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1. Introduction

Practical calculation of electron transport in materials[1] always
involves assumptions and approximations. The most natural
and oldest approach is to use Boltzmann’s equation,[2] which
is ideal for a crystalline system with relatively weak impurity
or thermal disorder. Implicit to such a picture is the assumption
that k is a good quantum number associated with the assumed
lattice. A different way of framing the problem is due to Kubo,[3]

who in 1957 computed the linear response (current) to an exter-
nal electric field. The resulting expression for the electrical
conductivity, further approximated within a single-particle pic-
ture of the electronic structure,[4] is called the Kubo–Greenwood

formula (KGF). This was later generalized
as the “Fluctuation-Dissipation theorem”
that mathematically connects dissipative
processes with equilibrium fluctuations.[5]

The ultimate roots of this work extend
through time to Einstein and his work
on Brownian motion and diffusion.[6]

In this article, we briefly review our
recently proposed method to estimate the
spatially projected conductivity (SPC),[7]

apply it to a range of materials, and provide
insights both into the materials we study
and the method itself. The rest of this arti-
cle is organized as follows. In Section 2, we
review the KGF. In Section 3, we discuss
background material on computing spatial
transport information from computer mod-
els of materials. In Section 4, we describe
our method, and in Section 5 we offer
computational details and the models used.
In Section 6, we explore five different sys-
tems: a low-density phase of amorphous
carbon (a-C), amorphous and liquid silicon
(l-Si), amorphous silicon (a-Si) suboxide,

and for a useful contrast, FCC aluminum. We draw conclusions
in Section 7.

2. Kubo Formula

For calculations of charge transport in topologically disordered
systems (amorphous or liquid), for which there is no underlying
lattice, it is natural to adopt the Kubo approach. Mott and Davis[8]

and Moseley and Lukes[9] offered an appealing physical deriva-
tion of the KGF that we tersely repeat here. Consider a system
with an applied (external) AC electric field E. The system absorbs
photons from the electromagnetic field, and this drives electronic
transitions near the Fermi level, ϵF. Associated with this field,
there is an electric current density j. The Joule heat produced
by the electric field per unit time is Ωj ⋅ E, where Ω is the cell
volume. The rate at which energy is absorbed from electronic
transitions is γ ¼ P

if ϵf iðwf iPi � wif Pf Þ. Here ϵf i is the energy
difference between initial and final states, wf i is the transition
probability per unit time between final state f and initial state
i, and Piðf Þ is the occupation probability of the initial (final) state.
Next, one assumes that γ ¼ Ωj ⋅ E. By using Fermi’s Golden Rule
to estimate the transition probabilities, and defining the conduc-
tivity σ from the identification that σE2=2 is the mean rate
of energy loss per unit volume, one obtains the KGF for
each k-point k[3,4] (written here in a form most convenient for
our purposes)
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Herein, the Kubo–Greenwood formula is utilized to project the electronic
conductivity into real space, and a Hermitian positive semidefinite matrix Γ is
discussed, which is called the conduction matrix, that reduces the computation
of spatial conduction activity to a diagonalization. It is shown that for low-density
amorphous carbon, connected sp2 rings and sp chains are conduction-active
sites in the network. In amorphous silicon, transport involves hopping through
tail states mediated by the defects near the Fermi level. It is found that for liquid
silicon, thermal fluctuations induce spatial and temporal conductivity fluctua-
tions in the material. The frequency-dependent absorption of light as a function of
wavelength in an amorphous silicon suboxide (a-SiO1.3) is also studied. It is
shown that the absorption is strongly frequency dependent and selects out
different oxygen vacancy subnetworks depending on the frequency. Γ is diag-
onalized to obtain conduction eigenvalues and eigenvectors, and it is shown that
the density of states of the eigenvalues for FCC aluminum has an extended
spectral tail that distinguishes metals from insulators and semiconductors. The
method is easy to implement with any electronic structure code, providing
suitable estimates for single-particle electronic states and energies.
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σkðωÞ ¼
X
i, j

gijðk,ωÞ
X
α

jpαijj2 (1)

In the shorthand notation of Equation (1), we averaged over
diagonal elements of the conductivity tensor (α represents
Cartesian directions), i and j index Kohn–Sham orbitals (or other
single-particle states) ψ i,kðxÞ with associated energies ϵi,k, pα is
the momentum operator (for direction α: pα ¼ �iℏ ∂= ∂xα)
and gijðk,ωÞ ¼ 2πe2½f iðkÞ � f jðkÞ�δðϵjðkÞ � ϵiðkÞ � ℏωÞ=ð3m2ωΩÞ,
and f is the Fermi–Dirac distribution. The matrix elements of
the momentum operator are pαji ¼ hψ jjpαjψ ii. This is devised for
amorphous materials which are assumed to be isotropic; it is
equally easy to implement this method for a particular direction
to explore anisotropy of conduction. It is remarkable that this
expression for the conductivity, which exactly coincides with the
study by Greenwood,[4] does not require an explicit expression
for the current density. By carefully deriving the current density
j, one discovers that this derivation, and also Greenwood’s, veils
significant approximations involving the DC limit, and more sub-
tly, the spatial homogeneity of carrier density. We will not further
dwell on these technical issues here, and adopt the “standard” KGF
(Equation (1)). See, for example, Equation 19 in the study by Zhang
and Drabold[10] and associated discussion. For a full many-body
picture, see the previous studies by Zhang and Drabold.[11,12]

The Kubo formula has been heavily used in liquids,[13–16]

amorphous semiconductors,[17] and mixed systems.[18,19] In its
usual application, the KGF is applied to a static disordered lattice.
As such, it provides no information about thermal disorder and
its consequences to conduction. For applications of the KGF in
disordered systems, the electron–phonon coupling is large for
localized single-particle states,[20,21] especially those orbitals near
the Fermi energy. In a room temperature thermal molecular
dynamics simulation, energy levels may fluctuate with a ther-
mally induced root mean squared fluctuation σE ≫ kT .[22,23]

Above the Debye temperature, it is sensible to estimate the
temperature-dependent conductivity by undertaking a long
constant-temperature molecular dynamics (MD) simulation
and averaging the KGF over the trajectory. This seems to give
reasonable results for the temperature dependence of pure
and hydrogenated a-Si, and explains the high-temperature coef-
ficient of resistance and functionality of doped a-Si:H as a mate-
rial for night-vision device applications.[24]

Apart from the approximations mentioned earlier, there are
many technical details for properly using the KGF, including finite
size effects and such details as the broadening of the δ function in
Equation (1). A recent review details many issues about the use of
KGF in hot condensed matter.[25] The KGF is a valuable tool, link-
ing as it does transport experiments to the quantum mechanics of
materials, but in its usual implementation gives just one function
(the AC conductivity) or one number (the DC conductivity). It pro-
vides no spatial information about the conduction.

3. Computing Spatial Information about
Transport

For heterogeneous systems, a basic question is: “what parts of
the network are conducting?” Some emerging computer mem-
ory technologies (resistive random access memory [RAM] and

conducting bridge RAM) involve specific conduction pathways,
and our microscopic understanding of such systems might be
improved by a detailed atomistic understanding of the flow of
charge through the systems. Conducting bridge RAM can be
made from many amorphous insulating hosts (such as GeSe3
or Al2O3, heavily doped with a transition metal like Ag or
Cu). These are technologically important electrochemical devices
for which basic questions arise about whether transport is simply
through metal filaments or a more intricate process involving
transport through metal-rich regions.[26] We have provided
insight into this elsewhere.[7,26–29] Another example of keen cur-
rent interest is physical unclonable function (PUF) devices for
computer security, made from a-Si suboxide materials, as we
discuss on more detail in Section 6.4. Another example of
interest is conductance fluctuation in amorphous systems.[30]

With this tool in hand, the idea might also be pushed
in an engineering direction as a common inverse problem of
materials science: “what is the structure that I need to have a
particular conductivity?”, or “what is the structure required to
have a particular absorption of light of frequency ω, eg., for
the design of waveguides?” The inverse problem is always
challenging: a robust tool of the form R ! ℘ (given coordinates
what is the conducting path) is required before we can handle
℘ ! R (given the conducting path we seek, what coordinates—
structure—will yield it?).

Some exisiting schemes yield insight into the spatial
character of conduction. A principal message of the KGF is that
the DC conductivity arises from transitions between states at or
near the Fermi level. To obtain a nonzero conductivity, it is nec-
essary that the momentum matrix element not vanish between
the relevant occupied and unoccupied states (Equation (1)). If two
such states ψ i and ψ j do not overlap, there is no contribution to
the conductivity: transitions between spatially nonoverlapping
orbitals are forbidden. So, to the extent that there is a large over-
lap between the two states, there is likely to be a larger momen-
tum matrix element too. This is the idea behind a primitive
approximation, the “qi � qj” method that we use in ref. [27].
An even simpler scheme is to compute the charge density around
the Fermi level[31]—it must be that the spatial conductivity
involves those parts of space where this charge density is large,
but this totally ignores the momentummatrix elements which lie
at the heart of the KGF—these matrix elements are a legacy of the
current–current correlation function, and it is not desirable to
neglect these contributions. Other ideas related to spatial decom-
position of conductivity have emerged in the literature before,
including a computation of current densities for a randomly dis-
ordered system,[32] using the methods of Baranger and Stone.[33]

Also, within a Landauer picture, the concept of transmission
eigen-channels was introduced and later implemented with non-
equilibrium Green’s functions.[34]

4. Theory

4.1. SPC

The KGF (Equation (1)) gives the conductivity as a weighted sum
of the modulus squared momentum matrix elements. The sums
on Latin indices are over single-particle, for this article, Kohn–
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Sham orbitals. The spatial dependence of the states is obviously
important, but only insofar as this modulates the momentum
matrix elements. Thus, it is desirable to rewrite the KGF express-
ing the matrix element quadratures as sums on a real space grid
to find a spatial decomposition. Suppressing the explicit depen-
dence of σ on k and ω, we write

σ ¼
X
ijα

Z
d3x

Z
d3x0gij½ψ�

i ðxÞpαψ jðxÞ�½ψ�
i ðx0Þpαψ jðx0Þ�� (2)

Next, define complex-valued functions

ξαijðxÞ ¼ ψ�
i ðxÞpαψ jðxÞ (3)

on a discrete real-space grid (call the grid points x), and suppose,
for simplicity, that the grid is uniformly spaced in 3D space with
spacing h. Approximating the integrals as sums on the grid, and
obtaining the operation of pα from centered finite differences, we
easily arrive at

σ � h6
X
x, x0

X
ijα

gijξ
α
ijðxÞ½ξαijðx0Þ�� (4)

We find it useful to introduce what we will call the conduction
matrix Γ defined as

Γðx, x0Þ ¼ h6
X
ijα

gijξ
α
ijðxÞ½ξαijðx0Þ�� (5)

Γ is Hermitian and positive semidefinite. Note that Γ has the
dimension of conductivity, and we have summed out the Kohn–
Sham orbitals, leaving only spatial dependence. It follows from
Equation (4) that σ ¼ P

x,x0 Γðx, x0Þ as h ! 0. We take the SPC to
be ζðxÞ ¼ jPx0 Γðx, x0Þj. To obtain a real value for the scalar field
ζ, the modulus operation is required: while the full double sum
is, of course, real, summing only one index of Γ yields a function
that is, in general, complex. ζðxÞ is of interest as it is positive, and
by construction indicates the conduction-active parts of the
system. Similar forms are possible for the SPC. If, for example,
only one of the matrix elements is computed on a grid, then if
ϕij ¼ h3gijp

α
ij , then for τðxÞ ¼ P

ijα ϕijξ
α
ijðxÞ, jτj also serves as an

estimate for SPC, identical to ζ as h ! 0.

4.2. Spectral Properties of the Conduction Matrix

The eigenvalue problem for Γ reads: Γjχμi ¼ Λμjχμi, for which
μ ¼ 1, ng. ng is the number of points in the spatial grid (thus,
for example, ng ¼ n3 for n points in each Cartesian direction
in 3D). Diagonalization provides a spectral representation:
Γ̂ ¼ P

μ jχμiΛμhχμj, from which

σ ¼
X
μ

Λμ½1þ
X

x, x0 , x 6¼x0
χμðxÞχ�μðx0Þ� (6)

Equation (6) introduces the concept of conduction eigenvalues
and modes. The spectral decomposition of σ of Equation (6) cat-
egorizes the conductivity into a finite and, in practice, small
(compared with the dimension of Γ ) set of conduction channels.
Because of trace invariance of Γ,

P
μ Λμ ¼

P
x ΔðxÞ, for

ΔðxÞ ¼ Γðx, xÞ. The spectral form for the SPC is thus

ζsðxÞ ¼
����
X
μ

ΛμfjχμðxÞj2 þ
X

x0 , x0 6¼x

χμðxÞχ�μðx0Þg
���� (7)

and ζðxÞ ¼ ζsðxÞ. We observe that if we take a diagonal approxi-
mation ΔðxÞ, by omitting the second term on the RHS in
Equation (6), the eigenvalue Λμ would exactly give the conduc-
tance through channel μ. In such an approximation,
σ � P

μ Λμ ¼ TrðΓÞ, a form reminiscent of the transmission
eigen-channels,[34] but note that our full expression for σ is
not just a trace over Γ in contrast with the transmission matrix
appearing in the Landauer expression for conductance.

It is of interest to determine the value of an approximate ζs
(e.g., computed from only a handful of the eigenvectors conju-
gate to the largest eigenvalues) to ζ. We discuss the density of
states (DOS) of Γ later. For complex mixed conducting/insulat-
ing phases, we find that the eigenvectors χ conjugate to extremal
eigenvalues produce a remarkably compact and efficient descrip-
tion of the conduction, often reproducing the full ζ with only a
few tens of eigenvectors, even though dim(Γ) is in the tens of
thousands. For a metal (e.g., FCC Al), we again find a great accu-
mulation of eigenvalues at Λ ¼ 0 but with a significant spectral
tail unseen in less metallic systems. Thus, the high conductivity
of a metal accrues from integrating over this tail. The DOS of Γ
is yet another way to distinguish insulators, semiconductors, and
metals.

So far, we have computed the eigenvectors of Γ by exact
diagonalization. However, it is clear that this problem is ideal
for a Lanczos technique.[35] A maximum entropy reconstruction
of the DOS of Γ is also under investigation.[36]

5. Computational Details

5.1. Models

In this article, we used Vienna Ab initio Simulation Package
(VASP)[37] code to carry out DFT calculations. The generalized
gradient approximation (GGA) of Perdew–Burke–Ernzerhof
(PBE)[38] was used as the exchange–correlation functional.
Brillouin zone sampling was restricted to the gamma point
(k¼ 0), and periodic boundary conditions were used throughout.

A model of low-density a-C was examined with density
1.5 g cm�3 and consisted of 216 atoms.[39]

An a-Si model with 216 atoms (ρ¼ 2.33 g cm�3) was taken
from the study by Djordjević et al.[40] and was relaxed using a
conjugate gradient method. While relatively small by current
standards, this model is an excellent representation of the topol-
ogy of a-Si, and is 100% fourfold, though some of the sites are
strained. The a-Si model was then melted at 2000 K for 6 ps to
create representative snapshots for l-Si.

We modeled a-Si suboxide (a-SiO1.3) in cells with 184 atoms
and density 1.68 g cm�3[41] that was obtained using a melt-
quench scheme.[42] We began with a supercell with a random
initial configuration at the experimental density and desired
stoichiometry, which was then heated above melting point.
The supercell was then cooled to room temperature in successive
steps. The final model was obtained by performing a relaxation
to minimize the forces acting on each atom to below
�0.005 eV Å�1.

www.advancedsciencenews.com www.pss-b.com

Phys. Status Solidi B 2020, 2000438 2000438 (3 of 13) © 2020 Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.pss-b.com


A cubic model of crystalline FCC Al (c-Al) with 500 atoms was
constructed.

We use various values of grid spacing (h) throughout this
aricle. We find that the SPC is fairly insensitive to h, and has
checked the results presented here by considering a few different
choices for h and verifying that the predicted SPCs were
consistent.

5.2. Methods

To carry out the calculations, we used Kohn–Sham orbitals com-
puted with VASP.[43] The ξ (of Equation (4)) was obtained using
finite central differences with δr ¼ 0.05 Å. To estimate the SPC
(ζ), we adopted a discrete grid with variable dimensions depend-
ing upon the supercell used. We selected a temperature of
T¼ 1000 K for the Fermi–Dirac distribution and approximated
the delta function in gij by a Gaussian with width 0.05 eV.
The numerical value of the conductivity is sensitive to these
choices, the SPC plots far less so.

The extent of the localization of eigenvectors was quantita-
tively gauged by calculating the inverse participation ratio
(IPR) defined as

ℐμ ¼
P
x
ðχμðxÞÞ4

ðPxðχμðxÞÞ2Þ2
(8)

The value of ℐ lies between 0 and 1. Higher ℐμ signifies that
the eigenvector χμ is more spatially localized.

6. Results and Discussion

6.1. Low-Density a-C

Carbon materials have produced two Nobel prizes in the last
quarter century. a-C has applications including protective
coatings, radiation protection, electronic circuits, and bio-
medicine.[44–46] Carbon-based electronics is a major field of
research in materials science.[47–50] Carbon in different forms

such as carbon nano tubes (CNTs) is being studied for PUF
applications.[51] Carbon-based electrodes are used as electro-
chemical sensors for biological applications.[52]

a-C at low densities (< 2 g cm�3) consists primarily of sp2 sites,
with some sp and sp3 sites. Bhattarai et al. have shown that a-C at
low densities (ρ¼ 0.92–1.6 g cm�3) exhibits sp2 configurations
with �66–81%, sp chains with �14–33%, and sp3 configurations
with �0–9%.[39] The presence of sp2 and sp configurations may
render the materials electrically conductive and optically absorb-
ing. Intuitively, it is clear that the connectivity between the sp, sp2,
and sp3 subnetworks might also play a role in conduction. For
densities below 1 g cm�3, it has been shown that the material
consists of warped and wrapped regions of amorphous graphene,
with considerable ring disorder.[53]

In this subsection, we discuss SPC in low-density a-C
(1.5 g cm�3) and also provide spectral information from the con-
duction matrix by diagonalizing it. We discretized the supercell
into 40� 40� 40 grid points (h¼ 0.355 Å) and obtained the
conduction matrix Γðx, x0Þ which has dimension of 64 000.
The conductivity path was obtained by calculating space-
projected conductivity at each grid point as discussed in
earlier section (Section 4.1). The SPC is projected as an isosur-
face (yellow blob) in left plot of Figure 1. As a technical
exercise, we also compare the results to the diagonal
approximation ΔðxÞ.

The isosurface in the left plot shows that SPC is due to both sp
and sp2 configurations in the network. It reveals active participa-
tion of sp chains in the network that form a clear connected con-
ducting path and follow sp2 configurations to a pentagonal ring.
Pentagonal and the hexagonal ring structures that are connected
with sp chains form the other active sites for conduction. These
rings are highlighted in themiddle plot of Figure 1 that show only
those atoms contributing significantly to conduction. The arrows
indicate the continuous conduction path along the C atoms dis-
played in the left plot. sp3 configurations do not appear as SPC
sites. As a consequence, they do not contribute to charge trans-
port, as expected. To provide a simpler picture of the conduction,
we projected ΔðxÞ, the diagonal approximation of ζ, as an isosur-
face in the right plot of Figure 1. Δ is primarily centered on the

Figure 1. a-C: Left and right images correspond to the SPC (ζ) and the diagonal approximation Δ(x) projected on grids as an isosurface plot (yellow
blobs), respectively. The middle plot corresponds to the structural topology of the network in one region of the supercell that forms a continuous
conduction path. The straight and the curved lines with arrowhead are guides to the eye to indicate the conduction path. The colored spheres represent
C atoms with different configurations; red (sp3), blue (sp2), green (sp), and purple (singly bonded).
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atomic sites and shows discrete path. The isosurface blobs show
that Δ picks almost the same sites that are active in ζ. So, Δ quali-
tatively provides a similar picture of the conduction path as ζ
shown in left plot of Figure 1 for a-C.

Next, we discuss the spectral properties of conduction matrix,
Γðx, x0Þ, for a-C by diagonalizing it as discussed earlier
(Section 4.2). The DOS from the eigenvalues and the extent of
the localization of the eigenvectors measured by IPR (ℐ) were
calculated and are shown in Figure 2.

The DOS in Figure 2 reveals an overwhelming fraction of
eigenvalues very near Λ¼ 0. These states are mostly localized
as represented by the values of ℐ shown by the scattered red
dots. We find a few eigenvalues significantly shifted from
Λ¼ 0 in the spectrum; only eigenvectors corresponding to these
extreme eigenvalues are important to the DC conductivity. To
better estimate the number of such eigenvectors, we calculated
the spectral form of SPC, (ζs), defined in Equation (7), from the

largest 75 and 100 eigenvectors, and these are shown in Figure 3.
Both isosurface plots in Figure 3 show almost the same path
as ζ that is displayed in the left plot of Figure 1. This shows that
75–100 eigenvectors suffice to obtain the conduction path in a-C.

To see how two eigenvectors conjugate to the largest eigenval-
ues contribute to transport, see Figure 4. We see that from
Λμjχμj2, these extremal eigenvectors either form a short channel
or lie within spatially separated parts of the network. The eigen-
vector corresponding to the second largest eigenvalue (left plot in
Figure 4) picks out mostly the sp sites. The sp2 configurations
which are adjacent to the sp configurations are other active sites
for this eigenvalue. The extremal eigenvector selects both sp2 and
sp sites. Both eigenvectors pick more or less the same sp2 sites in
the network that are the active sites for the conduction as shown
by ζ shown in left plot of Figure 1.

The physical conclusion is that sp chains play an important
role in electronic transport in phases of carbon that possess
them. The SPC that emerges reveals charge transport through
interconnected sp chains and sp2 rings. It is expected that the
the relative fraction of these conducting constituents is strongly
density, impurity, and sample preparation dependent.

6.2. a-Si

a-Si plays an important role in technological applications, such as
thin-film transistors, photovoltaics, infrared imaging devices,
and active-matrix displays.[54] Being an electronic material,
understanding the conduction mechanisms is of obvious impor-
tance. In this subsection, we discuss the conduction-active sites
in the material and also discuss the spectral properties of
the conduction matrix Γ. The supercell was partitioned into
42� 42� 42 grid points (h¼ 0.39 Å) and the Γ matrix was
obtained. The SPC at each grid was then calculated and is shown
as a heat map plot in Figure 5.

Earlier works on the electronic bandtails (Urbach tails) of a-Si
have shown that the valence tail states are built from chains or
clusters of Si atoms with bonds shorter than average and
conduction tail states are due to chains of Si atoms with longer
bonds.[55–58] It is therefore to be expected that these tail states
(and gap states due to badly strained fourfold sites or coordina-
tion defects) will play a role in conduction.

Figure 2. a-C: Logarithmic spectral DOS of Γ matrix. The left scale
represents the DOS of the eigenvalues displayed in a log scale (solid black
line) and the right scale corresponds to the extent of localization of eigen-
vectors measured as IPR (ℐ) (red circles). Large ℐ implies a spatially
localized eigenvector of Γ .

Figure 3. a-C: Spectral form for SPC (ζs) projected on grids as an isosurface plot (yellow blobs). Left and right plots correspond to the ζs from the sum of
last 75 and 100 eigenvectors, respectively. Same cutoff for the isosurface has been used in both plots and the left plot in Fig. 1. Same color code is used to
describe atoms as in Fig. 1. ζs from extreme 75–100 eigenvectors is equivalent to ζ and is sufficient to essentially exactly determine the SPC in a-C.
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Figure 5 shows the SPC for a-Si. Analysis of the SPC shows
special weight for atoms with bonds shorter than 2.32 Å and
longer than 2.43 Å (the average bond length is about 2.35 Å).
The heat map shows that the SPC also sits at strain defects
(fourfold atoms with large variation in bond angles or bond
lengths from tetrahedral symmetry). The conduction involves
all the states near the Fermi level (ϵF), thus involving tail states
(of long and short bond structures) and, of course, defect states
near ϵF. We diagonalized Γ to understand the spectral informa-
tion of the conduction eigenvalues and the eigenvectors. The
DOS of the eigenvalues and the extent of localization (ℐ) of
the eigenvectors were calculated and are shown in Figure 6.

Figure 6 shows a very large accumulation of eigenvalues near
Λ¼ 0. Much about the transport can be obtained from only a few
extremal eigenvalues and conjugate eigenvectors of Γ to

approximatethe SPC of the material. We plot jχj2 for the largest
two eigenvalues in Figure 7. We find that these eigenvectors
select out specific sites in the network. The eigenvector corre-
sponding to the second largest eigenvalue (left plot in
Figure 7) picks the atomic sites with short-bonded Si atoms with
maximum bond length of 2.32 Å. The eigenvector corresponding
to the largest eigenvalue picks entirely different parts of the net-
work. This eigenvector follows a path among those atoms that
form adjacent strain defect sites,[59] nominally fourfold but with
one or two long bonds shown in blue and heliotrope, respectively,
and also involves filaments of long Si─Si bonds with minimum
bond length of 2.43 Å. This calculation reinforces the predicted
short-bond (long-bond) association with valence (conduction)
tails, and shows an interesting conduction mixing of the defects
and tail structures (long- and short-bond subnetworks). In a sys-
tem with dangling (threefold) or floating (fivefold) configura-
tions, yielding states near ϵF, we would expect these sites to
also participate in the resulting ζðxÞ.

Figure 4. a-C: Eigenvectors projected on grids as an isosurface plot (yellow blobs). Left and right plots correspond to the second largest
(Λμ ¼ 22.04 S cm�1) and the largest (Λμ ¼ 31.98 S cm�1) eigenvalues, respectively (refer to Figure 2). Same color code is used to describe atoms
as in Figure 1.

Figure 5. a-Si: SPC (ζ) projected on grids as heat map plot (labeled by
colorbars on left of the plot) scaled with maximum value in each plot.
The size of the hot spheres is scaled with the magnitude of the SPC value.
The colored spheres represent Si atoms with different bonding environ-
ment; the blue and heliotrope colored spheres represent fourfold coordi-
nated Si atoms with one and two very long Si─Si bonds, respectively.
The green colored spheres represent typical Si atoms with normal
bondlengths. The bond cutoff distance of 2.72 Å was chosen.

Figure 6. a-Si: Logarithmic spectral DOS of Γ matrix. The left scale cor-
responds to DOS of the eigenvalues displayed in a log scale (solid black
line) and the right scale corresponds to the extent of localizationmeasured
as IPR (ℐ) (red circles).
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In future work, we will explore defect-rich phases of
amorphous Si including dangling and floating bonds (as well
as nominally fourfold structures with strain defects) and explore
the role of defects in conduction. There is no doubt that such
defects will play a role, as their electronic energies are well known
to be in the gap, and for dangling bonds especially, near the mid-
dle of the gap. We speculate that there may be interesting SPC
linkages between such defects and the filamentary structures
associated with the Urbach tails,[56] perhaps reminiscent of
the sp-ring mixing of a-C. Conductivity will certainly depend
on delocalization that accrues from mixing/banding between
defect state: such effects are included in our computations.

6.3. Conductivity Fluctuations in l-Si

l-Si is a metal in contrast to a-Si or c-Si which is tetrahedral
semiconductors. Although it is metallic, the first neighbor
atomic coordination number is between 5 and 6,[60] hinting
at a prevalence of covalent bonds in the liquid state of Si and
differentiating it from other metals in terms of structural
topology.[61] In the liquid state, thermal fluctuations cause the
structure to continuously change and so too the SPC in the
network. To model the liquid metal, we annealed the a-Si model
at 2000 K for 6 ps.

The thermal fluctuations induce fluctuations in the Fermi
level (ϵF) and also the electronic gap associated with it. The fluc-
tuation of the frontier of highest occupied molecular orbital
(HOMO), lowest unoccupied molecular orbital (LUMO), and
the Fermi level with simulation time is shown in Figure 8 for
a brief time interval.

From Figure 8, we see that the minute gamma-point gap
opens and closes with time due to the thermal fluctuations.
We chose four configurations as shown by different markers
in the inset plot of Figure 8 where such feature exists. For these
snapshots, we find that the coordination environment does not
drastically change within the network for this short time interval.
A majority of the Si atoms are fivefold and sixfold coordinated
(�56–57%); fourfold and sevenfold coordinated Si atoms account

for�33–35% of the total coordination; and eightfold coordinated
Si atoms account for 5.1–9.7% of the network. For each of these
configurations, we obtained the SPC on a 40� 40� 40 grids
(h¼ 0.41 Å) and these are shown as heat map plots in Figure 9.

The heat map plot of SPC shows that the fluctuation in the
energy levels results in slight variation in the SPC. For all mod-
els, we find that the SPC is quite extended, indicating the metallic
character of the material. All coordinations seem involved in the
conduction, suggesting a truly delocalized metallic form of
conduction.

We also picked four temporally well-separated snapshots at
simulation times 1.95, 3.15, 4.35, and 5.55 ps to capture the

Figure 7. a-Si: Eigenvectors projected on grids as an isosurface plot (yellow blobs). Left and right plots correspond to the second largest
(Λμ ¼ 0.26 S cm�1) and the largest (Λμ ¼ 0.34 S cm�1) eigenvalues, respectively. For atoms, the color code is same as used in Figure 5. As the atoms
picked by the eigenvectors that are adjacent to each other are separated by the periodic box, we shifted the coordinates to make these atoms include in the
same side of the box to make the connectivity clear. The left panel emphasizes short bonds, right panel long bonds, and defects.

Figure 8. l-Si: A snapshot showing fluctuations of energy levels near the
Fermi level (in eV) plotted against simulation time. The inset plot shows a
specific region (shown by the curly brace) with closing and opening of the
electronic gap. The markers correspond to the time step for the atomic
configurations that were selected for the SPC calculations.
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variation of the conduction path on longer time scales. The SPC
for each of these snapshots is shown on grids as a heat map in
Figure 10. The dominating regions appear in different parts of
the cell for these snapshots, an expected kind of “local conduc-
tance fluctuation” as the Si atoms diffuse in the liquid state and
continuously change their local bonding and thus local electronic
structure. The variation in the conduction path is displayed, and
colored spheres in each plot of Figure 10 indicate the fluctuation
in the local atomic environments. We find that, within the top 6%
of SPC values in Figure 10a, one of the conduction paths is along
the chain with fourfold, fivefold, sixfold, sevenfold coordinated Si
atoms in the middle region of the network. Similarly, in
Figure 10b, we find a continuous path along fourfold, fivefold,
sixfold, sevenfold, eightfold Si atoms where four of such sixfold
coordinated atoms contributing to the path. In Figure 10c, there
exists a conduction path along a chain of five Si atoms that are all
sixfold coordinated. We also find the conduction path along the
chain of fourfold, fivefold, sixfold coordinated Si atoms where
three of such fivefold coordinated Si exist in the chain. In
Figure 10d, we find one of the conduction paths along six Si
atoms with fivefold, sixfold, sevenfold, eightfold coordinated
Si atoms forming a chain where three of them are fivefold coor-
dinated. So,the SPC calculations from these snapshots show that
the most conduction-active sites in l-Si are fivefold and sixfold

coordinated. We find Si atoms with fourfold, sevenfold, and
eightfold coordinated forming the other sites of conduction.
It would be of interest to properly analyze these fluctuations with
suitable space-time correlation functions.

6.4. a-Si Suboxide: Application for Finite ω

Optical materials are critically important, and there is always
a demand for novel optically functional and transparent materi-
als. Electromagnetic waves of different frequencies may be
absorbed by different parts of the inhomogeneous material.
Having a priori information on the absorption-active sites/
regions in the material could be helpful to engineers, for
example, to design waveguides or other optical devices.
Optical PUFs are an ongoing research topic for computer secu-
rity applications.[62]

Silicon suboxides, a-SiOx (0< x< 2), have complex structures
and two different pictures of suboxide structure are mainly dis-
cussed: random mixture[63] and random bonding.[64] The former
model suggests the segregation of Si in silica separated by the
interfacial boundary and the latter model suggests a continuous
random network of tetrahedral units of SiSiyO4�y where y¼ 0
to 4. The complexity of the network makes the material electron-
ically interesting and, of course, span a-Si to amorphous silica.

Figure 9. l-Si: SPC (ζ) projected on grids as a heat map (labeled by colorbars on left of each subplots) for atomic configurations at that are temporally
close to each other shown by the marker signs in the inset plot of Figure 8. a–d) The atomic configurations shown by star, triangle, square, and the plus
signs in the inset plots of Figure 8, respectively. Atom color represents Si with different instantaneous coordination as labeled and shown at the top of the
figure. The cutoff distance of 3.10 Å is used to define the coordination.
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If one imagines starting in a-SiO2, a superb insulator, one can
imagine a process of randomly depleting O atoms from the
network. If x is close to 2, O-vacancies will be widely separated
with little conduction. As O depletion proceeds, more and more
hopping will accrue and the conduction paths will be determined
by the locations and electronic structure associated with the
O-vacancy subnetwork. The electrical conductivity therefore
has a stochastic character depending on the existence and details
of a hopping pathway involving the vacancies. For small enough
systems, the stochasticity in conduction path affects the observed
DC conductivity, and makes an excellent PUF, as we report
elsewhere.[65]

In this article, we look very briefly at an AC version of this, and
show that light absorption is very sensitive to wavelength, and in
particular, show that different vacancy subnetworks contribute to
the absorption. This suggests that an “optical PUF”might be pos-
sible for the silicon suboxide materials. We limit the discussion to
a qualitative indication of how different parts of the network par-
ticipate for two different wavelengths, and we note for complete-
ness that to really carry out such calculations realistically better
excited states should be computed with more intricate methods.

In this subsection, we discuss light absorption in a-SiO1.3 at
two frequencies. To enable this, we calculated the space-projected
conductivity on 40� 40� 40 grids (h¼ 0.39 Å) for two different
wavelengths with λ ¼ 2000 nm and λ ¼ 1600 nm. The SPC for
both cases are shown in Figure 11. It is of interest that the

absorbing parts of the models are qualitatively different, and
more to the point, the computation predicts which parts of the
matrix will absorb light of a specified wavelength. The isosurface
plots in Figure 11 show that the absorption meanders along adja-
cent O-vacancy sites in the network because different frequencies
pick out different paths ℘ in the network. As such, changing the
frequency and changing the path make it likely that external
observables, such as absorption, will also change, making the sys-
tem potentially attractive for PUF applications.

6.5. FCC Aluminum

So far we have discussed conduction in noncrystalline semicon-
ductor materials. In this subsection, we consider FCC aluminum
(c-Al), a metal, with a focus on the spectral properties of the con-
duction matrix Γ. Γðx, x0Þ for the 500 atoms Al cell was obtained
on a 42� 42� 42 grids (h¼ 0.48 Å) so that dimðΓÞ ¼ 74 088.
Γ was exactly diagonalized to obtain eigenvalues (Λμ) and the
eigenvectors (χμ).

Figure 12 shows the DOS of the conduction eigenvalues and
the extent of the localization of the conjugate eigenvectors (ℐ).
The DOS in Figure 12 shows that a majority of the eigenvalues lie
near Λ¼ 0. This is clear from the inset that shows the evolution
of the conduction eigenvalues in increasing magnitude where
only the last �24 088 among 74 088 eigenvalues have magnitude

Figure 10. l-Si: SPC (ζ) projected on grids as a heat map plot (labeled by colorbars on left of each subplots) for configurations at intervals of 1.2 ps.
a–d) The SPC plot at simulation time 1.95, 3.15, 4.35, and 5.55 ps, respectively. Atoms color represents Si with different coordination environment and we
adopt the same convention as in Figure 9. The cutoff distance of 3.10 Å is used to define the coordination. Note the spatial fluctuation in the heat maps
over these snapshots.
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greater than 10�9 S cm�1. Even in a metal, most eigenvalues
of Γ are effectively zero.

In contrast with our previous examples, the spectrum shows
the presence of an extended tail in the DOS that reveals a signa-
ture of metallic conduction in Al. This is supported by the inset
plot where the eigenvalue increases in a linear fashion at
different regimes. The inset also provides a tentative picture
of the transition from an insulating to conducting spectral char-
acter near the high-Λ end of the spectrum between indices

�60 000–67 000. Beyond index �67 000, we observe that the
density of eigenvalues increases in a more quadratic manner.
The presence of the tail in the DOS requires many eigenvectors
to be considered to obtain the conduction path in Al (which is, of
course, fully delocalized through the cell). A small spectral gap
appears near Λμ ¼ 1.3 S cm�1 from a physical origin that we have
not yet determined. The other difference we find is the localiza-
tion of the conduction eigenvectors where the modes are more
extended for Al compared with what was observed in a-Si and the
low-density a-C model.

Figure 13 shows the conduction eigenvalues (Λμ) plotted
against IPR (ℐ). We see that for small IPR, there exists a fairly
clear inverse relation between eigenvalues and the IPR. We also
see Λμ near zero for low IPR. The eigenvectors corresponding to
such eigenvalues can involve many sites, but always without
forming any connected pattern and therefore corresponds to
the nonconductive structures.

Figure 11. a-SiO1.3: SPC (ζ) projected on grids as isosurface (yellow blobs) plots. Left and right plots correspond to ℏω¼ 0.62 and 0.76 eV, respectively.
Multcolored spheres refer to Si atoms within the conduction-active region having different coordination environment shown as legends at the top of the
figure. Top 3.7% SPC values are included in both plots. The gray colored spheres represent Si and O atoms that lie outside the conduction active region for
the given cutoff. The small size spheres represent O atoms.

Figure 12. c-Al: Logarithmic spectral DOS of Γ matrix. The left scale cor-
responds to DOS of the eigenvalues displayed in a log scale (solid black
line) and the right scale corresponds to the extent of localizationmeasured
as IPR (ℐ) (red circles). The inset shows the magnitude of conduction
eigenvalues in ascending order.

Figure 13. c-Al: The correlations of the eigenvalues with IPR (ℐ) shown by
the scattered plots as heatmap. The colorbar at the central top of the figure
refers to the magnitude of eigenvalues.
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To visualize the conduction (really to see how a metallic
conducting continuum emerges from this theory), we projected
the conductivity from all the eigenvectors weighted by their
eigenvalues and this is shown as a heat map plot in Figure 14.
The electrons in c-Al are highly delocalized, as a result the
projected values are essentially the same throughout the cell
as shown in Figure 14. This is, of course, quite different from
the semiconductors like a-Si and low-density a-C where only
some parts of the material serve as the conduction-active sites
in the network that we discussed in the earlier subsection.

The other interesting property we find in the spectrum of the
DOS in c-Al (refer to Figure 12) is the presence of the degenerate
eigenvalues toward the large Λ end of the spectrum. This is
absent in the spectrum of a-Si and the low-density a-C. The
degeneracy is surely a manifestation of the degeneracy present
in the electronic levels, accruing in turn from the crystalline

symmetry (Only the k¼ 0 point is used to sample the
Brillouin zone, perhaps reasonable for a 500 atoms cell for this
application, though in general this would be a doubtful approxi-
mation for a metal with its Fermi surface.). To visualize the
conduction channel formed by the family of such degenerate
eigenvalues, we projected the eigenvectors onto real space grids.
Figure 15 shows the projection of eigenvectors for one of such
family of the degenerate eigenvalues as a heatmap plot. The left
plot shows that the eigenvectors split into four conduction chan-
nels within the supercell. The channels possess an inversion
symmetry at the center of the supercell. The middle and the right
heat maps correspond to the eigenvectors for other two eigenval-
ues in the family which direct along different directions, namely,
along x and y direction.

7. Conclusions

We presented a method to compute a conductivity projected onto
real space grids, and we analyzed the spectral properties of the
conduction matrix for a representative systems. For low-density
a-C, we find that the sp2 and sp configurations form active con-
duction sites. The conduction path is formed between the sp
chains and the pentagonal or hexagonal graphene rings in the
network. For a-Si, we find SPC is distributed at nearby atomic
sites at different parts in the network, suggesting the possibility
of hopping mechanisms for the electronic conduction. For a-Si,
we find that the extreme eigenvectors pick atomic sites with
different topology, involving tail states and strain defects for this
fourfold WWW model. We also studied fluctuations in the
energy levels in l-Si and provided the conduction path for few
configurations. We showed that the fourfold, fivrfold, sixfold,
and sevenfold Si atoms form the conduction sites in the l-Si.
We showed that diagonalization of Γðx, x0Þ provides essential
information about the nature of the conduction eigenmodes
in different materials and helpfully categorizes the “paths”
according to eigenvalue. From the spectrum of DOS of conduc-
tion eigenvalues, we always find a very large weight near Λ¼ 0.
So, for materials like a-Si and a-C, only a few eigenvectors are
sufficient to define the conduction path. For c-Al, we find that
despite a significant accumulation of eigenvalues near Λ¼ 0,

Figure 14. c-Al: Conductivity projected on grids weighted by the eigenval-
ues from all eigenvectors as a heat map plot (labeled by colorbars on the
left) scaled with maximum value. The spheres represent Al atoms.

Figure 15. c-Al: Isosurface plots for eigenvectors corresponding to the degenerate eigenvalues (Λμ ¼ 1.0013 S cm�1). The isosurface plot displayed as a
heat map (labeled by the colorbars on left of each subplots) includes the values within 0.001 times the maximum value on the grids. Al atoms are
represented by gray spheres in each plot.
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there is a spectral tail in the DOS and the channels correspond-
ing to these states are extended. So, for metals, many eigenvec-
tors are necessary to describe the conduction. We also observe a
degeneracy in the conduction eigenvalues in the DOS of c-Al
absent in the amorphous systems. We analyzed eigenvectors
for one such degenerate eigenvalue near the extreme side of
the spectrum and showed that these eigenvectors form a well-
defined conduction channel. We also provided an example of
a silicon suboxide (a-SiO1.3), where we projected the SPC for
(ω > 0) and showed that the O-vacancy sites form the major sites
of conduction in such material.

In our previous works, we studied conduction mechanisms
in few resistive memory materials, namely, a-Al2O3∶Cu[7,28] and
a-Ta2O5∶Cu.

[29] In both cases, we find that the Cu atoms
segregate and form a cluster-like structure in the highly ionic
host. We obtained the SPC and showed that these clustered Cu
atoms form major conduction-active sites in these materials, indi-
cating the metallic conduction in such systems. In a-Ta2O5∶Cu,
we also find that the under-coordinated Ta atoms (O-vacancies)
that are neighbors to Cu atoms are other sites of conduction.
In a-Al2O3∶Cu, we showed that the connectivity of the Cu atoms
in the network is vital to enhance the conductivity in the material.
We also showed that in such a mixed (insulating/conducting)
system, only a few eigenvectors of Γ are required to characterize
conduction in the system.

No article is complete without caveats. It is not easy to extract
quantitative conductivities for amorphous solids. Electron–
phonon couplings are not included in static lattice computations
and such temperature dependence is hardly a small effect. This is
probably one reason why there are more computations of elec-
trical conductivity in liquid metals, where dynamical effects
(changes in electronic structure and therefore conduction due
to atomic motion) are treated with Born–Oppenheimer dynam-
ics. Also, in principle, methods producing accurate excited states
perhaps using hybrid functionals should be used, and would
doubtless make a significant difference in the numerical value
of the conductivity. However, we emphasize that the qualitative
character of the SPC is far less sensitive to these effects than
the numerical value of the conductivity, and the method
offers a fairly robust picture of conduction activity in complex
materials.
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