mentions the presence of 
both polyamorphs upon decompression, inferred from Raman data at 
the time, and that another work35 described the simulation of a gradual 
transition between LDA- and HDA-like a-Si under hydrostatic pressure, 
as well as the disappearance of this effect under shear.

Upon further compression, beginning at around 12 GPa, regions with 
much higher coordination (N ≥ 7) suddenly emerged in our simula-
tion (orange in Fig. 2b), again exhibiting spatial heterogeneity on a 
length scale of several nanometres. These highly coordinated regions 
rapidly coalesced into a dense form that is distinct from both LDA and 
HDA (Fig. 2c). We refer to this phase as very-high-density amorphous 
(VHDA), in line with conventions in the field16–18. The rapid structural 
collapse during VHDA formation reduced the volume from around 18 
to around 14 Å3 per atom (Fig. 2f). Vibrational densities of states, which 
are consistent with experimental evidence from Raman measurements 
and corroborate the disappearance of the high-frequency modes as a 
consequence of the structural transition, are presented in Extended 
Data Fig. 3.

Importantly, this VHDA phase was transient in our pressurization 
simulations, and crystalline regions rapidly nucleated (Fig. 2d), in 
agreement with experiments: diamond anvil cell XRD measurements 
showed sharp diffraction peaks, consistent with an sh phase (‘Si-V’)36, 
beginning to appear upon compression of an amorphous sample to 
around 14 GPa (ref. 13). The key finding of the present work is not just the 
formation of sh silicon at high pressure (that, alone, has been deduced 
from free-energy estimations37 and observed by XRD13,14), but the obser-
vation of a multistep crystallization process that proceeds through 
an entirely distinct VHDA precursor—contrasting with the assump-
tions in previous works of direct HDA → crystalline transitions13,14,37.  

Having reached 20 GPa (a few tens of picoseconds after the crystalliza-
tion had first set in), our system had fully transformed into a polycrys-
talline (‘pc’) phase exhibiting hexagonally packed layers, stacked to 
form an sh structure (Fig. 2e). Disordered regions between the grains 
remained, as expected for poly- and nano-crystalline materials (Fig. 2g). 
The number of crystallites observed in our simulation (Fig. 2e) suggests 
a nucleation-controlled mechanism. Owing to the highly disordered 
nature of the preceding VHDA phase, it is challenging to quantify the 
critical nucleus size, but we may refer to an earlier, density functional 
theory (DFT)-based thermodynamic estimate of a critical-nucleus 
diameter of approximately 0.7 nm at 14 GPa (ref. 13), much smaller than 
our simulation system size of approximately 10 nm. We note that an 
early DFT simulation16 on a 216-atom a-Si model predicted an abrupt 
collapse of the tetrahedral network near 16 GPa (which we may now 
interpret as VHDA formation), though the tiny cell and short simula-
tions revealed nothing about the stability of the structure, and did 
not show crystallization16. The pressure-induced crystallization of 
amorphous solids appears to be an infrequent occurrence: two such 
instances include Ge2Sb2Te5 and Ce75Al25

38,39, but neither seem to involve 
(transient) VHDA-like phases.

To test the robustness of our observation, we developed a separate 
machine learning potential, fitted to results of the strongly constrained 
and appropriately normed (SCAN) functional40, which also predicts 
VHDA formation and crystallization (Fig. 2h, Extended Data Fig. 4), as 
does a simulation with a random phase approximation (RPA) correc-
tion to the existing GAP model (Fig. 2h, Extended Data Fig. 5). We note 
that the potentials in these tests nucleated β-tin-like (rather than sh) 
crystallites, presumably because of a slight shift in the delicate balance 
between the two high-pressure forms. Finally, we performed a negative 
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plots, EF is set as the energy zero. e, Evolution of the atomic environments 
during our compression simulation, visualized using KPCovR47. The axes 
(components) provide the two-dimensional projection of the SOAP kernel32 
features that give the best balance between discriminating the structural 
diversity of the environments, and linearly predicting the locally averaged 
machine learning DOS(EF). The latter quantity, as a fingerprint of electronic 
structure and metallization, is used to colour-code the points associated with 
individual atomic environments. Contour lines indicate the distribution of 
atomic environments in the KPCovR space and emphasize the structural and 
electronic transition upon VHDA formation.
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control using an empirical force field41 that has been widely used to 
study disordered silicon, which showed neither the VHDA formation 
nor the subsequent crystallization (Fig. 2h, Extended Data Fig. 6).

To further substantiate the series of transformations observed 
in Fig. 2a–e, we computed excess enthalpies, ΔHac, compared to the 
respective most stable crystalline form of silicon at the same pres-
sure. The evolution of the excess enthalpies is consistent with the 
subsequent transformations proposed here. At 0 GPa, we obtained 
ΔHac = +0.15 eV per atom for LDA, and this value did not change notably 
upon initial compression. At 13 GPa, the VHDA phase is slightly favoured 
(+0.13 eV per atom) over the LDA/HDA polyamorph (+0.15 eV per atom). 
Compared to all these non-crystalline phases, the pc-sh structure 
that ultimately formed is much more stable, with an enthalpy of only 
+0.02 eV per atom greater than that of the single-crystalline sh phase 
at 20 GPa (Extended Data Fig. 7). The driving force for crystallization 
can further be demonstrated by using, once more, the stability of indi-
vidual atoms as determined by the machine learning model. To include 
effects of pressure, we define a machine-learned enthalpy per atom, 
hML(i) = εML(i) + pV/N, which we reference to the enthalpy of the respec-
tive most stable crystalline phase (‘per-atom excess enthalpy’, in anal-
ogy with the above-mentioned ΔHac for macroscopic systems). Figure 2i 
shows the results by colour coding. In the VHDA phase, the atomic-scale 
structural disorder is reflected in a seemingly random distribution of 
more stable (blue) and less stable (yellow) atomic environments. By 
contrast, the emerging sh crystallites at 15 GPa provide spatial regions 
of stability. At 20 GPa, the excess enthalpy in the grains is close to that 
of the crystalline phase, and the grain boundaries ‘light up’ as expected 
(Fig. 2i). These results emphasize the usefulness of quantum-accurate 
machine learning-driven simulations, not only for amorphous but also 
for polycrystalline materials30, for which the precise atomistic structure 
of grain boundaries is a largely unresolved question.

Electronic fingerprints from machine learning
Among the experimental indicators for the amorphous–amorphous 
transition in silicon is a sudden increase in the electrical conductivity11.  
We studied the electronic structure of our 100,000-atom systems using 
two approaches, details of which are given in Methods. We carried 
out tight-binding computations to obtain the electronic density of 
states (DOS) directly. Furthermore, we used a recently introduced 
machine learning approach42 to develop a regression model for the 
DOS in disordered silicon, requiring only atomic coordinates as input. 
The new parameterization is fitted to hybrid-DFT data for representa-
tive structural models of all relevant polyamorphs, including VHDA, 
as well as the pertinent crystalline phases. With this model in hand, we 
are able to make hybrid-DFT-quality predictions for the electronic DOS 
of large simulation cells within minutes; direct electronic-structure 
computation at this high level would have been restricted to system 
sizes of a few hundred atoms at most. The value of the DOS at the Fermi 
level, DOS(EF), is a primary signature of electrical conductivity43, and 
its dramatic increase during compression (Fig. 3a–c) indicates metal-
lization in the transient VHDA phase, qualitatively consistent with the 
rapid conductivity increase between 10–12 GPa that is observed in 
diamond anvil cell experiments11. At 13 GPa—when the VHDA formation 
was complete in our simulation—the pseudogap was entirely filled in 
(marked by an arrow in Fig. 3c). The prediction of this distinct electronic 
feature might be tested by ultrafast spectroscopy techniques, which 
have been previously applied to the liquid–liquid phase transition in 
silicon44 and can access timescales that indeed correspond to those 
in our simulations. Machine learning models for the DOS, as shown in 
Fig. 3, might have a key role in this regard, by giving access to experi-
mentally relevant system sizes (unlike DFT). Another implication of the 
onset of metallicity is a possible link to superconductivity, analogous 
to what has been observed for the metallic high-pressure form of the 
heavier congener, amorphous germanium45, and indeed for crystalline 

sh silicon (with a critical temperature of about 8 K at 14.8 GPa)46. This 
question, however, requires further experimental study.

Finally, by combining the structural information (from SOAP similar-
ity, as used in Fig. 2g) and the machine-learned electronic fingerprints, 
we may construct structure–property maps for atomic environments 
using kernel principal covariates regression (KPCovR)47. This approach 
yields two-dimensional slices that map out the atomic environments, 
arranged so as to reflect structural diversity and also the relationship 
between structure and metallicity, for which the locally averaged 
machine learning DOS(EF) is used as a proxy42. We then arranged the 
slices in three dimensions to study their evolution through the transi-
tions, with pressure as the third coordinate (Fig. 3e). We observed a 
unimodal distribution of data points in LDA silicon at 0 GPa, reflecting 
the coexistence of locally ordered semiconducting environments, 
and highly defective environments that contribute to the DOS in the 
electronic bandgap. The distribution gradually shifted and broadened 
towards environments with higher local DOS(EF) as polyamorphic HDA 
regions developed up to 11 GPa. The structural collapse at 12 GPa led 
to a new maximum in the map: this indicates a transition between two 
distinct phases, also seen in Fig. 2b. The VHDA phase was localized in 
a very different region of the map than the LDA/HDA environments, 
consistent with the marked increase in coordination numbers (Fig. 2c) 
and local DOS(EF) contributions. For the sh crystallites (at 20 GPa), 
the data points remained in an overall similar region of the map but 
became more sharply focused compared to VHDA silicon, and shifted 
slightly to a region of lower DOS(EF), indicative of the formation of a 
small pseudogap (also seen in Fig. 3d). We expect that such maps, in 
both two and three dimensions, will become useful tools for studying 
structural and electronic transitions in diverse phases of matter.

Conclusions and outlook
Our simulations have described and explained the full range of phase 
transitions in disordered silicon, up to the established limit (namely, 
crystallization), consistent with experimental observations. Beyond 
this one specific material, however, the present results demonstrate 
that atomistic machine learning methods can lead to scientific dis-
covery. Giving access to quantum-accurate predictions of structure, 
stability and properties, these methods can reveal as-yet unknown 
phenomena: structural and electronic fingerprints of individual atoms, 
but also polyamorphism, polycrystallinity and other forms of nanoscale 
heterogeneity. Simulations of disordered materials have thereby taken 
a qualitative step forward: from simple structural models to realistic, 
predictive and fully atomistic descriptions of material systems under 
experimentally challenging conditions.
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Methods

Machine learning-driven modelling of dense disordered silicon
Our primary results are based on a recently introduced general-purpose 
GAP interatomic potential for silicon25, henceforth referred to as ‘GAP-18’.  
Details of the GAP approach for fitting machine learning-based intera-
tomic potential models using the SOAP kernel were given previously24,32. 
We furthermore refer the reader to previous smaller-scale studies of 
a-Si25–27 and amorphous carbon49,50 using this methodology, and to an 
overview article21.

The fact that a potential can discover new phases for which it 
has not been explicitly ‘trained’ (Fig. 2b–e) is a substantial demon-
stration of transferability: the silicon GAP-18 model has included 
ambient-pressure amorphous configurations but none at high pres-
sures, although we note that it does include the single-crystalline 
sh phase in its construction, and it also includes a range of liquid 
configurations with diverse local environments25. The validation of 
this potential for ambient-pressure a-Si has been reported before26 
and included comparison with three key experimental observables: 
calorimetric excess enthalpies, 29Si solid-state NMR shifts, and the 
structure factor26, S(q). In fact, with the 100,000-atom system in 
hand, we repeated the calculation of S(q) for completeness, and we 
obtained practically quantitative agreement with high-resolution 
experimental data, including the height of the first sharp diffraction 
peak (FSDP); see Extended Data Fig. 8a. In addition, as a supplement 
to Fig. 1e, which showed the evolution of machine learning atomic 
energies during vitrification, we analysed the S(q) of our system along 
the same, decisive part of the simulation trajectory—which enables 
us to study the evolution of the FSDP during cooling (Extended Data 
Fig. 8b).

Validation through a separate machine learning potential 
model
A database of disordered silicon structures was constructed for 
the fitting of a separate machine learning model. To explore a wide 
range of pressures, we chose the unit-cell volume as a simple param-
eter, which we varied from 20 Å3 per atom (almost corresponding to 
ambient-pressure a-Si) down to 11 Å3 per atom (extreme compression). 
We performed GAP-driven constant-volume melt–quench simula-
tions using a Langevin thermostat, as implemented in quippy (https://
github.com/libAtoms/QUIP); the protocol was similar to that in ref. 49. 
To these structures, we added the small-cell configurations for crystal-
line diamond-type, β-tin-type, and sh silicon from the GAP-18 database. 
Single-point energies, forces, and virial stresses for all configurations 
were then evaluated using the SCAN functional40 and the projector 
augmented-wave (PAW) method51 as implemented in the Vienna Ab 
Initio Simulation Package (VASP)52,53. To rule out possible artefacts of 
any part of the machine learning input data generation, the potential 
developed here therefore uses a different DFT functional, treatment 
of core electrons and electronic-structure code than in GAP-18. The 
SCAN-based potential used the same fitting architecture as before, 
namely a baseline for exchange repulsion at short distances and a 
SOAP32 descriptor and kernel, the latter using a cut-off radius of 5.0 Å 
and a fit using 9,000 representative points. It was found to be required 
to increase the smoothness of the SOAP kernel to σat = 0.75 Å, which 
was previously a key step in the development of the GAP-driven ran-
dom structure searching (GAP-RSS) approach and can help to make 
potentials more flexible in highly disordered regions of configuration 
space and in the presence of limited reference data (see below for more 
details)54. The unique identifier of the newly fitted potential parameter 
files is GAP_2020_8_8_60_14_23_0_14.

A Δ-GAP model for beyond-DFT corrections
We also developed another proof-of-concept machine learning model 
at the post-DFT level to rule out the possibility that VHDA formation is 

an artefact of the approximate DFT functional itself. For this, we use 
RPA, which is an emerging approach for solids55–57. Instead of fitting 
the full RPA potential-energy surface—which would be an extremely 
computationally expensive task—we create a machine-learned dif-
ference model to be added to an existing baseline. This baseline in 
this case is based on the general-purpose GAP-18 model. The idea 
behind such a difference fit is sketched in Extended Data Fig. 5a and 
has been used, for example, for small molecules58,59. We here use an 
ensemble of small structures generated using GAP-RSS as reference 
points for sampling the potential-energy surfaces at two levels (DFT 
and RPA) simultaneously, from which the difference (‘Δ’) model is then 
constructed (Extended Data Fig. 5a). The GAP-RSS approach54, later 
extended into a full ‘self-guided’ fitting framework for machine learn-
ing potentials60, makes it possible to generate potentials for diverse 
materials with low computational effort. In essence, an initial ensem-
ble of random atomic configurations is created in analogy to the 
Ab Initio Random Structure Searching (AIRSS) approach61,62, and in 
fact using the ‘buildcell’ algorithm of that implementation (includ-
ing the use of a hard-sphere constraint and space-group symmetry 
operations to narrow down the search space). An initial GAP model 
is then fitted to those data, and used to drive structure searches, 
which iteratively explore a given potential-energy surface and serve 
as input for the next round of fitting—extending the reference data-
base up to a specified size and gradually increasing the quality of the 
evolving GAP54,60. Here, we used 900 (110) structures from a large 
GAP-RSS structural database60 to generate RPA-computed training 
(testing) data, respectively. Each structure contained between 6 and 
16 atoms in the unit cell (giving 9,498 atomic environments in the 
training set in total). Illustrative examples of such GAP-RSS structures 
are shown in Extended Data Fig. 5b: they include highly disordered 
atomic environments, allowing us to generate robust potentials in 
an efficient way54,60.

The RPA reference computations used the implementation in VASP 
5.4.4, a Γ-centred k-point mesh with spacing (KSPACING) of 0.5655, a 
plane-wave cut-off of 250 eV, and the VASP rev. 5.4 Si_GW PAW potential. 
The PBE functional63 was used for the initial wavefunction calculations 
and also serves as the reference for the difference model; note that 
the baseline is therefore slightly different from the ground truth in 
GAP-18, namely PW91. The third step, computing the virtual states, 
used no long-range Hartree–Fock contribution (LOPTICS = .FALSE.), 
as recommended by the VASP documentation for metallic systems, 
such as the highly disordered structures considered here. The final 
RPA correlation energy was evaluated with a grid order (NOMEGA) of 
16. We fitted the energy difference between RPA and DFT (PBE) using a 
SOAP-GAP model with 800 representative points, convergence param-
eters of {nmax, lmax} = {16, 6}, a smoothing of the neighbour density, σat, 
of 0.2 Å, and a kernel exponent of ζ = 4. The radial cut-off of the SOAP 
descriptor was set to 6.0 Å, slightly larger than that used in GAP-18 
(5 Å), and it was combined with radial scaling (radial_decay = −0.5). The 
scaling pre-factor for the energy model was δ = 0.03 eV per atom (cor-
responding to the approximate distribution of the difference terms to 
be ‘learned’; Extended Data Fig. 5c), and the regularization of the GAP fit 
was 0.003 eV per atom, the latter corresponding to an ‘expected error’ 
for the input data. The unique identifier of the potential parameters 
for the RPA–DFT difference model is GAP_2020_6_11_0_19_39_52_705; 
these need to be combined with the GAP-18 baseline (unique identifier 
GAP_2017_6_17_60_4_3_56_165).

We emphasize that neither this potential nor the SCAN variant dis-
cussed above are intended to be a full substitute for the general-purpose 
model described in ref. 25. Instead, they are created here to demonstrate 
the robustness of the presented findings, most importantly, the forma-
tion of VHDA, which had not been observed with established empirical 
interatomic potentials (Extended Data Fig. 6). The development of a 
full RPA-quality general-purpose machine learning potential for silicon 
is envisioned for the future.

https://github.com/libAtoms/QUIP
https://github.com/libAtoms/QUIP
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Molecular-dynamics simulations
Molecular-dynamics simulations for the 100,000-atom systems were 
carried out using LAMMPS64, with a Nosé–Hoover thermostat control-
ling temperature and a barostat controlling hydrostatic pressure65–67. 
The ambient-pressure quench follows the protocol established in our 
preceding pilot studies, and similarly uses the GAP-18 model: liquid Si 
at ambient pressure was quenched from 1,500 to 1,250 K at a rate of  
1013 K s−1, then to 1,050 K at 1011 K s−1, and finally to 500 K at 1013 K s−1. 
The change in mean-square displacement shown in Fig. 1a, ΔMSD, was 
evaluated by subtracting a moving average reaching back 10 fs. Pressuri-
zation runs were performed independently for the liquid at tempera-
tures following the melting line (Extended Data Fig. 2a) and for the a-Si 
structure at 500 K, compressing to 20 GPa over 200 ps. The time step in 
all simulations was 1 fs. For the enthalpy analysis (Extended Data Fig. 7), 
relevant systems were cooled using 1,000 molecular-dynamics steps 
and subsequently fully relaxed using a conjugate–gradient algorithm. 
Enthalpies are referenced to those of the respective most stable crystal-
line phase, the latter being derived from computing E(V) curves, taking 
the pressure as a third of the trace of the stress tensor, and performing 
a piecewise linear interpolation of the resulting pressure-dependent 
enthalpy, H(p), data for the relevant pressure interval. The vibrational 
densities of states (VDOS; Extended Data Fig. 3) were obtained for 
selected, fully optimised structures, which were thermalised at 300 K 
and the appropriate pressure for 5 ps; the thermostat and barostat 
were then removed, and constant-energy (NVE) dynamics were carried 
out for another 1 ps (1,000 time steps). During the NVE simulation, 
the averaged velocity–velocity autocorrelation function (VACF) was 
computed at every timestep, as implemented in LAMMPS64. The VDOS 
were then obtained using a Fourier transformation of the VACF, using 
in parts the dump2vdos code68.

Tight-binding computations
Tight-binding electronic DOS were obtained using previously pub-
lished methods69. A linear-scaling, maximum-entropy method69 was 
combined with the tight-binding Hamiltonian of Kwon et al.70, pre-
viously used in studies of Urbach tails in a-Si71. A relatively realistic 
tight-binding scheme using four orbitals (one s and three p) per site69 
was used to compute the Hamiltonian matrices for snapshots from 
0 to 20 GPa, and also for large supercells of the diamond-type and 
sh crystal phases of silicon. The electronic densities of states were 
computed with 70 Tchebychev polynomial moments extracted from 
sparse Hamiltonian matrices of dimension 400,000. For each snap-
shot, the 400,000 × 400,000 matrix was converted into a sparse 
format. A conservative initial guess, somewhat broader than the 
exact support of the spectrum, was made; the sparse Hamiltonian 
was then scaled and shifted onto the range (−1, 1). An approximate 
‘impartial vector’ reproducing the first three exact moments was 
obtained69, and Tchebychev polynomial moments were extracted 
from the matrix (which are, in turn, Tchebychev moments of the 
DOS function of the matrix). The preceding matrix operations were 
order N (N being the dimension of the matrix), because they required 
only matrix-on-vector operations72 (no matrix multiplications). To 
obtain an approximate DOS, we solved the resulting Hausdorff 
moment problem. The principle of maximum entropy73 was used 
to solve the moment problem, both because of its underlying funda-
mental rationale, and its rapid pointwise convergence74,75 compared 
to methods such as the kernel polynomial method76. For large num-
bers of moments, numerical convergence is sensitive to the guessed 
spectral support, and this is iteratively tuned to the exact support as 
the number of moments increases. The convergence of the DOS was 
examined and 70 moments were found to be more than sufficient 
to obtain accurate pointwise estimates for the DOS across the full 
spectral range for all of our snapshots. For reference, and to showcase 
the system sizes accessible to our method, we also include the DOS 

of the diamond-type structure (computed for a cubic 2,097,172-atom 
cell, 34.7584 nm on a side), using 170 moments, in Extended Data 
Fig. 9. This result may be compared to analogous computations in 
large fullerenes and graphene77.

Machine learning model for the electronic DOS
We obtained the hybrid-DFT-quality global DOS, represented in 
Fig. 3a–d, using previously published methods42. We use SOAP fea-
tures with radial scaling78 and sparsified Gaussian processes to build 
a machine learning model for the total DOS of a given atomistic 
structure, by decomposing the latter into a sum of local contribu-
tions (LDOS) centred on every atomic environment in the system. 
We represent the DOS as a target of the machine learning models by 
its cumulative distribution function (CDF). This approach yielded 
systematically lower prediction errors than models using the DOS 
curve directly42, because it is sensitive to shifts in peak positions. Once 
the prediction is obtained, we derive the obtained CDF to obtain the 
machine learning DOS curves.

Using this approach, a new parameterization was developed for the 
present work that is based on hybrid-DFT data. The SOAP cut-off radius 
was 6.0 Å; the smoothness parameter was set to σat = 0.5 Å. The radial 
scaling parameters correspond to a cut-off function,

f r
r r

( ) =
1

1 + ( / )
,mcut

0

where we set the rate parameter r0 to 3.0 Å and the exponent m to 5. We 
selected 3,000 atomic environments by farthest-point sampling79 to 
be the representative environments for the sparsified Gaussian pro-
cesses. As a kernel, we used the square of the scalar product between 
the normalized feature vectors42. The training data consisted of 658 
structures25, supplemented by 100 small a-Si snapshots (64 atoms per 
cell) at 0 GPa (ref. 42) and 30 small dense disordered silicon structural 
models (64 atoms per cell) that were drawn from the new reference data 
set used to fit the SCAN model, over a range of pressures between 11 and 
20 GPa. The latter part serves to properly represent the high-density 
phases and their electronic DOS. Electronic structure calculations to 
extract the DOS for labelling the input data were performed using the 
FHI-aims package80, with the intermediate convergence settings. The 
HSE06 hybrid functional81,82, which is known to usually provide reliable 
estimates of the bandstructure of systems with small bandgaps83, was 
used to determine the self-consistent Kohn–Sham eigenvalues, which 
were then used to compute the reference DOS. The k-point spacing 
was 0.01 Å−1.

Uncertainty quantification for the machine learning DOS model
Instead of using the variance estimator of Gaussian processes, we built 
a committee of 8 models, each containing a subset of 394 structures 
randomly selected from the training set. This approach has been shown 
to be more computationally efficient and ensures correct error propa-
gation84. The average prediction of the DOS from the committee of 
models was taken as the final prediction and their variance as the 
uncertainty estimate. The models of the committee are correlated, 
and so we rescaled the variance around the mean, determining the 
calibration coefficient with a likelihood-maximization criterion. The 
value of the uncertainty estimate at each given energy increment is 
shown by shading in Fig. 3a–d.

Local DOS and KPCovR
We discuss here briefly the definition of the locally averaged DOS that 
is used in constructing the plots in Fig. 3e; more details may be found 
in the technical work in ref. 42. In the additive atom-centred learning 
framework we use to predict the DOS, the model for an entire struc-
ture, A, is constructed as a simple combination of the predictions for 
individual atomic environments, Ai, namely,



∑E E ADOS( ) = LDOS( , ).
i A

i
∈

Individual predictions do not have to be physically meaningful (for 
example, it is entirely possible to predict a locally negative LDOS), but 
reflect the way the machine learning model combines atom-centred 
information to reproduce the total DOS: there might exist a scenario 
in which the best overall model can be achieved by having two nearby 
atoms having very different density of states, because one of the two 
distorted environments always occurs in combination with its neigh-
bour. In this scenario, only the sum of the two LDOS would be physically 
relevant. Following this reasoning, we use a locally averaged value of 
the machine learning DOS prediction42 (LADOS):

∑E A
f r E A

f r
LADOS( , ) =

( )LDOS( , )

∑ ( )
,i

j A

ij j

k A jk∈

cut

∈ cut

where fcut is the same cut-off function used to define the atom-centred 
representations. In other words, we average the machine learning pre-
dictions of the LDOS over a length scale comparable to that used to 
define the environments, which eliminates the strong fluctuations of 
the direct LDOS predictions and leads to a more easily interpretable 
value. These LADOS values are used, together with the same kernel 
used to regress the DOS, to build a map of the environments in the 
large structures (represented in Fig. 3e), that reflects both structural 
diversity (dissimilarity) and the correlations between structure and the 
LADOS. To this end, we use the recently introduced KPCovR method47, 
that can be seen as a modified kernel principal-component analysis in 
which one uses a modified kernel with a scaling parameter, α,

K K YYα α= + (1 − ) ˆ ˆ ,
T͠

combining the structural information encoded in K with the target 
properties (more precisely, their best GP estimate), Ŷ. Here, we take Ŷ 
to contain the LADOS restricted to the [−4, 4] eV energy interval to 
highlight the correlation between the local environments and their 
corresponding (LA)DOS in the vicinity of EF. The two principal compo-
nents used to draw the maps in Fig. 3e were determined by training the 
KPCovR model on 164,000 environments, selected by farthest-point 
sampling, from 41 structures at pressures ranging from 0 to 20 GPa. 
All remaining atomic environments were then projected on these two 
coordinates and used for further analysis. In the plots of Fig. 3e, the 
axis for component 1 has been inverted to ease visualization; note that 
the numerical axis values are immaterial to the interpretation and are 
therefore not shown. Original data underlying these plots are provided 
(see ‘Data availability’).

Data availability
Original data supporting this work, including coordinates for all 
reported structural models, are openly available in the Zenodo reposi-
tory (https://doi.org/10.5281/zenodo.4174139).

Code availability
The QUIP code, which provides the interface for carrying out GAP-driven 
simulations with LAMMPS, is publicly available at https://github.com/
libAtoms/QUIP; additional information may be found there. The GAP 
code is available freely for non-commercial research at http://www.
libatoms.org/gap/gap_download.html.
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Extended Data Fig. 1 | Machine learning-driven modelling beyond the 
nanometric length scale. The fully relaxed a-Si structure with 100,000 atoms 
is shown. The smaller boxes on the left show the size of a 512-atom system from 

a recent study26, marking the limit of current DFT methods for simulations over 
several nanoseconds, and that of a 4,096-atom system in our pilot GAP-MD 
studies26. All boxes are drawn to scale.
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Extended Data Fig. 2 | Compression of liquid silicon. a, Overview of  
the transition pathways investigated in the present work. The quench 
(vitrification) and compression runs are discussed in the text. We focus here on 
additional data that we have collected for validation: namely, the description  
of the high-temperature liquid. We melted a structure at 1,800 K, above  
the melting point of diamond-type silicon, and then compressed it by 
simultaneously adapting the thermostat and barostat settings so as to trace 
the estimated phase coexistence lines given by Bundy85, in analogy to ref. 86. 
The temperature was reduced by 41 K GPa−1 to follow the diamond melting line, 
up to the estimated triple point at 15 GPa, after which the slope was inverted 
and followed the metallic silicon melting line (+14 K GPa−1)85. The compression 
rate was 0.5 GPa ps−1. b, Structure factors of liquid silicon during this 

compression run. Computed values from our simulations (red) are overlaid on 
experimental reference data by Funamori and Tsuji86 (black) for which the 
estimated temperatures are at about 50 K above the melting line86, closely 
mirrored by our computations. In the original experimental work86, arrows 
indicate the location of the maxima (labelled there as Q1 and Q2) and a shoulder 
in the first peak (Qh). The height of Qh gradually diminishes at higher pressure, 
and all these features are correctly described by our simulations. In the  
context of liquid–liquid transitions, we mention in passing very recent 
density-functional87 and empirical force-field based studies88; such research 
questions may become worthwhile targets for future GAP-driven studies as 
well. Reprinted figure with permission from ref. 86, copyright 2002 by the 
American Physical Society. Expt., experimental.



Extended Data Fig. 3 | Vibrational densities of states (VDOS). We obtained 
these by Fourier transformation of the velocity–velocity autocorrelation 
function, as described in Methods. Two characteristic features associated with 
the amorphous–amorphous transition under high pressure, observed in 
previous Raman spectroscopy experiments10–12, are reproduced by these 
simulations. First, the peak at large wavenumbers persists throughout the LDA/
HDA coexistence but then disappears entirely. Second, the VHDA formation is 
associated with the formation of another peak at intermediate wavenumbers. 
It is noted that this feature appears in both the simulated VHDA and the 
polycrystalline sh system. The predictions here might be tested, in the future, 
by combined in situ X-ray diffraction and Raman spectroscopy; the former 
technique will easily be able to distinguish VHDA silicon from crystalline 
phases.
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Extended Data Fig. 4 | Reproducibility of VHDA formation with a separate 
machine learning potential. a, Snapshots from a compression simulation 
using the same starting structure and protocol as for the main result (Fig. 2a–e), 
but now using a newly fitted GAP machine learning model based on SCAN 
meta-GGA input data (Methods). This simulation confirms the structural 
collapse at high pressure, seen in the third panel, and the subsequent 
crystallization. The SCAN-level machine learning potential initially nucleated 
β-Sn-like crystallites (N = 6; red colour on the atoms), which is explained in the 
following. b, Energy–volume curves for relevant crystalline allotropes of 
silicon, computed using the GAP-18 model (based on PW91 data; top) and the 
new SCAN-based model (bottom). In both cases, the sequence of dia → 
β-Sn-type → sh with increasing pressure (decreasing cell volume) is correctly 

reproduced, consistent with early DFT studies89. With SCAN, the β-Sn-like 
phase is favoured over a wider range of pressures; the crossover between the 
two E(V) curves is indicated by arrows in both panels. Note that the absolute 
energies for both allotropes are very similar, leading to a delicate balance 
between both. c, Oblique view of the simulation cell from the SCAN simulation 
after reaching 20 GPa. Initially, β-tin-like crystallites had formed (N = 6; red); 
then, an sh grain emerged (N = 8; orange). Note that the absolute pressure 
values at which the subsequent transitions occur are slightly different between 
the GAP-18 (Fig. 2a–e) and SCAN (Extended Data Fig. 4a) simulations, but the 
VHDA phases and subsequent formation of polycrystalline phases are clearly 
observed in both. The same is not the case with an established, empirically 
fitted interatomic potential, as shown in Extended Data Fig. 6b.



Extended Data Fig. 5 | Beyond-DFT modelling with a Δ-GAP machine 
learning fit. a, Schematic illustration of the approach, as discussed in 
Methods. The key ideas are that: (i) the RPA potential-energy surface (PES) can 
only be sampled at selected points, because of the computational cost, and 
that: (ii) the difference Δ(RPA–DFT), indicated by red shading, varies more 
smoothly than the full PES and is therefore more easily amenable to a machine 
learning fit. b, Example structural snapshots from a GAP-RSS search60. We use 
such very-small simulation cells to represent large structural diversity in 
machine learning potential fitting where computational cost is at a premium.  
c, Quality-of-fit for the difference model, shown in the form of a scatter plot for 

the training data (blue) and a separate test set (green) of the machine learning 
prediction (vertical axis) against the ‘ground truth’ to be learned (horizontal 
axis). The distribution of the target values, σ, is given at the top left, alongside 
the root mean square error (RMSE) measures for training and testing set.  
d, Snapshots from a compression simulation using the same starting structure 
and protocol as for the GAP-18 (Fig. 2a–e) and SCAN (Extended Data  
Fig. 4) results, but now using the GAP-18 + Δ-GAP(RPA–DFT) difference 
machine learning potential. The collapse into VHDA is clearly reproduced,  
as is the subsequent nucleation of crystallites; the result at 20 GPa is a 
poly-crystalline β-Sn-like phase (compare with Extended Data Fig. 4a).
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Extended Data Fig. 6 | Describing VHDA formation and crystallization 
requires quantum-accurate simulations. a, The results of our machine 
learning-driven simulation, with the collapse to VHDA between 12 and 13 GPa, 
and the crystallization between 15 and 20 GPa (presented in Fig. 2 and shown 

here for comparison). b, As in a, now using the empirical Stillinger–Weber (SW) 
potential41, which had been the state of the art for 100,000-atom simulations of 
silicon so far. Here, neither VHDA formation nor the subsequent crystallization 
are observed.



Extended Data Fig. 7 | The enthalpy landscape of metastable disordered 
forms of silicon. a, Computed enthalpy of 100,000-atom systems, ΔH, given 
relative to the respective most stable crystalline form at any given pressure 
(diamond-type → β-Sn-type → sh); see Methods. The red line shows the result for 
snapshots along the 500 K compression trajectory. Square symbols indicate 
results for snapshots, which have been frozen-in by rapid molecular-dynamics 
quenching (over 1 ps) and subsequently relaxed with a conjugate-gradient 
algorithm, all at the given external pressure (relevant structures are visualized 
below). The shaded area is a guide to the eye and corresponds to the enthalpy 
difference between the 500 K and fully relaxed a-Si structures at 0 GPa. 
Relevant structures are shown: note the near-perfect ordering of layers in the 
polycrystalline (‘pc’) sample. est., estimated; at−1, per atom. b, Enthalpy 
changes associated with the structural changes during compression. Copies of 

the 10 GPa structure (LDA/HDA polyamorph) were relaxed with increased 
external pressure (open symbols); this direct relaxation fixes the structure in 
place and does not allow it to transform to VHDA. A direct comparison between 
two competing phases at 13 GPa is therefore possible (labelled as ΔH1) and 
indicates the preference for VHDA formation. The enthalpy is lowered much 
further upon crystallization (ΔH2). c, Relaxation of copies of the pc-sh structure 
with decreased external pressure, mirroring decompression of a sample in 
experiment. The relative enthalpic stability over a relatively wide pressure 
range is qualitatively consistent with the observation of a hysteresis upon 
decompression: for example, in a previous work10, the LDA phase was fully 
recovered only after decompression to about 4 GPa. A dashed vertical line  
in b and c emphasizes the change in the crystalline reference, from 
diamond-type (dia) to β-Sn-type silicon.
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Extended Data Fig. 8 | Computed structure factors. a, The static structure 
factor, S(q), as a probe for medium-range structural order, has been evaluated 
for the fully relaxed amorphous system. The computed result, including the 
height of the first sharp diffraction peak (FSDP), is in excellent agreement with 
previous experimental data90. The inset shows a radial distribution function, 
g(r), for the same structure, indicating long-range correlations beyond the  
first nanometre, which our machine learning-driven simulations can access.  
A dashed line at approximately 11 Å illustrates the limit of DFT modelling (half 

the cell length of the smallest system sketched in Extended Data Fig. 1). Expt., 
experimental. b, Computed structure factors during quenching. Left, the 
evolution of simulated structure factors through the relevant part of the 
liquid-quenching trajectory in the vicinity of the glass transition, plotted in 1-K 
temperature increments. The emergence of the FSDP (between 1.5 and 2.0 Å−1), 
as well as the structuring of the third peak (between 5 and 6 Å−1), are clearly 
visible. Right, detail view for 1.0 Å−1 ≤ q ≤ 4.0 Å−1 of the evolution of the FSDP with 
decreasing temperature, using the same colour scale as on the left-hand side.



Extended Data Fig. 9 | Tight-binding DOS for an ultralarge system. 
Supplementing the tight-binding electronic-structure computations in 
Fig. 3a–d, this figure shows the electronic DOS computed with the same 
approach but for a diamond-type crystalline silicon supercell at atmospheric 
pressure, containing >2 million atoms (see details in Methods). The energy 
scale is set by ref. 70.
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