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Chapter 2

Ab initio simulation of

amorphous materials

Rajendra Thapa1, David A. Drabold1

2.1 Introduction

2.1.1 Big picture

Experiments on materials determine our state of knowledge about the physical world.
Such experiments come in all shapes and sizes. Diffraction of X-rays, neutrons or
electrons convey essential information about local ordering of atoms, EXAFS gives
specific information about local structural order derived from the electronic structure
of the system. The electronic density of states can be indirectly measured by photoe-
mission experiments or inferred from optical absorption. The electronic tail states are
built from valence and conduction states near the Fermi level and are the key to dop-
ing, transport and optics. The vibrations of the network are essential to understanding
thermal and mechanical properties.

These experiments never uniquely identify the structure of matter in an amorphous
state (in the sense of providing atomic coordinates), and many such measurements
require intricate computations to interpret their meaning. Experimentally validated
computer models can convey reliable atomistic information about the material.

We argue then, that to understand disordered phases of condensed matter, a full
set of experiments and realistic computer models are required. Naturally, obtaining
convergence between experiments and theory is necessary and can sometimes be an
iterative process. As a point of logic, the more experiments we have, the more informa-
tion we possess about the material. The information intrinsic to a neutron diffraction
experiment is very different than a measurement of optical absorption or vibrations.
In principle as each new experiment is performed, we should create models anew to
jointly satisfy all the experiments. And it is not uncommon to find that one experiment
is relatively ”easy” to represent and others might be quite difficult. We show that usu-
ally highly accurate “ab initio” interatomic interactions are required for these complex

1Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University,
Athens, OH.
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systems.

2.1.2 The limits of experiment

2.1.2.1 The scourge of averaging

Most measurements on materials involve macroscopic numbers of atoms, and thus are
an average over myriad local environments, hence the smoothing (compared to crys-
tals) of measured observables. Local probes of materials are important and are es-
pecially relevant to amorphous materials if the spatial resolution of the experiment is
fine enough to detect variation in local environments. Perhaps the ultimate example
of a local probe is atomic resolution scanning tunneling microscopy (STM). Tech-
niques like micro Raman can probe materials on a ca.1 micron length scale. Obviously
enough, all “spectroscopic” techniques face related challenges: to get a measurable
spin-resonance, Raman, IR. . . signal, many atoms are needed to enable the measure-
ment, and the signal is necessarily averaged over these. Electronic and transport mea-
surements suffer analogously. So for disordered systems, experiments do not usually
offer direct information about atomic scale disorder, but instead provide “sum rules”
(structural, electronic, and otherwise) that a good computer model must satisfy.

2.1.2.2 Diffraction

For crystals it is usually possible to “invert” the structure from diffraction measure-
ments. The intuitive reason is that the information contained in a palisade of Bragg
peaks[1] is vast – mathematically speaking it is approximately a collection of Dirac �
functions with intensity and energy precisely defined. By contrast, the diffraction struc-
ture factor S(q) (or the pair-correlation function g(r)) is smooth and the information is
commensurately reduced. For sufficiently large distances in space, g(r) asymptotically
approaches unity, implying no further structural information. Protein crystallography
is one of the great triumphs of modern science, with more than 100,000 entries in the
Protein Database and 20 Nobel Prizes[2]. Yet this glittering success depends entirely
on the incredible possibility of crystallizing the proteins, and thus cannot help us with
our non-crystalline systems.

Diffraction data provides only pair correlations, and it is also blind to chemical
order: only the total structure factor is usually measured, so that in a material with
(say) two atomic species, we get information about all pair distances with no chemical
specificity. The method of isotopic substitution, successfully demonstrated by Salmon
et al.[3], exploits the fact that neutron scattering lengths can depend strongly on the
particular isotope present and thus enables the extraction of partial pair correlations.
The method is an important advance, but is not always readily applied to arbitrary
materials (since it depends on the availability of possibly rare isotopes to fabricate
samples large enough to produce high quality diffraction data). Satisfying diffraction
data is necessary but certainly not sufficient to guarantee that a computer model is
realistic.

2.1.2.3 Spectroscopic information

A wide variety of spectroscopic experiments are available and provide valuable infor-
mation about materials. Meaningful comparisons with models require accurate com-
putations of the electronic, optical and possibly vibrational properties of the computer
models. And of course spectroscopic methods are subject to the scourge of averaging!
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2.1.3 Synergy between experiment and modeling

Disordered materials are a classic arena for the interplay between experiment, theory
and simulation. While we have criticized the limitations of information carried by
experiment, there are serious limitations in modeling too (systems so small that they
are not obviously physically relevant or adequately sampling the local bonding envi-
ronments – the opposite of the “averaging” charge lodged above against experiments),
inaccuracies in atomic interactions, basic challenges to computing physical observables
reliably (as for example accurately computing an optical spectrum), simulation times
that are many orders of magnitude removed from all but the fastest spectroscopies. We
face a difficult limit: we need accurate interactions, large systems and often extended
(say nanosecond) simulation time or a thorough exploration of configuration space that
will sample representative local structures. Every “computational knob” should be on
maximum for these calculations.

Thus, the respective warts of the experiment and modeling paradigms are limited
in opposite ways and if we can bridge the gap between them, then we can gain new
and reliable insight into these materials and learn about the limitations of the methods
themselves[4].

2.1.4 History of simulations and the need for ab initio methods

The first recognizable MD simulation was carried out by a Swedish astronomer, Erik
Holmberg during the second World War [5]. He took advantage of the identical ra-
dial r-2 dependence of the light intensity with distance from a point source, and the
gravitational force to enable simulations based upon an “optical analogy” of the grav-
itational interaction. Holmberg constructed a clever apparatus in which two groups
of 37 lamps each (each lamp representing a star, each group representing a galaxy)
interacted optically, and the light intensity at each lamp (“star”) was measured with se-
lenium photocells. Since the light intensity was proportional to the interstellar forces,
the time evolution of a galactic collision could then be simulated with a “mechanical
Eulers’ method”, and Holmberg was able to see spiral arms and draw inferences about
galactic scattering and capture probability.

Early simulations of liquids and materials used ad hoc potentials and moved atoms
according to classical mechanics (Newton’s second law). The primitive computers
(and smart scientists) of the time could directly simulate the dynamics of systems with
hundreds or thousands of atoms or molecules[6]. While the potentials were crude
by modern standards, an impressive amount was learned, and the experience gained
with empirical potentials with integration methods, size artifacts, alternate ”ensembles”
(meaning simulations with different fixed thermodynamic variables) and many other
aspects of simulation transferred immediately to the ab initio simulations we emphasize
here. A classic work in this area is the book of Allen and Tildesley[7].

The first MD simulations used empirical potentials: functions made up to mimic
some known behavior about a material. Such a potential might be designed to repro-
duce the right ground state crystal structure, melting points etc. The trick for such
calculations is applying the potential to a structure with different local bonding – as
for example carrying out a simulation for an amorphous solid or say a small molecule
for a potential that was designed to fit a crystal. Such simulations are hit or miss, and
often fail qualitatively. A potential that works in all salient bonding environments is
called “transferable”. Some potentials with directional covalent bonding have limited
transferability in different bonding environment.
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Why is it so difficult to make a generally reliable interatomic potential? The an-
swer is short: electrons. Consider the ground state conformations for a series of small
Si molecules: Si2, Si3, Si4... Start with a pair of Si atoms. Pair interactions are obvi-
ously adequate, and the ground state separation between the atoms is at the minimum
in the pair potential energy function V2(x1,x2) for the dimer. Now add a third atom
in the vicinity of the pair. To minimize the energy of the trimer, covalent bonds form
between all three atoms (and it turns out the minimum energy configuration is an isoce-
les triangle with an apex angle of about 80 degree[8]). Note that the presence of atom
3 changes the pair interactions – a different V2 function is required depending on the
position of atom 3 (x3). From elementary chemistry, new linear combinations of the s
and p orbitals on all three atoms emerge depending on the positions of all three atoms,
so the pair potential picture fails and it is obvious that at least triplet interactions are
required V3(x1,x2,x3). This argument can be extended mutatis mutandis by adding
more and more atoms. In practice for accurate computations, approach fails for practi-
cal cluster sizes.

The epiphany needed to break out of this scheme was to admit and treat the origin
of the complexity: the electronic structure of the system. The first generation of such
methods used single-particle Linear Combination of Atomic Orbitals “tight-binding”
recipes for the electronic structure2 The earliest such calculations used simplified forms
for total energies derived from recursion[10] or moment expansions[11, 12] of local
electronic densities of states. Soon thereafter, full diagonalization methods were used
to compute total energies, for which the electronic component of the total energy came
from summing up the electronic eigenvalues of the tight-binding Hamitonian up to the
Fermi level, and a balancing repulsive interaction between nuclei was added to obtain
a total energy (the potential energy of the configuration). If we think of this “tight-
binding total energy functional”, it is clear that it is capable of representing much more
complex and spatially non-local behavior than an empirical potential. Sankey and
Allen[13] were the first to implement this in 1985, now what we call “tight-binding
MD”. So even though the tight-binding Hamiltonians of the time were imperfect, the
work was a great advance since many of the “electronic structure” aspects of the com-
putation were correctly handled.

Ab initio of course means “from the beginning”. This is basically ill-defined, since
the beginning is subjective. Our purist friends down the hall might want us to start
with quarks. What it means in practice is a parameter-free approach to computing
the electronic ground state energy and associated quantities like forces. Parameter
free means no experiments are fit to, and the prescription for the electronic structure
and computation of total energy derives from a general theory of an inhomogeneous
electron gas as in a solid or molecule (or in principle, but rarely in practice, many-body
wavefunctions).

At about the same time as Sankey and Allen, Car and Parrinello[14] did the first cal-
culations adopting the fundamentally appealing approach of using density functional
theory to compute total energies and forces. This was the first truly ab initio simulation,
and the ab initio schemes in wide use today are remote descendants of this fundamental
work, and where the local orbital methods are concerned also the work of Allen and
Sankey. All of these methods assume the Born-Oppenheimer[15] approximation (sep-
arating the ionic and electronic degrees of freedom) and the additional approximation
of classical mechanics for ionic motion.

2The tight-binding models themselves were ”empirical”, and required extensive fitting to a variety of ex-
periments that limit their transferability. One should never underestimate the insights possible for thoughtful
tight-binding calculations, see the classic work of Harrison[9].
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We should also comment that there is a wider world than just MD simulations.
Direct MD is sorely limited by the tiny time step (of order 1 fs (10�15s)) to correctly
integrate the classical equations of motion. A very important problem is the effective
exploration of configuration space for a complex system. Various “energy landscape”
methods are now in common use including some with ab initio interactions[4].

2.1.5 The difference between ab initio and classical MD

Choosing to carry out an ab initio simulation requires some understanding of the elec-
tronic structure of the system under study. The details of which (of many) ab initio
codes to employ, technical questions of Brillouin zone integration (to compute to-
tal energies, forces, densities of states etc), selection of pseudopotentials3, basis sets
(plane wave cutoffs or local orbitals employed), density functional used, and so on all
must be considered. We think that the best attitude here for a beginner facing a spe-
cific new problem is to first search the literature for ab initio simulations on similar
systems, and invoke the same approximations for the new problem. The wonderful
database AFLOW “An automatic framework for high-throughput materials discovery”
(aflow.org) offers a vast amount of information on structures, band structures, and many
other physical quantities as well as high specific information about settings for ab ini-
tio codes required for a given problem. Frankly, the quickest way to learn ab initio
methods is probably to begin by collaborating with one of the many groups using these
methods.

Conceptually, there is no difference between classical MD with an empirical poten-
tial and ab initio MD. The distinction is the origin and form of the interatomic potential.
For an ab initio simulation, the potential and forces derive directly from the electronic
structure of the system as the result of a typically computationally demanding compu-
tation. Also, “typical” ab initio simulations have poor scaling with system size, scaling
as at least the cube of the number of atoms. Empirical potentials can usually be for-
mulated to scale linearly with system size, so from a practical point of view one is
constrained to moderate-sized systems with ab initio calculations. Thus, if one is inter-
ested in high precision calculation of local structure, defects etc., it is likely that an ab
initio method must be used. If instead, one is interested in the low-q tail of the x-ray
structure factor (or large distance pair correlations), or say the distribution of nanovoids
in a glass, a large model will be required, and empirical potentials will probably be the
only game in town.

There are many codes available. Some are free for academic use (such as SIESTA[16],
FIREBALL[17], CPMD[18], Quantum Espresso[19] and ABINIT[20]). Others such as
VASP require a license. All of these codes are highly impressive resulting from many
years of work by excellent researchers and are “mature”. SIESTA and FIREBALL
both use a local orbital basis set constructed from optimized pseudoatomic orbitals, the
other codes use a plane-wave basis set. By no means is this list of codes exhaustive.
Local orbital codes offer considerable flexibility with respect to the basis set (ranging
from minimal “single-zeta” basis sets to complicated multi-zeta basis with polarization
functions etc), and this can be especially helpful for approximate (in the sense of lim-
ited basis set) calculations on large systems. Plane wave codes are usually the easiest to
use for small systems (up to a few hundred atoms), and come with a well-tested library
of pseudopotentials. Highly useful work can be readily carried out on modest worksta-

3Psuedopotentials are almost universally used to avoid explicitly treating atomic core electrons. For a full
discussion, see the treatment by Martin[15]
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tions and in some case (notably VASP[21, 22]) GPU acceleration is very helpful. Of
course, supercomputers at national centers devote many cycles to ab initio MD!

From a practical point of view, no ab initio code is entirely a black box. The
Achille’s heel of ab initio simulations is the fact that the Kohn-Sham equations are
non-linear. This means, that as self-consistent field (SCF) solution must be found,
and this requires some kind of iteration scheme. In certain cases (highly problem and
basis set dependent) the iteration may not converge to the solution and may oscillate
between two states. In our personal experience, the code VASP does well on SCF
iterations and rarely fails to find the solution. If one is interested in metals, far more
care is needed with Brillouin zone integrations. Local orbital codes have to be used
with care to ensure that the basis set is adequate to represent interatomic interactions,
but again, there is a wealth of published work that can help to guide the researcher and
the payoff in efficiency relative to a plane wave code may be substantial.

Besides providing the same basic information as a classical MD simulation (say,
coordinates as a function of time), there are “fringe benefits”: an approximate elec-
tronic structure for the model at any time step, local atomic charges, charge densities
etc. This allows the researcher to link to the important class of experiments associated
with the electronic structure.

2.1.6 Ingredients of DFT

We considered producing a short review of DFT. One of us (DAD) has written at least
two such summaries[23, 24]. We will largely eschew this task in this paper, since there
are many masterful treatments available. The Nobel lecture of Kohn[25] is easily read-
able and historically significant. Richard M. Martin[15] has written the gold standard
treatment of DFT and many important developments that have arisen in the last 20-30
years. The best recent history from another acknowledged master is the recent paper in
Reviews of Modern Physics by R. O. Jones[26], who among other things pointed out
Dirac’s clear and prescient grasp of the concept of DFT prior to 1930.

Still, to make this paper somewhat self contained, we will tersely summarize the ba-
sic ideas of DFT and leave the equations to Martin and Jones. Hohenberg and Kohn[27]
showed that the electronic density was a suitable function from which to exactly com-
pute the ground state energy E = E(⇢(r)) of any inhomogeneous electron gas, that
there was a universal functional for the energy of the gas, and provided the variational
principle to determine E(⇢) on the road toward practical methods. The primacy of
this one scalar field ⇢(r), rather than an unimaginably complex many-electron wave
function4 was profound both philosophically (eg, to give a better way to ”think” about
such problems), and also practically, because it led to methods that are readily han-
dled by modern computers. The method was made practical by Kohn and Sham[28],
who converted the Hohenberg-Kohn theorem into an effective single-particle problem
with a complicated mean or “self-consistent” field in the spirit of the Hartree[29] or
Hartree-Fock approximation[30]. The form of the “Kohn-Sham Hamiltonian” is only
approximately known, and relies on accurate quantum Monte Carlo calculations on
the homogeneous electron gas[31]. The complicated single-particle problem is then
solved on some basis set, most commonly plane waves or local orbitals. With the
Kohn-Sham eigenvalues and orbitals available, it is easy to compute the single particle
density matrix, total energies, forces and indeed many other properties. Such compu-
tations typically scale at best with the cube of the number of electrons, so it becomes

4Kohn argues that it does not make sense to even try to compute many-electron wavefunctions if the
number of electrons exceeds about 100 [25].
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computationally expensive fast. Attempts to improve the scaling have been somewhat
successful, always based ultimately upon the spatial locality of interatomic interac-
tions: at some point, moving a sufficiently remote atom at R0 will make no significant
difference on at atom at R if |R�R0| is sufficiently large[32]. As the electronic struc-
ture determines the interatomic interactions, it must also determine this range. The
quantity providing this information turns out to be the decay of the single-particle den-
sity matrix. Depending on the accuracy needed, the range of the density matrix is at
least several Å in semiconductors and farther in metals[33, 34]. A real-space localized
representation can be exploited for this purpose too, the “maximally localized” Wan-
nier functions[35], variants of which may be computed efficiently by projection into
the occupied electronic subspace[36, 37]. These ranges are fundamental properties of
materials and give direct insight into the nonlocality of the interatomic interactions.

2.1.7 What DFT can provide

Standard DFT codes produce a cornucopia of data: total energies, forces, structure, dy-
namics (these can usually be quite well represented) and atomic charges. The electronic
structure is a trickier undertaking if one considers excited states, since DFT is a ground
state method. To even estimate a hypothetical optical gap, additional methods beyond
DFT are required. Of course excited states are required for optical and transport cal-
culations. The band gap problem has been practically addressed by computations with
“hybrid functionals”, especially the popular Heyd, Scuseria, Enzerhof[38] (“HSE06”)
approximation. For correlated electrons, computationally demanding methods are pos-
sible such as the GW approximation, “dynamical mean field theory” and other topics
treated by Martin, Reining and Ceperley[39].

2.1.8 The emerging solution for large systems and long times: Ma-

chine Learning

While our palantir is probably murkier than most, we can make one prediction: Machine-
Learning (ML) methods will transform this field. The revolution is already underway.
Of all the myriad potential uses of ML we are thinking of a specific one: ML based
interatomic potentials. There have been several attempts here. We mention the one that
we know the most about, the GAP potential[40], owing to our good fortune to collabo-
rate with the pioneers of the method, and direct the reader to the burgeoning literature
on the subject.

A naı̈ve but helpful way to think about ML approaches to interatomic potentials is
to interpret it as a sophisticated interpolation scheme. An ML potential is of course
only as good as the information that is ‘fed’ to it. The information takes the form
of a large number of atomic configurations, and for each of these the total energy and
forces on the atoms computed from an accurate (probably DFT) code. The idea is that if
enough of these configurations is available, then one could undertake a new simulation
only using information in the database – if “new” configurations were close enough to
existing conformations in the database to enable sufficiently accurate “interpolation”.
Of course, the devil is in the details: what does the metric on configuration space “close
enough” mean and how does one really “interpolate”. After a lot of very ingenious
work[41], there are quantitative answers to these questions and furthermore what is not
a priori obvious is that the method is quite practical.

The GAP potentials are truly of DFT quality, especially for silicon, and ML has
completely leapfrogged DFT in one critical way – it is rigorously “order-N” – with
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Figure 2.1: Snapshot of a 100,000 atom model of disordered silicon under 12GPa
pressure created with OVITO[42], as in Reference[43]. The atoms are color coded
according to their coordination: light and dark atoms having high and low coordination

respectively, revealing polyamorphism at this pressure.

computational cost scaling linearly with the number of atoms. So ML opens the door
to truly enormous simulations and with essentially no loss in accuracy[43]. This linear
scaling is a profound feature of the method that guarantees that it will eventually sup-
plant DFT for production runs on large systems. DFT will become the “teacher” of the
ML algorithms, and DFT will still have to be used for terra incognito – for which no
database to learn from exists.

ML can of course provide information beside forces and energies. For example,
Cerlotti and co-workers[44] have shown that the electronic density of states can be
“learned” and applied this to 100,000-atom simulations of exotic phase changes in
disordered phases of silicon under high pressure[43].

We excise an illustration from Ref. [43]: we show a snapshot from a 100,000
atom model of disordered silicon at a pressure of 12 GPa in Fig.2.1. At this particular
pressure, polyamorphism is revealed with low and high-density amorphous regions
co-existing. The colors indicate coordination (darker, lower coordination). For a full
treatment of complex pressure-induced transitions, we refer the reader to the original
paper.

2.1.9 A practical aid: Databases

In the United States the so called “Materials Genome Initiative” was introduced more
than a decade ago to develop computational methods for materials design to bring
advanced technological materials to market sooner. This stimulated efforts in many
sectors of academe and produced useful new methods exploiting high performance
computing, such as data mining. Impressive databases such as AFLOW now hold
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Figure 2.2: The classic illustration of the continuous random network model:

Two dimensional representation of atomic arrangements in crystalline (left) and glassy
A2O3.

information on millions of materials, and includes relatively scarce calculations like
band structures and thermal properties. It is an ideal site to pick up the threads of an
earlier calculation that is a helpful start for something new.

2.2 Methods to produce models

How does one make a computer model of a complex material? In this section, we try
to answer these basic questions and explain how the computer simulations are done at
present.

In crystals where atoms are arranged periodically, determining the positions of
atoms is simple (unless the unit cell itself is complex), and it is easy to imagine filling
space with such a unit cell using the lattice vectors. In amorphous systems, devoid of
long range order between the atoms, determining the structure can be daunting. The
first point to note is that the arrangement of atoms in amorphous systems is not ran-
dom: it lacks long range order but almost always has well defined short range order.
The tendency to order decays with distance: second neighbor distances exhibit more
variation than the first neighbor, and so on. To illustrate this, the atomic arrangement
in a A2O3 type glass proposed by Zachariasen [45] has been shown in Fig. 2.2 . Such
ordering (or lack therof) on various length scales is well discussed by Elliott[46].

Once a model of an amorphous material is obtained, the first step in the analysis
is to compare to experiments. The decay of spatial pair-correlations correlations with
distance is a first test that the model must pass since this is an observable inferred
from diffraction experiments[4]. The lack of crystal-like long range order obviously
makes model generation in amorphous materials challenging but on the brighter side
this inherent disorder in atomic positions leads to emergent phenomena unknown in
crystals and render amorphous materials to a wide range of applicability. As we stated
above, favorable agreement of a model with diffraction data is necessary but is not suf-
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ficient. As we discuss below with “Reverse Monte Carlo”, it is relatively easy to make
computer models that agree nicely with a structure factor or pair correlation function,
but the atomic structure generated from such a fitting has high density of unphysi-
cal sturctures eg. chemically unrealistic bond, atypical values of bond lengths, bond
angles, etc. This emphasizes the importance of comparing models with experiments
measuring diverse physical properties.

The rest of this chapter is organized as follows. First, we discuss the simulation
methods used to produce models of amorphous materials, comparing one with other.
Second, we discuss how the structural, electronic, and vibrational properties are ana-
lyzed from the models. Appropriate comparison with its crystalline counterpart is made
whenever possible to create a better understanding of the subject being discussed. We
illustrate all this with specific amorphous materials that we hope are both illustrative
and interesting in their own right.

2.2.1 Simulation Paradigm: Melt Quench

What we call the “simulation paradigm” is the idea of directly simulating the transition
of the material from the liquid phase to an amorphous solid. The melt quench method,
as the name suggests, involves creating a high temperature liquid melt of the material
and then rapidly quenching it, resulting in a structure with disorder “frozen in” [4]. A
starting random configuration of atoms is chosen (with atoms being disallowed to be
unphysically close). Periodic boundary conditions are always employed, so that we
we are really modeling is a crystal with a large unit cell. This system is heated to a
temperature well above its melting point to produce a liquid melt and to make sure that
there is diffusive ion dynamics. The melt is cooled to room temperature in subsequent
cycles of cooling, using some form of dissipative dynamics, and then equilibration.
The structure is ultimately subjected to a force minimization to reduce forces to near
zero. The hope is that the final model consistent with experimental observables.

There are many details to be selected for the melt quenching, especially the choice
of cooling rate. There is no real a priori theory for selecting these rates and the usual
way to proceed is to try several cooling rates and verify that the results are acceptably
converged (eg the topology does not change significantly with slower quenches). The
cooling rates used in simulations are always drastically faster than the physical cooling
rates, and it is interesting that melt quench simulations work well for many materials,
despite this difference. For a highly detailed study of the effect of cooling rates on
structure, see the ML simulations of Bernstein et al. for amorphous silicon [47].

As an example, a melt quench simulation of Cu- doped Ta2O5 [48], made with
a cooling rate of 100 K/ps, is presented here. This material is a promising candidate
for Conducting Bridge Random Access Memory (CBRAM) memory devices. The Cu
atoms tend to cluster, and their connectivity can be modified electrochemically creating
insulating and conducting phases. Models produced with melt quenching at different
cooling rates were able to capture the process of the segregation of the Cu atoms from
the forming tantala network as the melt was cooled. The presence of the inter connected
Cu atoms in the network is evident in the Cu-Cu correlation in Fig. 2.3.

The melt-quench method always begs difficult questions. (1) Is the model big
enough? (2) Are there artifacts from the use of periodic boundary conditions (PBC)?
(3) Are the cooling rates used in the simulation acceptably “slow”? (4) Is it sufficient
to compute energies and forces using only the � point of the Brillouin zone associated
with the periodic boundary conditions?

Firstly, the term “big enough” can be subjective and the size of the model that can
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Figure 2.3: Pair distribution function for Model I (solid line) and Model II (dotted

line) of amorphous Cu-doped tantala [48] with same number of atoms and differing
only in their cooling rates.

be generated depends significantly on the nature of the interatomic interactions used
during the melt-quench process. For example, performing DFT based calculation on
VASP limits the system size to a few hundreds atoms. On the other hand, calculation
with empirical potentials can have millions of atoms in the system. As usual there is
an intelligent balancing required between size, time scales and accuracy. The choices
depend also on the questions the researcher is attempting to answer.

The use of PBC allows us to perform MD of the bulk material by removing surface
effects and rendering the system as a crystal with a large unit cell. One should be
careful with the system size when using the PBC: the size of the supercell must be
greater than the cut-off distance of the interatomic potential to avoid self interaction
among atoms and their images in other cells. The PBC allows meaningful information
on a length-scale half the size of the simulation box [23]. There are analogous artifacts
for computations of lattice vibrations[23]. Also size and PBC artifacts are strongly k

and r dependent in S(k) and g(r) respectively. To check if the system is free of artifacts
from PBC, one should perform the simulations with different sized simulation box and
compare the results.

Cooling rate is a critical parameter that determines the credibility of the generated
amorphous models. Overly short cooling rates can produces several artifacts, like rem-
nants of the liquid melt, because the system will not have enough time to thoroughly
explore the configuration space. Typical cooling rates used for MQ methods using
VASP is of the order of 100-200 K/ps. Also note that classical molecular dynamics
code could use a much slower cooling rate but is still far from comparable to the actual
process in lab.

Calculations of energy and forces requires summation over the Brillouin zone and
the accuracy depends solely on the way the zone is sampled. However, for amorphous
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systems that lack translational are usually represented by large supercells containing
hundreds of atoms. Such large supercells have a commensurately small Brillouin zone
[49] and thus the calculation using a single k-point (�-point) may be acceptable in
amorphous systems. This point is explored in detail in Ref. [50].

2.2.2 Information Paradigm

The idea of this method is to produce models that agree with experimental information.
It differs from the melt quench method as the idea is to construct models directly us-
ing implied experimental information instead of trying to simulate the glass formation
process. The idea was first adopted by Kaplow and co-workers [51] to make vitreous
Se models consistent with X-ray radial distribution function. The idea was later de-
veloped by McGreevy and Puzstai [52] who named it Reverse Monte Carlo (RMC).
A more recent idea is the empirical potential structure relaxation (EPSR) by Soper
that starts with an empirical potential which is modified recursively by the difference
between the model and the experimental data [53].

This idea of this “inverse modeling” scheme is to find a set of atomic coordinates
that minimizes the discrepancy between the model and the experiment. The quantity
measuring this discrepancy, for a set of atomic coordinates ~R, is defined as:

�2(R) =
X

i

[FE(Qi) � Fm(R, Qi) ] 2

�2
i

(2.1)

where FE(Qi) is the experimental value of the quantity at point Qi and Fm(~R,Qi)
is the value calculated from the model. �i is a non-negative quantity associated with
the experimental error. In simple words, �2 measures the goodness of fit and the in-
verse modeling is merely a problem of finding a set of atomic coordinates that render
a minimum �2 (eg small enough to fit within experimental error bars). Note that in
practice there are a vast number of such minima, and it begs the question: ”which min-
imum do we accept”? One can get out of a trapped configuration with a Monte Carlo
minimization [54] accepting an atomic move that increases �2 with a positive non-zero
probability.

An attractive feature of this method is that it does not require interatomic potentials
for the minimization and thus presents particular promise in systems where the energy
calculations are prohibitively expensive. The approach honors experimental data by
construction, the weakness however is that none of these algorithms took a course in
freshman chemistry – so a model of amorphous SiO2 made in this way would have
many O-O and Si-Si bonds, which are essentially physically nonexistent5.

2.2.3 Teaching chemistry to RMC: FEAR

How do we include all the information available during the process of model con-
struction, viz. experimental information and accurate interatomic interactions? This
might be achieved through unification of simulation and information paradigm thereby
changing the problem to the minimization of the quantity

� = E(R) + �2⇤ (2.2)

5Ad hoc constraints can be included, introducing a “penalty” for homopolar bonds, for example. This is
somewhat unsatisfying however, since it introduces bias from the modeler.



2.2. METHODS TO PRODUCE MODELS 13

where ⇤(> 0) determines the relative weighting of the experiment and potential [55].
We do not follow this program because determining ⇤ is ambiguous and we find bet-
ter results with alternative techniques. The first alternative, called Experimentally
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Figure 2.4: Flowchart of FEAR method.

Constrained Molecular Relaxation (ECMR) [56], employs a self-consistent iteration
scheme that involved completely converged RMC minimization and energy minimiza-
tion. Often, the configuration gets trapped in a local minimum and requires a new
start.

A successful technique for minimizing � in equation (2.2) is called Force Enhanced
Atomic Refinement (FEAR) [57, 58, 59]. In contrast to the completely converged mini-
mization in ECMR, FEAR involves separate incremental minimization of the quantities
thus reducing the chances of getting stuck in a local minima. The fact that the models
generated agree reasonably well with experiment and also sit in an energy minimum
of a suitable interatomic interactions greatly increases the credibility of the models.
FEAR modeling shows particular promise in reducing the computational effort needed
to produce models compared to the melt quench process.

A schematic diagram of the FEAR technique has been given in Fig. 2.4. It has
been applied to a wide range of amorphous materials ranging from a-Si [57] and a-C
[60] to bulk metallic glasses [61] and sodium-silicates[62]. Recently FEAR has been
employed in a high precision study of annealing induced changes in the intermediate
range ordering of zirconia-doped tantala, a possible candidate for LIGO mirror coatings
[63].

It is reasonable to describe FEAR as a way to “invert” the scattering data to obtain
a realistic computer model. Of course this is true only in a statistical sense – there
is of course no hope of uniquely inverting pair correlations into coordinates in space,
but with the inclusion of chemical information incorporated through the partial en-
ergy minimizations, a highly representative result reflective both of the experiment and
chemistry can be obtained.

A representative example of FEAR modeling in Pd40Ni40P20 bulk metallic glass
is presented here. Two models were generated for this work, one with 200 atoms us-
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ing melt quench technique and the other with 300 atoms using FEAR. Fig.2.5 suggests
that the models generated have successfully reproduced the structural features implied
by the experiment as confirmed by the agreement of the radial distribution function
of the models with the experiment. Since this multi-component system has several
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Figure 2.5: We show comparison of our Pd40Ni40P20 models, made with melt-quench
(MQ200) and FEAR (FEAR300) [61] method, with the experiment [64]. The radial
distribution function (g(r)) is in good agreement with the experiment and the partial

RDF are also consistent with previous literature.

(unknown) partial pair-correlation functions (thereby making the total correlation less
informative than for elemental system), we also compute Extended X-ray Fine Ab-
sorption Structure (EXAFS) to gain valuable first shell information. The experimental
data [65] is shown by red dots connecting line, FEAR and MQ models are represented
by the blue and black lines respectively. The inset in each figure shows the EXAFS
spectrum, i.e.

�
k2�(k)

�
. The FEAR300 model shows a better agreement with the ex-

perimental EXAFS spectra. The corresponding Fourier transformations of FEAR300
and MQ200 is plotted alongside experimental values [65] and it is observed FEAR300
model is qualitatively in better agreement with the experiment.

The FEAR model, despite being 100 atoms larger than the melt quench, used only
16% of the total computer time used by the melt quench model. This computational
efficiency could be utilized to produce larger computer models of materials with a
identical computational resource.

2.2.4 Gap Sculpting

A common drawback of the melt-quench MD simulation is that it produces structural
models with greater disorder than the real material. The excess disorder can range from
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acute short-range defects like coordination defects to more subtle defects in medium
range like presence of irregular sized rings. While the extent of the discrepancy de-
pends on the systems as well as modeling approach, the issue is universal. Often one
possesses experimental information about optical gaps and defects. It may also be de-
sirable to explore the possibility of obtaining a desired band gap. To enable this, we
discuss “Gap Sculpting”.

Many approaches have been proposed to remedy the above drawback – most focus
either on better potential/pseudopotential or on better sampling of the potential energy
landscape. Gap sculpting, proposed in 2016 and applicable to all electronic strucuture
based MD simulation takes a completely different approach.

To understand the method of gap sculpting, it is necessary to start by appreciating
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the universal correlation between structural defects and electronic defects. It is a com-
mon knowledge that the short-range structural defects like dangling and floating bonds,
anomalous bond angles etc often give rise to defect states in the electronic band gap.
The Urbach tails, observed as the exponential tapering of band edges on various crys-
talline and amorphous materials, are attributed to disorders in the network, eg. long and
short bond lengths[66], disorder at the medium range [67]. It has been shown by many
researchers that atomic models with improved structural orders are also the ones with
few electronic defects[68]. Gap sculpting is based on the converse of this observation
– a model with fewer electronic defects should also be the one with fewer structural de-
fects. In that regard, gap sculpting modifies the atomic forces in MD simulation so that
the electronic defects in the band gap are explicitly disfavored. In practice, this takes
the form of a biased dynamics where the total forces on atoms are given by [69, 70]

FBS
↵ = �

occX

i

h i (r) |
@H

@R↵
| i (r)i = �

occX

i

@�i
@R↵

. (2.3)

Here, �i is the eigenvalue of the Hamiltonian H corresponding to ith eigenstate i, and
R↵ are the 3N positional degrees of freedom. The gradient @�i

@R↵
provides the direction

in configuration space for maximum increase of �i - so gives information about how to
move atoms to maximally affect �i. Eigenstates with eigenvalues in an a priori known
energy range can be forced out of that range using a biasing force given by [70]:

Fbias
↵ = �

X

i:Emin<�i<Emax

�g(�i)h i (r) |
@H

@R↵
| i (r)i. (2.4)

This biasing force pushes the states below and above the Fermi level in opposite direc-
tions. The quantity � is merely a knob to control the magnitude of the biasing forces.
The method also is ideal and frankly easier to use to study metallization-closing gap
rather than opening. In this case one shepherds electronic level toward the Fermi level.
It is important to note here that the biasing forces derived from the standard Hellmannn-
Feynmann forces which are already computed in any electronic-structure-based MD
simulation and thus the method adds negligible computational overhead compared to
the standard MD simulation.

As an example of the application of the metallization technique, we present an in-
sulator to metal transition achieved in amorphous (GeSe3)1�xAgx [71] glasses using
suitable biasing forces. The melt-quench models made using VASP [72] with PBE [73]
exchange-correlation functional and had 240 atoms with x = 0.15 and 0.25. Conduct-
ing structures were obtained by annealing the starting configuration using biased forces
at 700 K for 18 ps. The electronic states in the energy range [✏F -0.4eV,✏F +0.4eV] were
included in the computation of the biasing forces and a � = 3.0 was used. The biasing
potential moves the electronic states at the band edges into the band-gap region. This
causes the force biased structure to have states in the band gap (obtained with MD
without biasing forces) thereby inducing metallic characters. After obtaining the “bi-
ased models” we relaxed and annealed the models with “unbiased” forces. The density
of states (DoS) and the inverse participation ratio (measuring the localization of the
states) are compared between the model with no biased forces (insulating model) and
the model with biased forces (metallized model) are shown in Fig.2.7. The presence
of extended states in the metallized models clearly suggests conducting behavior. The
final metallic models were found to be almost energetically identical to the insulating
phase, an interesting “electronic polyamorphism”.
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2.3 Analyzing the models

Once a model is created it is subject to different analysis depending upon researchers’
interest. The analysis performed test the validity and credibility of the model by al-
lowing comparison with the experiment. The results obtained from the analysis often
guide future theoretical as well as experimental studies.

2.3.1 Structure

Structural analysis of the models is the first pivotal test amid the lack of a well de-
fined positions of the atoms like in crystals. Since amorphous materials inherently lack
long range order, characteristic of crystalline materials, the order usually extends up
to the second nearest set of neighbors, sometimes called the medium range order. The
first test is to check whether or not the arrangement of atoms represent an amorphous
systems. Other test include, but are not limited to, bonding environment calculation,
coordination number, Voronoi polyhedra analysis, and voids.

2.3.1.1 Radial Distribution function

The radial distribution function (RDF) is defined as:

g(r) =
N

V

dn(r)

4⇡r2dr
(2.5)

where N and V denote the total number of atoms and the volume of the simulation
box respectively. dn(r) denotes the number of atoms located at distances lying between
r and r +dr[74]. The radial distribution function g(r) gives the probability of finding
an atom in a shell of thickness dr at a distance r from a reference atom. For systems
having more than one atom type, the partial radial distribution function is defined as:

g↵�(r) =
N

V

dn↵�(r)

4⇡r2dr
c↵ (2.6)

where c↵ is the concentration of ↵ atomic species. The functions g↵�(r) denotes the
normalized probability of finding an atom of type � at a distance r from the reference
↵ atom.

The qualitative information portrayed by the RDF can be easily understood from
Fig. 2.8 comparing the RDF in amorphous and crystalline form of Carbon at nearly
same density. In crystalline materials, if one leaves out positional uncertainty arising
from thermal vibrations, which is not a crude approximation at room temperature, then
the probability of finding an atom at certain distance from another is precisely known
because of the inherent long range order/periodicity. This certainty is marked by sharp
peaks in the RDF at specific distances and vanishing elsewhere as seen in Fig. 2.8.
However, when a system is amorphous, the sharp peaks are flattened and there is in fact
no order after 4.0 Å in amorphous Carbon as seen in Fig. 2.8. A basic point from Fig.
2.8 is the identical location of the first peak in both amorphous and crystalline Carbon
suggesting the presence of a well-defined short range order, though with modest bond-
length and bond-angle distortions [75], in amorphous material and thereby invalidating
preconception of a random distribution of atoms in amorphous materials that a first
time reader may have in mind.

It is a common practice in the amorphous research community to take the position
of the minimum after the first peak as defining coordination in amorphous systems and
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Figure 2.8: Comparison of RDF of crystalline (diamond) and amorphous Carbon [60]
at 3.50 gm/cc.

the area under the first peak gives an estimate of the coordination number of an atom in
the sample. The second peak gives information on a longer length scale: in transition
metal oxides like a-Ta2O5, the first peak gives idea of the metal-oxygen bonds while
the second peak provides information about the connection among the metal-oxygen
polyhedra [63].

A lot of different definitions of the same or similar symbols and their additive and/or
multiplicative constants within the correlation functions often cause confusion. To
clear any confusion with the definitions and to compare several different definitions
used by different research groups, we suggest the reader to go through the work of
David Keen comparing these functions [76]. Also for readers interested in the recipro-
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cal space counterpart of the RDF, the structure factor S(Q), we suggest going through
Ref.[76, 74, 52].

2.3.1.2 Voronoi Analysis

Computer models represent a set of particles (atoms, molecules) in space and hence
their properties are governed by the ordering of such particles. Providing a compact
but full characterization of the structure of materials is still a challenge. Voronoi anal-
ysis is a step forward in that direction. It determines the local structure of a particle
considering the arrangement of the neighbors around that central particle [77]. For a
fixed set of particles, a Voronoi cell of the central particle is the region in space closer
to that particle than any other. This 3D geometry is characterized by a set of indices,
called Voronoi indices, written in the form h n3 n4 n5 n6 i where ni denotes the num-
ber of faces with i edges present in the Voronoi cell. A perfect icoshedra has h 0 0 12 0
i Voronoi indices. The analysis of Voronoi indices often provide useful information on
the Voronoi cell dynamics which can be used to study glass forming ability and glass
transition in glasses.

Voronoi analysis is applicable to a wide range of materials ranging from defected
crystals and deformed polycrystals to glasses and liquids [77]. It can be used to study
how the crystalline structure is compromised at higher temperatures [77]. In a bulk
metallic glass (Cu46Zr46Al8), a class of amorphous materials, it has been used to study
the evolution of certain Voronoi indices near the glass transition temperature which
have slow dynamics believed to be responsible for the excellent glass forming ability
of the material [78].

2.3.2 Electronic Structure

Amorphous materials have widespread electronic applications ranging from solar cells
to light sensors and optical memory devices to conducting bridge random access mem-
ory (CBRAM). Electronic structure not only serves to validate (or invalidate) the model
but also can be used as a priori information to produce materials with desired electronic
properties [71, 70, 69] as discussed in Section 2.2.4. The change in electronic structure
with doping is important, as it renders materials with potentially important applica-
tions.

2.3.2.1 Electronic Density of States

The lack of periodicity and long range order in amorphous materials rules out the pos-
sibility of describing electrons as Bloch states as in crystals. However, the density of
states (DoS) is a equally valid description of the electron states in both crystals and
amorphous materials and is defined as:

g (E) =
1

V

X

n

� (E � En) (2.7)

where g(E) is the DoS per unit volume per unit energy interval and V is the volume
of the system [79]. The electronic DoS in amorphous materials is qualitatively similar
to that of its crystal counterpart except that that sharp edges expected in crystals are
smoothed out due to disorder into “band tails” [75, 66].

In analogy to crystals, amorphous materials can be classified as insulators, semi-
conductors, and conductors based on the nature of the DoS and the spatial extent of
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Figure 2.9: Electronic DoS and inverse participation ratio (IPR) of Cu- doped Ta2O5

indicating conducting behavior due to the states created in the gap by the added Cu
atoms[48].

the wavefunctions. Amorphous semiconductors like a-Si possess conduction and va-
lence band and a clear band gap whereas, for bulk metallic glass like Pd40Ni40P20

[61], which is conducting, there is no band gap. Doping can sometimes transform an
insulating host conducting by creating states in the band gap of the insulating host.
For example, Cu-doping in Ta2O5 to be conducting by generating states in the band
gap arising mostly from the Cu-atoms as shown in Fig.2.9. The partial density of states
show contribution of individual atomic species to the total DoS. It is only the states near
the Fermi level that play a significant role in determining conduction mechanisms.

Apart from the information about whether the material is conducting or not, DoS
also gives valuable information about the presence of defects and impurities. For ex-
ample, the localized states in the band gap of a-Si is a consequence of the intrinsic
three-fold and five-fold defects, often known as dangling and floating bonds, present in
the model [80, 68].
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Electronic band gap evaluated with LDA, GGA and PBE functionals never agree
closely to the experimental value since DFT is a ground state theory. One can overcome
this shortcoming by using hybrid functional like Hyed-Scuseria-Ernzerhof (HSE06)
[81, 82] that produce band gaps close to the experimental values [83].

2.3.2.2 Inverse Participation Ratio

Another quantity of importance is the inverse participation ratio (IPR)[84] which in-
dicates whether the electron states are extended (distributed throughout the sample) or
concentrated/localized at some atoms. Due to the inherent disorder present in amor-
phous materials, electronic states can be localized in certain region or a certain site. If
one has the contributions to the electronic states (or eigenvectors) from different atomic
orbitals the IPR for a state ( n) can be calculated as:

I( n) =

P
orb |aorbn |4

�P
orb |aorbn |2

�2 (2.8)

where aorbn is the contribution to  n from a particular local orbital and the sum runs
over the atomic orbitals of all the atoms present. The mathematical form implies that
localized states have high IPR value. For example, if  n has a contribution arising only
from a particular orbital of a particular atom, the IPR would be unity. On the other hand,
a completely extended state produces a value of (1/N), i.e. evenly distributed over N
atoms. Localized states (near the Fermi level) have a zero d.c. conductivity while
extended states have a finite conductivity at O K. In other words, the only way for
conduction between localized states is by means of thermally assisted “hopping” [79].
IPR is important but qualitative and depends for example on the basis set employed.
An example of extended states in Cu- doped tantala [48] is shown in Fig. 2.9.

(a) (b)

Figure 2.10: Space Projected Conductivity scalar field for Model I(a) and Model II(b)

of Cu-doped tantala models [48] shown in grayscale. Those parts of the network con-
taining the interlinked Cu-atoms are clearly more conducting in both models. The
electrical conductivity of Model II is about 5 times that of Model I, because of the

more robust Cu filament of Model II.
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2.3.2.3 Space Projected Conductivity

Conduction in amorphous materials depends mainly on two quantities: the density of
states providing information about the species contributing near the Fermi-level and the
localization of the electronic states and momentum matrix elements between Kohn-
Sham states near the Fermi level. Recently, a spatial decomposition of the Kubo-
Greenwood [85, 86] developed by our group provides information about conducting
paths in real space by projecting the conductivity onto real space grids. By introducing
a discrete grid in space, we show that the quantity:

⇣(x) =

�����
X

x0

�(x, x
0)

����� (2.9)

provides such information at the spatial grid point x and for which:

�(x, x
0) =

X

ij↵

gij⇠
↵
ij(x)(⇠

↵
ij(x

0))⇤. (2.10)

Here, gij is defined in Prasai et. al [87] and ⇠↵ij(x) ⌘  ⇤
i (x)p

↵ j(x) is a complex-
valued function,  i(x) is the ith Kohn-Sham eigenfunction and p↵ = h̄

i
@

@x↵
, (↵ =

x, y, z). We have used this approach to describe transport in a solid electrolyte material[87],
Cu -doped a-alumina[88], and most recently on other materials [89]. For a more de-
tailed discussion on SPC we suggest the reader to go through Ref.[89].

As an example of this technique, we have shown the SPC calculations of Cu-doped
tantala models discussed in Section 2.2.1 in Fig.2.10. The grayscale shows that inter-
connected Cu-atoms are form the most active conduction part in the otherwise insulat-
ing tantala host.
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Figure 2.11: Vibrational DoS and VIPR of two different models of Pd40Ni40P20 bulk
metallic glass[61].

2.3.3 Vibrational Properties

Vibrations of atoms in solids, both crystalline and amorphous, form an important part
of analysis because it is directly related to transport and thermal properties. The vibra-
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tional behavior of amorphous solids are similar to their crystalline counterpart except
for the fact that the lack of periodicity smears out the sharp features (Van-Hove singu-
larities) in amorphous materials [90].

Vibrational density of states (VDoS) is an observable that can be measured ex-
perimentally most directly using inelastic neutron scattering. Most often, the vibra-
tional properties are calculated using the harmonic approximation and small finite
displacements[90]. VDoS can also be calculated from the velocity auto correlation
function that uses the trajectory given by a thermal MD simulation[23]. Details of
the theory behind calculation of the normal modes can be found elsewhere [91, 90].
Standard MD codes such as VASP and LAMMPS[92] offer such computations. The
quantity of importance is the VDoS defined as:

g(!) =
1

3N

3NX

i=1

� (! � !i) (2.11)

where N is the number of atoms and !i is the 3N eigenfrequencies. Thus, evaluating
the VDoS reduces to a problem finding the !i’s for the system. The calculation of
these eigenfrequencies are a routine task in most simulation packages including VASP
[72]6. In physical terms, the quantity g(!)d! represents the number of modes within
the interval [!,! + d!]. The delta function on the right hand side of Eqn. 2.11 is
approximated by a Gaussian with a suitable standard deviation 7.

In multi-atomic systems, the contribution to the VDoS from each atomic species,
called partial VDoS, can be calculated as:

g↵(!) =
1

3N

N↵X

i=1

X

n

|eni |
2 � (! � !n) (2.12)

where, eni are the eigenvectors of the normal modes, N↵ is the number of atom of
species ↵. The partial VDoS must satisfy g (!) =

P
↵ g↵(!), a relation that can be

used to check if the partial VDoS is correctly calculated. The general trend in the
partial VDoS is that lighter atoms contribute towards higher frequency vibrations while
heavier atoms contribute towards lower frequency vibrations.

Presence of disorder in the arrangement of atoms in amorphous materials can often
lead to localization of vibrational modes with some analogy to electron states. While
the VDoS is an experimental observable, the localization of the vibrational modes are
not easily observable in experiments. The extent of localization of vibrational modes
in computer models can be measured with a quantity called vibrational inverse partici-
pation ratio (VIPR) defined as:

⌫ (!n) =

PN
i=1

��ui
n

��4
⇣PN

i=1 |ui
n|

2
⌘2 (2.13)

where
�
ui
n

�
is the displacement vector of the ith atom in the normal mode frequency

!n. By definition, if a particular normal mode is completely localized on a single
6Note for VASP users: Relax the model with zero pressure relaxation before the vibration calculations.

Often times, problems arise when there are more than three imaginary eigenfrequecies in VASP output after
the vibrational calculation. To get rid of this problem, I recommend relaxing the system to a better energy
and force convergence (lower EDIFF and EDIFFG) and re-running the vibrational calculation.

7� ⇡ 1� 2% of the maximum eigenfrequency
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atom, the VIPR would be unity, while on the other hand a vibrational modes that are
extended over large number of atoms have smaller VIPR value. Often times in literature
researchers use the term participation ratio defined as the inverse of VIPR.

A representative example for the VDoS and VIPR for a bulk metallic glass (Pd40Ni40P20)
has been shown in Fig.2.11. The figure shows localization of high frequency normal
modes that are localized on the lightest atoms,i.e. P- atoms.

2.4 Conclusion

We have outlined some of the aspects of ab initio simulations of disordered systems.
We explained the similarities and differences of ab initio and classical methods. We
intentionally avoided the mathematical intricacy of a first principles approach as this
is well treated elsewhere. We described methods for creating computer models of
materials and emphasized the differences between direct “melt quench” and informa-
tion based approaches. We discussed FEAR in some detail. We also pointed out the
possibility of exploring models with desired optical/electronic properties in the Gap
Sculpting section. We then discussed some common methods for characterizing mod-
els and/or comparing to experiments including structural, electronic and vibrational
signatures of models. In the spirit of analyzing models, in systems for which electrical
conductivity is relevant, we described a recently developed method to project conduc-
tivity onto real space grids to determine those parts of a material that may provide
conduction.
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atomic potentials as emerging tools for materials science. Advanced Materials,
31(46):1902765, 2019.

[41] Keith T. Butler, Daniel W. Davies, Hugh Cartwright, Olexandr Isayev, and
Aron Walsh. Machine learning for molecular and materials science. Nature,
559(7715):547–555, jul 2018.

[42] Alexander Stukowski. Visualization and analysis of atomistic simulation data
with OVITO–the open visualization tool. Modelling and Simulation in Materials
Science and Engineering, 18(1):015012, dec 2009.
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