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Atomic properties of sodium silicate glasses obtained from the building-block method

K. N. Subedi,1,* V. Botu,2,† and D. A. Drabold 1,‡

1Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute (NQPI), Ohio University, Athens, Ohio 45701, USA
2Science and Technology, Corning Research and Development Corporation, Corning, New York 14830, USA

(Received 16 September 2020; accepted 25 March 2021; published 8 April 2021)

Atomistic simulations of (Na2O)x (SiO2)1−x glasses are carried out using the building-block method that
uses copies of low-energy units, “building blocks,” to build large realistic structural models. The calculated
pair-correlation functions show that the local structure of these glasses is in good agreement with diffraction
experiments. The electronic density of states for the doped models reveals defects in the band gap close to
the conduction tail that are localized around undercoordinated Na atoms. Thermal properties for the systems,
including the thermal expansion coefficient, are studied within the quasiharmonic approximation, and compare
favorably with experiment. The elastic properties of the glasses are studied by calculating bulk and shear
modulus.
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I. INTRODUCTION

Sodium silicates [(Na2O)x(SiO2)1−x] are widely studied
glasses that have established and potential applications for
photonics, and biomaterial engineering [1–3]. Despite these
applications, the atomic structure of these glasses is still
not well understood, owing to the large number of possible
local bonding environments because of the complex composi-
tion. To fully exploit these glasses for practical applications,
fundamental insight about the atomic structure is needed.
Experimental work such as extended x-ray absorption fine
structure (EXAFS) spectroscopy [4], magic angle spinning
NMR (MAS-NMR) [5,6], x-ray photoelectron spectroscopy
(XPS) [7], and neutron diffraction [8] have determined many
fingerprints of the structure. However, the fingerprints alone
are insufficient to determine the microstructure. Computer
simulations have become the preferred route to understand-
ing such materials at the nanoscale. Most classical molecular
dynamics (MD) and ab initio molecular dynamics (AIMD)
studies have used the quench-from-melt scheme [9] to obtain
the (Na2O)x(SiO2)1−x structures. Within this method, proper-
ties of densified silicates and the impact of the cooling rates
on the structure of the silicates glasses have been discussed
[10,11]. With a priori experimental information available,
methods like force enhancement atomic refinement (FEAR)
[12] can be used, which integrates experimental constraints
with classical MD or AIMD to obtain more realistic models.
A recent work by Zhou et al. [13] has employed the method
to study (Na2O)0.3(SiO2)0.7 glasses using classical MD. The
study shows that FEAR models capture the medium-range
order particularly well. Most of the earlier and contemporary
works on (Na2O)x(SiO2)1−x [14–17] are primarily focused

*ks173214@ohio.edu
†botuv@corning.com
‡drabold@ohio.edu

on the structural character of the materials, and have been
successful when compared to experiments. Limited literature
is available on electronic, optical, and mechanical proper-
ties [18,19]. One interesting recent study of diffusion of the
sodium silicate melt has been offered by Hung et al. [20],
revealing that two different diffusion mechanisms could occur
in such glasses. However, to our knowledge, there are no stud-
ies on the thermal properties, especially the thermal expansion
coefficient (TEC), a key quantity for applications.

All amorphous materials have significant short-range or-
der, some form of medium-range order, and ultimately no
long-range order. Thus, amorphous silicon has local order
very reminiscent of diamond: bond angles that are clustered
around the tetrahedral angle and the great preponderance of
bond lengths near the diamond nearest-neighbor distance.
Similarly, glassy phases of SiO2 consist of interconnected
Si-O tetrahedra that nevertheless have bond-angle disorder in
both Si-O-Si and O-Si-O angles (the latter again distributed
around the tetrahedral angle). Other examples come to mind,
such as the pyramidal units of As2Se3. As the stoichiom-
etry of the glass becomes complex when including several
elements, the building blocks are not necessarily so simple.
It is with this background that we are motivated to use the
“building-block” method [21]. Essentially, we try to identify
the complex units, and perform a melt-quench simulation with
that local order already built in. To enable this, a small cell
(here, 30 atoms) of the correct stoichiometry of the glass and
low energy is obtained by a thorough and extensive annealing-
quenching process (easy to carry out because the cell is so
small). The idea is that the actual glass is likely to exhibit such
local order. The small cell is then used to build a larger cell
from eight copies of the small cell formed into a cube with
240 atoms. A melt-quench method is then carried out with
this larger cell and remnants of this local order will persist
even after a melt-quench process. This scheme has worked
quite well in multinary glasses with complex ordering, and
in particular seems to match or sometimes outperform the
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conventional melt-quench method starting from random initial
conditions, even for fairly extended simulations. The pair-
correlation functions for the ternary glasses AsGe0.8Se0.8 and
Ge2As4Se4 have shown pleasing agreement with experiment
[21]. A conceptually related but different version of the idea
was presented by Ouyang and Ching, applied to amorphous
Si3N4 glasses [22].

The rest of the paper is organized as follows. The com-
putational methodology for obtaining the models and the
quasiharmonic approximation are discussed in Sec. II. The
structural, electronic, thermal, and elastic properties are de-
scribed in Sec. III.

II. METHODOLOGY AND COMPUTATIONAL DETAILS

A. Generation of models using building-block method

AIMD simulations were performed using the Vienna Ab
initio Simulation Package (VASP) [23]. Three atomic models
of (Na2O)x(SiO2)1−x were made with x = 0.0, 0.1, and 0.3.
For each model, a small “subunit cell” was built with 30
atoms at the known experimental density [24] and desired
stoichiometry. The atoms were randomly placed with mini-
mum separation of 2.1 Å from each other. The temperature of
the subunit cell was then increased to 3500 K in 4.5 ps and
equilibrated at this temperature for 6 ps. The “hot liquid” was
then cooled in successive steps followed by equilibration for
a few picoseconds to make the model representative of that
temperature. Then it was cooled to 2000 K at a cooling rate
of 2 × 1014 K/s followed by equilibration for 7.5 ps at the
same temperature. The equilibrated subunit cell was further
cooled to 1000 K at the same cooling rate followed by another
equilibration for 7.5 ps. The subunit cell was then quenched
to 300 K and equilibrated for another 7.5 ps. The conjugate
gradient (CG) method as implemented in VASP was then used
to relax the subunit cell to optimize its energy. At least four
such relaxed subunit cells were obtained by repeating the pro-
cess and the subunit cell corresponding to the lowest energy
termed as building block (BB) was considered for the further
calculations. Eight copies of the BB were used to prepare
the starting configuration of the supercell that consists of 240
atoms. Following a similar scheme as used for the subunit
cell, the supercell was annealed at 2500 K for 7.5 ps and
quenched to 300 K.1 The model was then equilibrated at
300 K for 7.5 ps. The equilibrated model at 300 K was fi-
nally optimized by performing zero-pressure relaxation. This
resulted in a nonorthogonal cell and thus the density of the
supercell changes slightly (a variation in density was less than
3% for all models). A direct melt-quench model with x = 0.3
consisting of 240 atoms was also obtained for comparison.
The initial structure was annealed from 300 to 3500 K in
4.0 ps and was equilibrated at 3500 K for 6 ps. It was then
cooled to 2000 K at the same cooling rate of 2 × 1014 K/s
followed by equilibration for 6 ps at 2000 K. The model was
further cooled to 1000 K at the same cooling rate and was
equilibrated for the next 4 ps. It was then quenched to 300 K

1The a-SiO2 model was annealed at 3000 K due to its higher
melting point compared to silicate models.

FIG. 1. Schematic flow chart for the building-block method.
(a) Initial configurations of atoms in the subunit cell. (b) The sub-
unit cell with minimum energy from several melt-quench cycles.
(c) 8 × 8 × 8 supercell formed from the optimized subunit cell.
(d) The final model formed after one melt-quench cycle followed
by relaxation.

followed by another equilibration for 4 ps. The model was
finally optimized by performing zero-pressure relaxation. The
direct melt-quench model was generated in ≈40 ps in terms
of simulation time scale. The BB model took ≈65% of the
time taken to generate the direct melt-quench model starting
from the supercell of 240 atoms. This excludes the simulation
time to prepare the optimized BB of a 30-atom cell that is
very cheap for computation. In all the above calculations,
plane-wave basis sets were used with a kinetic energy cutoff
of 400 eV. For the CG and the zero-pressure relaxation steps,
a cutoff of 520 eV was used. The generalized gradient ap-
proximation (GGA) of Perdew-Burke-Ernzerhof (PBE) [25]
was used as the exchange-correlation functional. A single k
point (�) was used to sample the Brillouin zone. In all MD
calculations, a time step of 1.5 fs was used and the temperature
was controlled by a Nosé-Hoover thermostat [26–28]. Gaus-
sian smearing with a width of 0.05 eV was used to represent
the partial occupancies of the energy levels near the Fermi
level. Periodic boundary conditions were used throughout the
calculations. The flow chart for the above discussed method is
depicted in Fig. 1.

B. Quasiharmonic approximation

The thermal properties of the materials can be calculated
within the framework of the quasiharmonic approximation
(QHA). In this approach, the volume dependence is used to
compute the approximate free energy F (V, T ), expressed as

F (V, T ) = E0(V ) + Fvib(T,V ), (1)

where E0 is the ground-state energy for a given volume V . E0

is the density functional total energy (the potential energy of
the configuration). Fvib represents the vibrational contribution
to the free energy. Once the phonon frequencies over the
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Brillouin zone are known, Fvib is given by

Fvib =
∑

q j

h̄ωq j

[
1

2
+ 1

exp(h̄ωq j/kBT ) − 1

]
, (2)

where ωq j is the phonon frequency for a given wave vector
q and the band index j; T , kB, and h̄ are the temperature,
Boltzmann constant, and Planck’s constant.

To implement this, the relaxed supercell vectors were grad-
ually scaled by factors from 0.97 to 1.03 with a step of 0.01 to
obtain seven different configurations for both doped models.
Structural optimization was then performed for each model at
fixed volume with the convergence criteria of 10−6 eV and
0.004 eV/Å for energy and force on each atom, respectively.
Static calculations were performed for each configuration to
obtain E0(V ) for both models. To obtain the phonon fre-
quencies, the displacement of atomic coordinates by 0.015
Å was made along the ±x, ±y, and ±z directions for each
configuration. This led to several supercells being slightly dis-
torted from equilibrium geometry. Every such displacement
configuration was then treated by a single-point computation
and the force calculation was performed in VASP. The forces
were collected from each displacement and the phonon fre-
quencies were calculated on 31 × 31 × 31 mesh grids. The
contribution of the phonon frequencies was then included to
obtain F (V, T ). The Helmholtz free energy was fitted with the
Birch-Murnaghan equation of state (EOS) [29,30]. Additional
calculations were performed using PHONOPY [31], a conve-
nient open-source package for phonon-related computations.

III. RESULTS AND DISCUSSION

A. Structural properties

The structural topology of (Na2O)x(SiO2)1−x models were
analyzed by calculating pair-correlation functions, structure
factors, bond angle distribution functions, Qn distributions,
and the coordination environment of each atomic species. The
obtained results are compared with experiment and also with
other available AIMD and classical MD results.

The left plot in Fig. 2 displays the total distribution func-
tion, T (r), calculated from the models and obtained from the
experiments for the undoped (x = 0.0) and the “fully” doped
case (x = 0.3). The experimental data for the undoped and
the doped models were taken from Refs. [32,33], respectively.
T (r) for the doped model with x = 0.3 shows excellent
agreement up to the local-range order (≈3.4 Å) and is in
pleasing agreement up to the medium-range order (5–6 Å).
T (r) for the doped model (x = 0.3) obtained from the direct
melt-quench method is also displayed for comparison, and
shows almost the same local ordering as the model obtained
from the building-block method. T (r) for the undoped model
shows very good agreement with the experiment up to 3 Å and
also accurately reproduces peaks in the medium-range order.
The structure factor, S(q), for both models (x = 0.0 and 0.3)
was also calculated from the Fourier transform of the radial
distribution function, g(r), and is shown in the right-hand plot
of Fig. 2. S(q) for both models shows excellent agreement
with the available experiments [33,34] other than first sharp
diffraction peaks (FSDPs). S(q) for the direct melt-quench
model and using the reactive force-field (ReaxFF) potential

FIG. 2. Total distribution function T (r) and the structure factor
S(q) for sodium silicate models with x = 0.0 and 0.3, respectively.
The left and right subplots correspond to T (r) and S(q), respectively.

[35] with x = 0.3 is also displayed in the same plot for com-
parison. The BB model shows slightly better agreement of the
second peak with the diffraction experiment than the model
using the ReaxFF potential. The direct melt-quench model
captures the second peak of S(q) better than the BB model;
nevertheless, overall agreement with the experiment is more
or less similar. The large model using the ReaxFF potential
captures the FSDP of the neutron diffraction experiment. The
small-sized models with 240 atoms provide poor description
of correlations in intermediate or extended length scales. The
origin of the FSDPs in silica and alkali silicates are attributed
to many factors such as system size, composition, etc., and are
discussed in Refs. [15,36,37].

The left plot in Fig. 3 depicts g(r) calculated from the mod-
els. For the model with x = 0.0, the first peak in g(r) is located
at ≈1.63 Å and corresponds to the Si-O correlations. g(r) for
the model with x = 0.1 shows that the first peak is slightly
shifted towards the right at ≈1.64 Å. For the model with x =
0.3, g(r) shows that the first major peak is further shifted to
≈1.65 Å. The calculated bond length for this model is closer
to the Si-O bond length obtained from EXAFS measurement
(1.66 ± 0.02 Å) than from neutron scattering measurements
(1.62 Å) [4,33]. For the silica structure, Si tetrahedra are
connected by bridging oxygen (BO) atoms. Addition of a
modifier to such a structure depolymerizes the silica network
by breaking the Si-BO-Si bonds and forming nonbridging
oxygen (NBO) atoms. The concentrations of such NBO atoms
in the doped models were calculated to be 7.24% (10.53)
and 34.56% (35.29) with x = 0.1 and 0.3, respectively, where
numbers inside the parentheses correspond to theoretical per-
centages assuming that each Na2O creates two NBO atoms.
The low percentage of NBO atoms for the model with x = 0.1
suggests that not all Na atoms depolymerize the network to
form NBO atoms. The direct melt-quench model also con-
tains the same number of NBO atoms as the BB model with
x = 0.3, showing very similar structural topologies between
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FIG. 3. Radial distribution function g(r) (left) and bond length
distribution of Si and O atoms (right) for (Na2O)x (SiO2)1−x models.
The inset in the left plot shows partial g(r) attributed to Na-O corre-
lations for the doped models. Solid and dashed lines in legends in the
right plot correspond to bonding of Si with bridging oxygen (BO) and
nonbridging oxygen (NBO) atoms, respectively. NBO atoms here
refer to O atoms that are linked to only one Si atom. BO atoms refer
to O atoms that are not NBO atoms.

the models obtained from these two different methods. Earlier
studies also obtained a similar percentage of NBO atoms for
the model with x = 0.3 [14,38]. The fraction of BO and NBO
atoms in the model with x = 0.3 is in agreement with results
obtained using electron spectroscopy for chemical analysis
[39]. From the left plot in Fig. 3, the intensity of the first
peak in g(r) is seen to decrease with increasing x. This is
attributed to the formation of fewer Si-BO bonds with increase
in x and can be explained from the bond distribution of Si
with O atoms. The bond distribution for the (Na2O)x(SiO2)1−x

models was calculated and the contributions from Si-BO and
Si-NBO bonds are displayed in the right-hand plot of Fig. 3.
It can be seen that the intensity of the Si-BO distribution
decreases with increase in x that results in decreasing intensity
of the first peak in g(r). The shift in peak position of the
Si-BO distribution towards larger distance results in an overall
shift of the first peak in g(r) with increasing x as observed
in left plot of Fig. 3. The study by Sakka and Matusita
[40] confirmed that the addition of Na2O weakens the Si-O
bond and results in an increase in Si-O bond length. This
is consistent with our results and with the previous studies
[33,41]. The Si-NBO bonds peak at lower bond length, ≈1.59
Å, and the peak intensity grows with increase in x. So, for
a high concentration of Na2O content in the silicates (x �
0.5), the first peak in g(r) is expected to shift closer to the
Si-NBO peak. For all models, the second peak at ≈2.66 Å is
mainly due to O-O partial correlations. The calculated Si-Si
correlations show a peak at ≈3.06 Å for the doped models.
The Si-Si bond length for the models is very close to that
obtained from the neutron diffraction experiments for a-SiO2

(3.08 Å). Most of the DFT and classical MD studies predict

FIG. 4. Bond angle distribution functions for the
(Na2O)x (SiO2)1−x models within the first cutoff distance for
each atomic pair showing the contribution of BO and NBO atoms.
“A” in the legend refers to either Si or Na atoms and the black solid
line corresponds to the total distribution for each case. Left and right
plots correspond to O-Si-O and O-Na-O angles, respectively. BO
and NBO atoms used here are same as defined in Fig. 3.

the bond length of ≈3.11–3.19 Å for these glasses [42,43]. For
both doped models, there exists a small minor peak at ≈2.3 Å
which is due to the partial pair correlations from Na and O
atoms forming a weak ionic bond. The inset in the left-hand
plot of Fig. 3 shows that the intensity of this peak is large
for the model with x = 0.3. This peak is mainly attributed to
Na-NBO correlations in the network. The Na-BO correlations
are found towards larger distance and form a peak at ≈2.42 Å.

The bond angle distribution function (BADF) for the
models was also analyzed. Figure 4 displays BADFs corre-
sponding to O-Si-O and O-Na-O angles. The left plot in Fig. 4
shows the BADF corresponding to O-Si-O angles. The BADF
shows that O-Si-O angles for the models are approximately
normally distributed. For the undoped model, O-Si-O bond
angles form a peak at ≈108.9◦ and have a full width at
half maximum (FWHM) of 12.5◦. The neutron diffraction
experiment by Grimley et al. [32] found the peak at 109.7◦
with FWHM of 10.6◦. The models obtained using potentials
developed by Vessal et al. (VSL) [44] and by Beest et al.
(BKS) [45] potentials show that the O-Si-O angles form a
peak at 109.3◦ with a FWHM of 12.2◦ and at 108.6◦ with
a FWHM of 15.1◦, respectively [42]. For the doped models,
it can be seen that the intensity of the BO-Si-BO distribution
decreases with increase in x and is attributed to the formation
of more NBO atoms in the network. The BO-Si-NBO angles
are mostly formed towards the right of the tetrahedral angle
and these angles form a broader peak at ≈112.0◦ for the
model with x = 0.3. On the other hand, BO-Si-BO angles
lie towards the left side and form a peak at ≈106.0◦. There
exists a negligible contribution from NBO-Si-NBO angles
to the distribution at ≈119.0◦ for the model with x = 0.3.
The presence of more NBO atoms in the network causes an
overall shift of the O-Si-O angles’ peak towards the high angle
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FIG. 5. Bond angle distribution functions corresponding to Si-
BO-Si angles for the (Na2O)x (SiO2)1−x models shown by black lines
in all plots. The distribution decomposed based on the number of
modifier atoms (Na) that are linked to BO atoms is shown by the
colored lines and labeled at the top of the figure for the doped models.
The cutoff distance of 2.74 Å for Na-O pairs is used.

side. The BADF shows a peak at ≈109.5◦ with a FWHM
of 12.0◦ and at ≈109.7◦ with a FWHM of 15.0◦ for the
models with x = 0.1 and 0.3, respectively. The study based
on neutron diffraction experiment by Misawa et al. showed the
O-Si-O angles for x = 0.0 and 0.33 to be 109.1◦ and 109.3◦,
respectively [41]. The classical MD simulations of the silicate
glasses show peaks at slightly lower values for O-Si-O angles
for the studied compositions [14,38,46,47].

The right-hand plot in Fig. 4 depicts the BADF corre-
sponding to O-Na-O angles for the doped models. The BADF
for the model with x = 0.1 shows that there exists a first
peak at ≈59.0◦ and corresponds to BO-Na-BO angles. For
the model with x = 0.3, the first peak in the BADF lies at
≈62.9◦ and is attributed to the BO-Na-BO, BO-Na-NBO,
and NBO-Na-NBO angles with the smallest contribution from
NBO-Na-NBO angles. Beyond the first peak, there exists
another broad peak at ≈88.5◦ and near the far end forming
a shoulder at ≈150.0◦. The major broad angle formed at
≈88.5◦ is attributed to almost equal contributions from NBO-
Na-NBO and BO-Na-NBO angles. The shoulder formed at
the far side is also attributed to these angles. Such a broad
peak does not exist for the model with x = 0.1 because of few
available NBO atoms. There exist peaks at ≈95.9◦ and 121.8◦
that are mostly attributed to BO-Na-NBO angles.

To understand how the tetrahedra are connected in the
network, the BADFs corresponding to Si-BO-Si angles were
calculated and are displayed in Fig. 5. Unlike the symmet-
ric distribution obtained from most classical MD simulations
[42,48], our simulations show that the bond angles are more
spread out with the asymmetric shape of the distribution
and are mostly biased towards small angles. Donadio et al.
[49] have also shown that for the model with x = 0.25, ab
initio Car-Parrinello MD results in a spread-out distribution

compared to the symmetric distribution from classical MD.
The total BADF distribution for the undoped model shows a
broad peak at ≈131.4◦. The peak lies towards the small angle
compared to the NMR secant model (142◦) [50] and the x-ray
diffraction model by Mozzi and Warren (144◦) [51]. The latter
model reproduces the asymmetric distribution of Si-BO-Si
angles. For the undoped and slightly doped (x = 0.1) models,
bond angles near the extremes are observed at ≈158◦ and
160◦, respectively. On the other hand, the distribution flattens
in this region for the model with x = 0.3. Therefore, the dis-
tribution narrows and also shifts towards smaller angles with
increasing x. This could be attributed to the increased Si-O
lengths with addition of the modifier atoms [52]. The BADFs
corresponding to the doped models were decomposed based
on linking of the BO atoms with neighboring Na atoms and are
displayed by colored lines in Fig. 5. It is observed that peaks at
extremes are mostly attributed to the Si-BO-Si angles that are
not linked to the modifier atoms. The Si-BO-Si angles with Na
atoms as neighbors mostly form peaks towards small angles.
For the model with x = 0.3, the Si-BO-Si angles linked with
two Na atoms show a contribution to the peak very close to
120◦ but are absent for the model with x = 0.1. For the model
with x = 0.1, there exist distinct peaks at ≈127.8◦ and 142.8◦.
For the model with x = 0.3, there is a major peak at ≈134.8◦
and a shoulder towards the small-angle side at ≈125.1◦. It
is observed that the contribution from the Si-BO-Si angles
linked with one Na atom becomes higher with increase in x. A
detailed analysis of Si-O-Si bond angle distribution for silica
and sodium silicates can be found in Ref. [48].

To further understand the extent of depolymerization of the
silica network due to the presence of the Na2O modifier, the
Qn distribution of Si atoms was calculated. Qn is defined as
Si atoms with n BO atoms. The NBO atoms are defined as
O atoms that only form a bond with one Si atom. The BO
atoms here refer to O atoms that are not NBO atoms. For
the model with x = 0.0, all O atoms form BO atoms and
constitute 100% of the Q4 distribution. The Qn distribution
for the doped models is displayed as histograms in Fig. 6. The
Qn distribution obtained from the doped model with x = 0.3
shows agreement with estimated values obtained from the
NMR experiment shown by light blue histograms [53]. For
the model with x = 0.1, it is observed that the structure has
a majority of Q4 (79.17%) and Q3 (15.28%) distributions,
which are displayed as red colored histograms in Fig. 6. A
few Q5 distributions are observed in both doped models and a
Q6 is observed for the model with x = 0.1. The contributions
from Q5 and Q6 are very small, and could be artifacts of the
high cooling rate used to quench the liquid phase to obtain
the glass models. These are also sensitive to the cutoff used
to define bond length between Si and O atoms. For the model
with x = 0.3, the majority are Q3 (66.07%) and Q4 (23.21%).
Simulated silicate glasses using classical MD or combined
with DFT show similar results for the model with x = 0.1
whereas a significant deviation of Q3 values is observed for
the model with x = 0.3 [14,16,54].

In order to understand the local bonding environments of
these glasses, the average coordination numbers for different
atomic pairs were calculated. To describe the coordination,
the covalent radius for each atom was used. So, the distance
between atoms which is no more than the sum of covalent
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FIG. 6. Qn distribution for the doped models. The red and blue
bars correspond to the calculated Qn from the relaxed models with
x = 0.1 and 0.3, respectively. The light blue bars correspond to the
experimental data estimated for x = 0.3 from Ref. [53]. A cutoff
distance of 1.94 Å is used to define the bonds between Si and O
atoms based on their covalent radii plus a tolerance factor of 0.10 Å.

radii of the atomic pairs within the tolerance of 0.1 Å only
contribute to the coordination. The detailed coordination num-
bers for the doped glasses are shown in Table I.

Table I shows that the average coordination of each atom
type is x dependent. It is clear that the mean coordination of
each atom increases with increase in x. For the doped models,
we find a significant increase in the average coordination
of Na with increase in the Na2O content. The coordination
number was calculated to be 2.5 and 4.98 for models with
x = 0.1 and 0.3, respectively.

B. Electronic properties

For the doped models, as discussed in Sec. III A, the Na
atoms modify the structural topology of the glass essentially
by breaking the Si-BO-Si and forming NBO atoms; the effect
escalates with increase in Na2O content. This in turn induces a

TABLE I. Average coordination number (n) and its distribution
among each atomic pair, n(), where ( ) is filled by the corresponding
atomic species. The coordination is counted only if the distance for
each atomic pair is no more than the sum of their covalent radii plus
a tolerance factor of 0.1 Å. Covalent radii of 1.11, 0.73, and 1.66 Å
was taken for Si, O, and Na atoms, respectively.

Na2O content (x) Atom n n(Si) n(O) n(Na)

0.0 Si 3.93 0.00 3.93
O 1.96 1.96 0.00

0.1 Si 4.07 0.00 4.07 0.00
O 2.17 1.93 0.00 0.24
Na 2.5 0.0 2.25 0.25

0.3 Si 4.11 0.00 4.02 0.09
O 2.73 1.65 0.00 1.07
Na 4.98 0.10 3.04 1.83

variation of the electronic structure of the glass. To understand
this, quantities like the electronic density of states (EDOS)
were computed, and the localization of the states was gauged
by the inverse participation ratio (IPR), defined as

I (ψn) =
∑N

1 ani
4

( ∑
ani

2
)2 , (3)

where ani are the contributions to the eigenfunction ψn from
the ith projected atomic orbital obtained from VASP. In phys-
ical terms, it is the probability of finding a state ψn over the
basis {ani}N

i=1. The value of I ranges from zero to 1. Larger
I signifies that the states are localized on fewer atomic sites,
whereas the smaller I indicates states are evenly distributed
over many atomic sites.

The subplots in Fig. 7(a) show the total EDOS and the
EDOS projected on atomic sites for the doped models. Elec-
tronic Kohn-Sham band gaps of ≈3.96 and ≈3.82 eV were
observed for models with x = 0.1 and 0.3, respectively. Quite
large band gaps for glasses with the same composition have
been reported by Murray and Ching [55] and are 5.82 and
4.61 eV for models with x = 0.1 and 0.3, respectively. For the
doped models, the top of the valence edge derives from NBO
atoms and the bottom of the conduction band is from more
or less all three species. The EDOS projected on atomic sites
shows that the contribution of the Na ions in the conduction
band increases with x, which is apparent from the inset plots in
Fig. 7(a). The IPR values [labeled on right y axis in Fig. 7(a)]
show that states near the valence edge are highly localized
and are attributed to the nonbridging O 2p orbitals. The en-
ergy range of localization is slightly deeper into the valence
band for the model with x = 0.3 than with x = 0.1, which
is possibly due to comparatively more NBO atoms. For both
doped models, defect states appear in the gap around 1 eV
below the conduction edge and are shown by arrowheads in
the inset plot in Fig. 7(a). The charge densities corresponding
to these defects were then determined and are displayed as
isosurface plots (purple blobs) in Figs. 7(b) and 7(d) for mod-
els with x = 0.1 and 0.3, respectively. The isosurface plots
show that the charge is mostly spatially localized in a few
atomic sites for both models. For the model with x = 0.1, the
maximum charge density is attributed to the Na atom towards
the O-deficient center as shown in Fig. 7(c). The charge den-
sity is extended towards larger angles (≈113◦) of the SiO4

tetrahedral unit. These sites serve as intrinsic charge carrier
sites in the network. For the model with x = 0.3, the charge
density is bounded by Na atoms towards the O-deficient sides
of the network. Figure 7(e) shows the particular region within
the supercell where the charge density is localized in space
surrounded by four Na atoms. Increase in Na2O content in the
glass could lead to more such defect states near the conduction
tail and could be engineered for optical applications.

C. Thermal properties

In this section, the thermal properties of the doped mod-
els are studied by calculating the linear thermal expansion
coefficients (LTECs) and specific heat capacities at constant
pressure (Cp). These properties are calculated using the quasi-
harmonic approximation approach discussed in Sec. II B.
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FIG. 7. (a) Total and projected electronic density of states, and the inverse participation ratio for (Na2O)x (SiO2)1−x models. (b, d) Partial
charge density for the defect state in the gap shown as isosurface (purple colored blobs) plots for the doped models with x = 0.1 and 0.3,
respectively. (c, e) Close look of the defect sites in (b) and (d), respectively. Atom colors match with the legends in (a).

The temperature-dependent Helmholtz free energy
F (T,V ) was obtained as discussed in Sec. II B, and is
plotted for one of the doped models with x = 0.3 shown
by solid circles in Fig. 8(a). The dashed lines represent
the fit using the Birch-Murnaghan equation. The minimum
volume from each curve was determined [indicated by the
star symbol in Fig. 8(a)] and these volumes are plotted against
the temperature in Fig. 8(b). The volume thermal expansion
coefficient was obtained using the relation

β(T ) = 1

V (T )

∂ (V (T ))

∂T
. (4)

The LTEC, denoted by α, was calculated assuming α = 1
3β

and compared with the experiment [56] that is measured at
low temperatures. Figure 8(c) shows the calculated and the
experimental values of α for both doped models. The calcu-
lated values of α for the model with x = 0.3 are in excellent
agreement with the experimental values. The calculated value
of α was determined to be 9.0 × 10−6 K−1, close to the ex-
perimental value 1.2 × 10−5 K−1 at 283 K. For x = 0.1, the
LTEC values are about an order smaller than the experimental
values at very low temperature but are closer to the experiment
from around 80 K to room temperature. The calculated value
of α was found to be 6.9 × 10−6 K−1 compared with the
experimental value 5.0 × 10−6 K−1 at 283 K.

FIG. 8. (a) Helmholtz free energy obtained for seven different volumes at selected temperatures shown by the solid circles. The dashed
lines represent the fit to the EOS. The black star symbols represent the Gibbs free energy. (b) The volume vs temperature plot for the doped
model with x = 0.3. (c) Linear thermal expansion coefficient for both doped models.

134202-7



K. N. SUBEDI, V. BOTU, AND D. A. DRABOLD PHYSICAL REVIEW B 103, 134202 (2021)

FIG. 9. Specific heat capacity at constant pressure (Cp) for
(Na2O)x (SiO2)1−x models with x = 0.1 and 0.3 shown by solid lines
and the experimental values for x = 0.33. The triangle and star
symbols correspond to the values taken from Refs. [58,59].

From F (T,V ), the Gibbs free energy G(T, p) at given tem-
perature and pressure was obtained through the transformation

G(T, p) = min
V

[F (T,V ) + pV ]. (5)

From G(T, p), the thermal properties such as specific heat
at constant pressure (Cp) can be calculated. Figure 9 shows
the specific heat capacity at zero pressure for both doped
models. The Cp for the model with x = 0.3 is slightly higher
compared to x = 0.1 throughout the provided temperature
range. The results for the model with x = 0.3 were compared
with the closest available experimental results with x = 0.33
and are shown by scattered plots in Fig. 9. It can be seen
that the results are in close agreement. The heat capacity
for the sodium silicate glasses obtained from classical MD
also shows a similar result [57]. For these doped models, the
calculated values of Cp at 300 K were obtained to be 51.86 and
47.38 J mol−1 K−1 with x = 0.3 and 0.1, respectively. The
experimental value for x = 0.33 at this temperature is 52.50
J mol−1 K−1.

D. Elastic properties

The elastic properties for the models are studied from the
elastic tensor (Ci j). Ci j can be obtained by distorting the lattice
vectors and relaxing all of the internal parameters to minimize
the total energy. The distortion of the lattice vectors results in
a change in total energy by an amount [60]

E (ei ) = E0 − P(�)	� + �

6∑
i=1

6∑
j=1

Ci jeie j/2 + O
[
e3

i

]
, (6)

where � is the volume of the undistorted lattice, P(�) is the
pressure of the undistorted lattice at the volume �, 	� is the
change in the volume of the lattice due to the acting strain,

TABLE II. Elastic properties obtained from (Na2O)x (SiO2)1−x

models.

Bulk modulus (GPa) Shear modulus (GPa)
Na2O content KV , KR, Kavg GV , GR, Gavg

0.0 Model 34.02, 32.25, 33.18 25.28, 22.81, 24.05
Expt. 36.10 31.25
0.1 Model 27.92, 23.48, 25.70 25.53, 22.28, 23.91
Expt. 33.95 27.68
0.3 Model 34.56, 33.75, 34.16 22.62, 21.37, 21.99
Expt. 39.03 23.80

and the third-order term of ei has been neglected. Altogether,
there are 21 independent Ci j in Eq. (6). However, symmetry
reduces the number of independent Ci j depending upon the
crystal structure. By the means of the Ci j and the compliance
tensor, si j (Ci j

−1), the bulk modulus (K) and shear modulus
(G) can be expressed as [61]

9KV = (C11 + C22 + C33) + 2(C12 + C23 + C31), (7)

15GV = (C11 + C22 + C33) − (C12 + C23 + C31)

+ 3(C44 + C55 + C66), (8)

1/KR = (s11 + s22 + s33) + 2(s12 + s23 + s31), (9)

15/GR = 4(s11 + s22 + s33) − 4(s12 + s23 + s31)

+ 3(s44 + s55 + s66), (10)

where Ci j are written according to Voigt notation [62]. The
expressions for K and G with subscripts V and R in Eqs. (7)–
(10) refer to the Voigt and Reuss approaches of determining
the bulk and shear modulus, respectively. The Voigt approach
provides an upper limit and the Reuss approach provides the
lower limit.

The stress tensor Ci j for each doped model was obtained
from VASP using a strain of 0.015 Å. The diagonalization
of the matrix Ci j was then performed that yielded positive
eigenvalues satisfying the elastic stability. The calculated bulk
and shear moduli are presented in Table II and are compared
with experiment [63].

From Table II, it can be seen that the calculated values of
shear and bulk moduli using the Voigt approach are closer
to the experimental data for all the models. But for better
comparison with the experiment, the average of the values
from both Voigt and Reuss approaches was performed. These
quantities are denoted as Kavg and Gavg for bulk and shear
modulus, respectively, in Table II. We see that the calculated
values of Gavg for both doped models are close to the experi-
mental values with maximum deviation of 3.77 GPa. For the
undoped model, we find the deviation of 7.20 GPa from the
experiment. The calculated Kavg for the undoped and x = 0.3
models are also closer to the experimental value (deviation <

5 GPa). For the model with x = 0.1, the calculated Kavg was
found to be quite low compared with the experimental value
(deviation of 8.25 GPa). The discrepancies of similar range
and even higher than the tabulated values have been reported
in the literature [15,64–66].
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IV. CONCLUSIONS

The realistic models of (Na2O)x(SiO2)1−x glasses were
obtained using the building-block method that is poten-
tially suited for predicting the structure of the homogeneous
glasses. Structural properties of the models were explored
by studying the correlation functions such as pair-correlation
functions, structure factors, bond angle distribution functions,
Qn distributions, and the local coordination analysis. The pair-
correlation functions calculated from the obtained models
show that the BB method correctly predicts the local structure
of the glasses and also captures the signature of the medium-
range order. The Si-O bond length is found to be increased
with increase in Na2O content for the studied concentrations
and is consistent with the previous studies. The bond angle
distribution functions corresponding to Si-BO-Si angles are
found to be narrower and O-Si-O angles shift slightly towards
the higher angle with increase in modifier concentration. The
Qn distribution for the fully doped model shows good agree-
ment with the NMR studies. The electronic density of states
for the doped glasses shows the presence of defect states in
the band gap towards the conduction tail and that are mostly

localized at undercoordinated Na atoms in the network. The
thermal properties of the doped models were computed on
the basis of quasiharmonic approximation. The calculated val-
ues of linear thermal expansion coefficient show satisfactory
agreement with the experiment. The specific heat capacity for
the doped models was calculated and the fully doped model
shows that the results are in agreement with the experiment.
The elastic properties of the doped models were also studied
by calculating the bulk and shear moduli, and these values also
satisfactorily agree with the experimental values.
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